tunned-geobr 0.2.7__py3-none-any.whl → 0.2.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tunned_geobr/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- from .read_state_direct import read_state_direct
1
+ from .read_state import read_state
2
2
  from .read_amazon import read_amazon
3
3
  from .read_biomes import read_biomes
4
4
  from .read_country import read_country
@@ -16,7 +16,7 @@ from .list_geobr import list_geobr
16
16
  from .read_census_tract import read_census_tract
17
17
  from .read_meso_region import read_meso_region
18
18
  from .read_micro_region import read_micro_region
19
- from .read_municipality_direct import read_municipality_direct
19
+ from .read_municipality import read_municipality
20
20
  from .read_weighting_area import read_weighting_area
21
21
  from .read_neighborhood import read_neighborhood
22
22
  from .read_health_region import read_health_region
@@ -85,8 +85,9 @@ def read_gnl_terminals(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_gnl_terminals(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing GNL terminals data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -67,7 +67,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
67
67
  # Create a temporary directory to store the downloaded files
68
68
  with tempfile.TemporaryDirectory() as temp_dir:
69
69
  # Download the zip file
70
- zip_path = os.path.join(temp_dir, "gas_delivery_points.zip")
70
+ zip_path = os.path.join(temp_dir, "delivery_points.zip")
71
71
  if verbose:
72
72
  print("Downloading zip file")
73
73
 
@@ -85,8 +85,9 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_natural_gas_delivery_points(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing natural gas delivery points data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -67,7 +67,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
67
67
  # Create a temporary directory to store the downloaded files
68
68
  with tempfile.TemporaryDirectory() as temp_dir:
69
69
  # Download the zip file
70
- zip_path = os.path.join(temp_dir, "gas_processing_hubs.zip")
70
+ zip_path = os.path.join(temp_dir, "processing_hubs.zip")
71
71
  if verbose:
72
72
  print("Downloading zip file")
73
73
 
@@ -85,8 +85,9 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_natural_gas_processing_hub(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing natural gas processing hubs data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -85,8 +85,9 @@ def read_pio_ducts(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_pio_ducts(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -111,7 +112,7 @@ def read_pio_ducts(simplified=False, verbose=False):
111
112
 
112
113
  # Select only the most important columns
113
114
  # Adjust these columns based on the actual data structure
114
- cols_to_keep = ['NOME', 'EMPRESA', 'EXTENSAO', 'DIAMETRO', 'UF', 'geometry']
115
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
116
  cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
117
 
117
118
  if not cols_available:
@@ -120,7 +121,7 @@ def read_pio_ducts(simplified=False, verbose=False):
120
121
  gdf = gdf[cols_available]
121
122
 
122
123
  if verbose:
123
- print("Finished processing PIO ducts data")
124
+ print("Finished processing oil and derivatives terminals data")
124
125
 
125
126
  return gdf
126
127
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.2.7
3
+ Version: 0.2.10
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -1,8 +1,8 @@
1
- tunned_geobr-0.2.7.dist-info/METADATA,sha256=LxruVTULsN43uGIOC6L4L1K2Sv9qdt1yWb_-gnkvues,5018
2
- tunned_geobr-0.2.7.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.2.7.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.2.7.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=U3syU2lTvCoBLJSLcAPnn9cOc33DFqnGuGuABwguNgg,7309
1
+ tunned_geobr-0.2.10.dist-info/METADATA,sha256=S09EYfuUDkadt5dMe0WbbxWP8D_BOm49QafErbSG3mc,5019
2
+ tunned_geobr-0.2.10.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.2.10.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.2.10.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=6PWQAn9Swox7mMNRrwD42BX04qfR11_Vm1599EOQnP0,7281
6
6
  tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
7
  tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
8
8
  tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
@@ -56,7 +56,7 @@ tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZX
56
56
  tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
57
57
  tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
58
58
  tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
59
- tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
59
+ tunned_geobr/read_gnl_terminals.py,sha256=7pPyTPv8RRN-gvujbwwm-gw5j8N69MMbrIB91Lps2sA,5259
60
60
  tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
61
61
  tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
62
62
  tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
@@ -74,8 +74,8 @@ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juo
74
74
  tunned_geobr/read_municipality.py,sha256=dZM1BVi3U9ZvasLADV-ciKVr9R4o92dRowpEVdVkvYw,5651
75
75
  tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
76
76
  tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
77
- tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
78
- tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
77
+ tunned_geobr/read_natural_gas_delivery_points.py,sha256=nJJmqbJJ5Xx2P2wVL9yXdGLuPI0O8pCCL9zDkHQtZOs,5387
78
+ tunned_geobr/read_natural_gas_processing_hub.py,sha256=qI5o-4TmPfi3h0gYNWjeMR5GsRAq-fsXoB62llqt9RA,5367
79
79
  tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
80
80
  tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
81
81
  tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
@@ -95,7 +95,7 @@ tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg
95
95
  tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
96
96
  tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
97
97
  tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
98
- tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
98
+ tunned_geobr/read_pio_ducts.py,sha256=L_lDeDU4VrSnUISoQ7afe5biseja0R6xQFMkZMTQJIc,5214
99
99
  tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
100
100
  tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
101
101
  tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
@@ -135,4 +135,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz
135
135
  tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
136
136
  tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
137
137
  tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
138
- tunned_geobr-0.2.7.dist-info/RECORD,,
138
+ tunned_geobr-0.2.10.dist-info/RECORD,,