tunned-geobr 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/__init__.py +2 -3
- tunned_geobr/list_geobr.py +1 -5
- tunned_geobr/read_ama_anemometric_towers.py +8 -6
- tunned_geobr/read_areas_under_contract.py +3 -2
- tunned_geobr/read_biodiesel_plants.py +3 -2
- tunned_geobr/read_biomes.py +1 -1
- tunned_geobr/read_biomethane_plants.py +3 -2
- tunned_geobr/read_census_tract.py +90 -88
- tunned_geobr/read_comparable_areas.py +1 -1
- tunned_geobr/read_compression_stations.py +3 -2
- tunned_geobr/read_conservation_units.py +1 -1
- tunned_geobr/read_country.py +1 -1
- tunned_geobr/read_disaster_risk_area.py +1 -1
- tunned_geobr/read_drainage_ducts.py +3 -2
- tunned_geobr/read_etanol_plants.py +3 -2
- tunned_geobr/read_existent_biomass_ute.py +6 -2
- tunned_geobr/read_existent_fossile_ute.py +7 -3
- tunned_geobr/read_existent_nuclear_ute.py +5 -4
- tunned_geobr/read_existent_substations.py +5 -4
- tunned_geobr/read_existent_transmission_lines.py +6 -5
- tunned_geobr/read_exploration_production_environment.py +6 -8
- tunned_geobr/read_federal_union_areas.py +3 -2
- tunned_geobr/read_fuel_bases.py +3 -2
- tunned_geobr/read_gas_distribution_pipelines.py +3 -2
- tunned_geobr/read_gas_transport_pipelines.py +3 -2
- tunned_geobr/read_glp_bases.py +3 -2
- tunned_geobr/read_health_region.py +1 -1
- tunned_geobr/read_hydroelectric_feasibility_studies.py +9 -8
- tunned_geobr/read_hydroelectric_inventory_aai_studies.py +9 -8
- tunned_geobr/read_immediate_region.py +1 -1
- tunned_geobr/read_indigenous_land.py +1 -1
- tunned_geobr/read_intermediate_region.py +1 -1
- tunned_geobr/read_isolated_systems.py +5 -4
- tunned_geobr/read_meso_region.py +1 -1
- tunned_geobr/read_metro_area.py +1 -1
- tunned_geobr/read_micro_region.py +1 -1
- tunned_geobr/read_municipality.py +111 -67
- tunned_geobr/read_municipality_direct.py +1 -1
- tunned_geobr/read_neighborhood.py +1 -1
- tunned_geobr/read_og_basement.py +9 -8
- tunned_geobr/read_og_effective_geographic_basin.py +3 -2
- tunned_geobr/read_og_ipa_direct_evidence.py +6 -8
- tunned_geobr/read_og_ipa_exploratory_activity.py +9 -8
- tunned_geobr/read_og_ipa_exploratory_intensity.py +3 -0
- tunned_geobr/read_og_ipa_need_for_knowledge.py +6 -8
- tunned_geobr/read_og_ipa_prospectiveness.py +6 -8
- tunned_geobr/read_og_ipa_supply_infrastructure.py +6 -8
- tunned_geobr/read_og_legal_pre_salt_polygon.py +6 -8
- tunned_geobr/read_og_predominant_fluid_type.py +3 -2
- tunned_geobr/read_og_probabilistic_effective_basin.py +3 -2
- tunned_geobr/read_og_total_ipa.py +3 -2
- tunned_geobr/read_og_unconventional_resources.py +3 -2
- tunned_geobr/read_oil_and_derivatives_terminal.py +3 -2
- tunned_geobr/read_pio_terminals.py +3 -2
- tunned_geobr/read_pop_arrangements.py +1 -1
- tunned_geobr/read_processing_facilities.py +3 -2
- tunned_geobr/read_region.py +1 -1
- tunned_geobr/read_sedimentary_basins.py +6 -8
- tunned_geobr/read_semiarid.py +1 -1
- tunned_geobr/read_state.py +83 -68
- tunned_geobr/read_state_direct.py +1 -1
- tunned_geobr/read_urban_area.py +1 -1
- tunned_geobr/read_urban_concentrations.py +1 -1
- tunned_geobr/read_water_bodies_ana.py +1 -1
- tunned_geobr/read_weighting_area.py +1 -1
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/METADATA +1 -1
- tunned_geobr-0.2.7.dist-info/RECORD +138 -0
- tunned_geobr/read_census_tract_2022.py +0 -101
- tunned_geobr-0.2.5.dist-info/RECORD +0 -139
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/licenses/LICENSE.txt +0 -0
tunned_geobr/read_state.py
CHANGED
@@ -1,88 +1,103 @@
|
|
1
1
|
import geopandas as gpd
|
2
|
+
import tempfile
|
3
|
+
import os
|
4
|
+
import requests
|
5
|
+
from zipfile import ZipFile
|
6
|
+
from io import BytesIO
|
2
7
|
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
def read_state(code_state="all", year=2010, simplified=True, verbose=False):
|
8
|
+
def read_state(code_state="all", simplified=False):
|
7
9
|
"""Download shapefiles of Brazilian states as geopandas objects.
|
8
10
|
|
9
|
-
|
10
|
-
|
11
|
+
This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
|
12
|
+
Data uses Geodetic reference system "SIRGAS2000" and CRS(4674).
|
13
|
+
|
11
14
|
Parameters
|
12
15
|
----------
|
13
16
|
code_state : str, optional
|
14
17
|
The two-digit code of a state or a two-letter uppercase abbreviation
|
15
18
|
(e.g. 33 or "RJ"). If code_state="all", all states will be loaded (Default).
|
16
|
-
|
17
|
-
|
18
|
-
simplified: boolean, by default True
|
19
|
-
Data 'type', indicating whether the function returns the 'original' dataset
|
20
|
-
with high resolution or a dataset with 'simplified' borders (Default)
|
21
|
-
verbose : bool, optional
|
22
|
-
by default False
|
19
|
+
simplified : boolean, by default True
|
20
|
+
If True, returns a simplified version of the dataset with fewer columns
|
23
21
|
|
24
22
|
Returns
|
25
23
|
-------
|
26
24
|
gpd.GeoDataFrame
|
27
|
-
|
28
|
-
|
29
|
-
Raises
|
30
|
-
------
|
31
|
-
Exception
|
32
|
-
If parameters are not found or not well defined
|
25
|
+
Geodataframe with state boundaries
|
33
26
|
|
34
27
|
Example
|
35
28
|
-------
|
36
|
-
>>> from
|
29
|
+
>>> from tunned_geobr import read_state
|
37
30
|
|
38
|
-
# Read
|
39
|
-
>>>
|
31
|
+
# Read all states
|
32
|
+
>>> states = read_state()
|
40
33
|
|
41
|
-
|
42
|
-
>>>
|
34
|
+
# Read specific state by code
|
35
|
+
>>> state = read_state(code_state=33)
|
43
36
|
|
44
|
-
|
45
|
-
>>>
|
37
|
+
# Read specific state by abbreviation
|
38
|
+
>>> state = read_state(code_state="RJ")
|
46
39
|
"""
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
40
|
+
|
41
|
+
url = "https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2023/Brasil/BR_UF_2023.zip"
|
42
|
+
|
43
|
+
try:
|
44
|
+
# Download the zip file
|
45
|
+
response = requests.get(url)
|
46
|
+
if response.status_code != 200:
|
47
|
+
raise Exception("Failed to download state data from IBGE")
|
48
|
+
|
49
|
+
# Create a temporary directory
|
50
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
51
|
+
# Extract the zip file
|
52
|
+
with ZipFile(BytesIO(response.content)) as zip_ref:
|
53
|
+
zip_ref.extractall(temp_dir)
|
54
|
+
|
55
|
+
# Find the shapefile
|
56
|
+
shp_files = []
|
57
|
+
for root, dirs, files in os.walk(temp_dir):
|
58
|
+
shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
|
59
|
+
|
60
|
+
if not shp_files:
|
61
|
+
raise Exception("No shapefile found in the downloaded data")
|
62
|
+
|
63
|
+
# Read the shapefile
|
64
|
+
gdf = gpd.read_file(shp_files[0])
|
65
|
+
|
66
|
+
# Convert to SIRGAS 2000 (EPSG:4674) if not already
|
67
|
+
if gdf.crs is None or gdf.crs.to_epsg() != 4674:
|
68
|
+
gdf = gdf.to_crs(4674)
|
69
|
+
|
70
|
+
# Filter by code_state if not "all"
|
71
|
+
if code_state != "all":
|
72
|
+
if isinstance(code_state, int) or code_state.isdigit():
|
73
|
+
# Filter by numeric code
|
74
|
+
code = str(code_state).zfill(2)
|
75
|
+
gdf = gdf[gdf['CD_UF'] == code]
|
76
|
+
elif isinstance(code_state, str) and len(code_state) == 2:
|
77
|
+
# Filter by state abbreviation
|
78
|
+
gdf = gdf[gdf['SIGLA_UF'] == code_state.upper()]
|
79
|
+
|
80
|
+
if len(gdf) == 0:
|
81
|
+
raise Exception(f"No data found for code_state={code_state}")
|
82
|
+
|
83
|
+
if simplified:
|
84
|
+
# Keep only the most relevant columns
|
85
|
+
columns_to_keep = [
|
86
|
+
'geometry',
|
87
|
+
'CD_UF', # State code
|
88
|
+
'SIGLA_UF', # State abbreviation
|
89
|
+
'NM_UF', # State name
|
90
|
+
'AREA_KM2' # Area in square kilometers
|
91
|
+
]
|
92
|
+
|
93
|
+
# Filter columns that actually exist in the dataset
|
94
|
+
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
95
|
+
gdf = gdf[existing_columns]
|
96
|
+
|
97
|
+
except Exception as e:
|
98
|
+
raise Exception(f"Error downloading state data: {str(e)}")
|
99
|
+
|
100
|
+
return gdf
|
101
|
+
|
102
|
+
if __name__ == '__main__':
|
103
|
+
read_state()
|
@@ -5,7 +5,7 @@ import requests
|
|
5
5
|
from zipfile import ZipFile
|
6
6
|
from io import BytesIO
|
7
7
|
|
8
|
-
def
|
8
|
+
def read_state_direct(code_state="all", simplified=False):
|
9
9
|
"""Download shapefiles of Brazilian states as geopandas objects.
|
10
10
|
|
11
11
|
This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
|
tunned_geobr/read_urban_area.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
|
-
def read_urban_area(year=2015, simplified=
|
4
|
+
def read_urban_area(year=2015, simplified=False, verbose=False):
|
5
5
|
""" Download official data of urbanized areas in Brazil as an sf object.
|
6
6
|
|
7
7
|
This function reads the official data on the urban footprint of Brazilian cities
|
@@ -2,7 +2,7 @@
|
|
2
2
|
from geobr.utils import select_metadata, download_gpkg
|
3
3
|
|
4
4
|
|
5
|
-
def read_urban_concentrations(year=2015, simplified=
|
5
|
+
def read_urban_concentrations(year=2015, simplified=False, verbose=False):
|
6
6
|
r""" Download urban concentration areas in Brazil
|
7
7
|
|
8
8
|
@description
|
@@ -2,7 +2,7 @@ from geobr.utils import select_metadata, download_gpkg
|
|
2
2
|
|
3
3
|
|
4
4
|
def read_weighting_area(
|
5
|
-
code_weighting="all", year=2010, simplified=
|
5
|
+
code_weighting="all", year=2010, simplified=False, verbose=False
|
6
6
|
):
|
7
7
|
"""Download shape files of Census Weighting Areas (area de ponderacao) of the Brazilian Population Census.
|
8
8
|
|
@@ -0,0 +1,138 @@
|
|
1
|
+
tunned_geobr-0.2.7.dist-info/METADATA,sha256=LxruVTULsN43uGIOC6L4L1K2Sv9qdt1yWb_-gnkvues,5018
|
2
|
+
tunned_geobr-0.2.7.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.2.7.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.2.7.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
+
tunned_geobr/__init__.py,sha256=U3syU2lTvCoBLJSLcAPnn9cOc33DFqnGuGuABwguNgg,7309
|
6
|
+
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
7
|
+
tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
|
8
|
+
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
9
|
+
tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
|
10
|
+
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
+
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
+
tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
|
13
|
+
tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
|
14
|
+
tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
|
15
|
+
tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
|
16
|
+
tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
|
17
|
+
tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
|
18
|
+
tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
|
19
|
+
tunned_geobr/read_areas_under_contract.py,sha256=76opqzIJdrt034KijQgs3hXX2nIV9RAACuD1YAtJjm8,5396
|
20
|
+
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
21
|
+
tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
|
22
|
+
tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
|
23
|
+
tunned_geobr/read_biodiesel_plants.py,sha256=nqLNTuY3CnjghJU6aK3alJFl9yt4UHS8zEGjvlZzMLk,5319
|
24
|
+
tunned_geobr/read_biomes.py,sha256=gcr11eWknIl92MxF_oJ2RXlsZ6q8ARxnbdmdmsfT4kY,1338
|
25
|
+
tunned_geobr/read_biomethane_plants.py,sha256=HP51IQB7KMTOzpfcXNNn3Gg95nUlTjuDat_NOoHQVtY,5331
|
26
|
+
tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
|
27
|
+
tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
|
28
|
+
tunned_geobr/read_census_tract.py,sha256=aKSvMzfAYSR0P-TDS5xyo4XSO3NRjuYgfb_psDh3kUc,4005
|
29
|
+
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
30
|
+
tunned_geobr/read_comparable_areas.py,sha256=XUOsBiDyYX5z4fj0bofD9Ty6dW4xKRY80MSo_f69Sac,2109
|
31
|
+
tunned_geobr/read_compression_stations.py,sha256=WH1edJ7FARZCDRJoIx-33olm_umIGBbVodWajgVrq3U,5337
|
32
|
+
tunned_geobr/read_conservation_units.py,sha256=_6fSF98rKFbsDH08_ZJobB-_h_0ZEMDMMgDiCpLVEYM,1380
|
33
|
+
tunned_geobr/read_country.py,sha256=VLE5rNTddsgxBB9N1i7EyxMgWDYda9G2AKDpmr_m36I,1358
|
34
|
+
tunned_geobr/read_disaster_risk_area.py,sha256=8b-LsdSjUduOtq9u5aJLPxJnP-TAv974bkBNn07Kttk,1846
|
35
|
+
tunned_geobr/read_drainage_ducts.py,sha256=xirIyirAde0awmFSTWRh65PueWD14kjulavlBc8xYMA,5254
|
36
|
+
tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
|
37
|
+
tunned_geobr/read_etanol_plants.py,sha256=aTK6oWNV61Crlf6LhK2yvn3r2SnAvhEbVb4XqysSwmE,5286
|
38
|
+
tunned_geobr/read_existent_biomass_ute.py,sha256=QM-FPcoCiho9_LI_vHDaD-FE6JoZwwk5vKqrPbR0xNo,5502
|
39
|
+
tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
|
40
|
+
tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
|
41
|
+
tunned_geobr/read_existent_fossile_ute.py,sha256=jjiDyEd9JTgVkre5247_YqIQP6pniIEvcLYy3u4Fth4,5501
|
42
|
+
tunned_geobr/read_existent_nuclear_ute.py,sha256=HjKHpA9GFN2Di8qG73A0Y73xMKdtSfjEXwIGYDWEw0M,5442
|
43
|
+
tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
|
44
|
+
tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
|
45
|
+
tunned_geobr/read_existent_substations.py,sha256=v9Noi50t5sGMaLqDh5L10H1qH6n5tO2zqx0objPWe50,5385
|
46
|
+
tunned_geobr/read_existent_transmission_lines.py,sha256=rImT61mjwKLauC6MLuN5csTOr1L6DZGezntXv8t7y8Y,5409
|
47
|
+
tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
|
48
|
+
tunned_geobr/read_exploration_production_environment.py,sha256=nmf5zUDXF1mFHqGudnctj94aEZzdtnCxM7Ikrx0p9kk,4695
|
49
|
+
tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
|
50
|
+
tunned_geobr/read_federal_union_areas.py,sha256=gP2yJMPzz0xna18ldLIbqK0m3LuW84NkX9L0E4ZjNXE,5358
|
51
|
+
tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
|
52
|
+
tunned_geobr/read_fuel_bases.py,sha256=1fUurX1HFznWr3KNWVjOzlhrvQva3fHbgQ1necfFnYA,5178
|
53
|
+
tunned_geobr/read_gas_distribution_pipelines.py,sha256=HSoEHWQukfKi079Jd_sgcj1iDJtfNXnCrsbUPr-s_Mg,5396
|
54
|
+
tunned_geobr/read_gas_transport_pipelines.py,sha256=Grck2pJTjDcs3oUnk7HEXU1akk2Ti9H4Xg3Y8cyq9-4,5354
|
55
|
+
tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
|
56
|
+
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
57
|
+
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
58
|
+
tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
|
59
|
+
tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
|
60
|
+
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
61
|
+
tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
|
62
|
+
tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
|
63
|
+
tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
|
64
|
+
tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
|
65
|
+
tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
|
66
|
+
tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
|
67
|
+
tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
|
68
|
+
tunned_geobr/read_isolated_systems.py,sha256=k0dxfUNubsJXV3_5ph1CWghR_Mfpn4oe_4zLkg7c5Cs,5343
|
69
|
+
tunned_geobr/read_meso_region.py,sha256=UacQUroAZWcfhq2Piby-FDVTDmEVeLEQCvcLcc1w7rY,2602
|
70
|
+
tunned_geobr/read_metro_area.py,sha256=e18jyXrRMwQTv_ZO2hGoyC8qZsV6NlYfWXsu6DusRQM,1498
|
71
|
+
tunned_geobr/read_micro_region.py,sha256=61KbztQWYw-QPFLJOoxNWX32bHBKLb2pnunzSFo3S_0,2510
|
72
|
+
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
73
|
+
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
74
|
+
tunned_geobr/read_municipality.py,sha256=dZM1BVi3U9ZvasLADV-ciKVr9R4o92dRowpEVdVkvYw,5651
|
75
|
+
tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
|
76
|
+
tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
|
77
|
+
tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
|
78
|
+
tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
|
79
|
+
tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
|
80
|
+
tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
|
81
|
+
tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
|
82
|
+
tunned_geobr/read_og_effective_geographic_basin.py,sha256=Qvy--_A8oGrL-Os3mfofr14MA0qWv3s5FFdtIabBJ8E,5457
|
83
|
+
tunned_geobr/read_og_ipa_direct_evidence.py,sha256=N5nDr7AinKFqhcfgnvygVjzpdN2D1TP5VSILS8gkIgU,4738
|
84
|
+
tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=uhNKpj_YqpT_Oioms_eZycCm7yJjOjyi53eGnoomcug,4753
|
85
|
+
tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=Erul-eohGVshbNOG0EU0DkxjCg0TzsElSUhE3cxy0V8,5468
|
86
|
+
tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=tXkn0beJeqJ0_DaR888txZNjqTDS4GHQOfibsS1bJyc,4677
|
87
|
+
tunned_geobr/read_og_ipa_prospectiveness.py,sha256=wSmFokLdlfXMfTx5BOhxbt6kJIYAOweJE4Kc5_-fumc,4643
|
88
|
+
tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=a4wTN7fIef_coffNvEyUcX0GRZV3x2C9Pk_qR-RSVU8,4699
|
89
|
+
tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=lXlp-c1rMbJ7uUqKZFxPpS96Ltx-0r1T-FoCG3fqJYQ,4683
|
90
|
+
tunned_geobr/read_og_predominant_fluid_type.py,sha256=kdbnhdxlLBUf_kjALdZm6WusC3bIBTRToQfvSK71lKY,5452
|
91
|
+
tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=ftdY--3rZJwhCfbuQULm30Gg2Sc-rF1evRoNozNKX58,5497
|
92
|
+
tunned_geobr/read_og_total_ipa.py,sha256=0Tz4x7ZD7bRvXiLR2AitAmx-hQEVxAzNugfg2o0L3gc,5300
|
93
|
+
tunned_geobr/read_og_unconventional_resources.py,sha256=97lUpkJQtBZTUb4oPdvT9wxlm2yj6euWzLR4oGiezrc,5444
|
94
|
+
tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg54FbZgUqJ_YTqbFak_7Y,5385
|
95
|
+
tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
|
96
|
+
tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
|
97
|
+
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
98
|
+
tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
|
99
|
+
tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
|
100
|
+
tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
|
101
|
+
tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
|
102
|
+
tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
|
103
|
+
tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
|
104
|
+
tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
|
105
|
+
tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
|
106
|
+
tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
|
107
|
+
tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
|
108
|
+
tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
|
109
|
+
tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
|
110
|
+
tunned_geobr/read_pop_arrangements.py,sha256=D9Q1hT5t8yXfGoKaIRSPLjkVaf-eX2fS9ofC-La2Jew,1386
|
111
|
+
tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
|
112
|
+
tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
|
113
|
+
tunned_geobr/read_processing_facilities.py,sha256=8iCveDTk7MXm1bmb1pcknzen62HTGYQ3KEzvUGSdWfk,5349
|
114
|
+
tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
|
115
|
+
tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
116
|
+
tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
|
117
|
+
tunned_geobr/read_region.py,sha256=kfwjoMj-klayqSty_mUNILIQA8RYgNuB86y_0raDApQ,956
|
118
|
+
tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
|
119
|
+
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
120
|
+
tunned_geobr/read_sedimentary_basins.py,sha256=mpCde4-WRdAAuHF-AwrODd0GpxRhzJOuP60U6Zbl9pE,4583
|
121
|
+
tunned_geobr/read_semiarid.py,sha256=pxxYTWq8_UPUyblA7_FXXXRz-XOCrrebCvYQ-kgDSrU,1358
|
122
|
+
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
123
|
+
tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
|
124
|
+
tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
|
125
|
+
tunned_geobr/read_state.py,sha256=JgV3cR0LFbmwIzuzPbR_Zfy1bR_2eBeEPxunozctuag,3819
|
126
|
+
tunned_geobr/read_state_direct.py,sha256=8Tdz-gVH_t90BJngcfcpr0VLs5HfCUxRgRQj8hy4Bt0,3826
|
127
|
+
tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
|
128
|
+
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
129
|
+
tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
|
130
|
+
tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
|
131
|
+
tunned_geobr/read_urban_area.py,sha256=2zB6B-CXb5Hvvu6EjaXzWeLt0na3IFoSMdYdZmCHUGU,1364
|
132
|
+
tunned_geobr/read_urban_concentrations.py,sha256=RvkjCupcb1DL1HgEm9zYrfzS_dn4mOrBygl2N9OBt-w,1428
|
133
|
+
tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
|
134
|
+
tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz_2Bm-Pk4,3233
|
135
|
+
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
136
|
+
tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
|
137
|
+
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
138
|
+
tunned_geobr-0.2.7.dist-info/RECORD,,
|
@@ -1,101 +0,0 @@
|
|
1
|
-
import geopandas as gpd
|
2
|
-
import tempfile
|
3
|
-
import os
|
4
|
-
import requests
|
5
|
-
import subprocess
|
6
|
-
from io import BytesIO
|
7
|
-
|
8
|
-
def read_census_tract_2022(simplified=False):
|
9
|
-
"""Download Brazilian Census Tracts data from IBGE (2022 Census).
|
10
|
-
|
11
|
-
This function downloads and processes the Brazilian Census Tracts data
|
12
|
-
from IBGE (Brazilian Institute of Geography and Statistics) for the 2022 Census.
|
13
|
-
Original source: IBGE - Instituto Brasileiro de Geografia e Estatística
|
14
|
-
|
15
|
-
Parameters
|
16
|
-
----------
|
17
|
-
simplified : boolean, by default False
|
18
|
-
If True, returns a simplified version of the dataset with fewer columns
|
19
|
-
|
20
|
-
Returns
|
21
|
-
-------
|
22
|
-
gpd.GeoDataFrame
|
23
|
-
Geodataframe with Brazilian census tracts data
|
24
|
-
|
25
|
-
Example
|
26
|
-
-------
|
27
|
-
>>> from tunned_geobr import read_census_tract_2022
|
28
|
-
|
29
|
-
# Read census tracts data
|
30
|
-
>>> census_tracts = read_census_tract_2022()
|
31
|
-
"""
|
32
|
-
|
33
|
-
url = "https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_de_setores_censitarios__divisoes_intramunicipais/censo_2022/setores/shp/BR/BR_setores_CD2022.zip"
|
34
|
-
|
35
|
-
try:
|
36
|
-
# Create a temporary directory
|
37
|
-
with tempfile.TemporaryDirectory() as temp_dir:
|
38
|
-
# Download the zip file to the temporary directory
|
39
|
-
zip_file_path = os.path.join(temp_dir, "census_tracts.zip")
|
40
|
-
|
41
|
-
# Download the file
|
42
|
-
response = requests.get(url)
|
43
|
-
if response.status_code != 200:
|
44
|
-
raise Exception("Failed to download census tracts data from IBGE")
|
45
|
-
|
46
|
-
# Save the content to a file
|
47
|
-
with open(zip_file_path, 'wb') as f:
|
48
|
-
f.write(response.content)
|
49
|
-
|
50
|
-
# Use unzip command line tool to extract the file (handles more compression methods)
|
51
|
-
try:
|
52
|
-
subprocess.run(['unzip', '-o', zip_file_path, '-d', temp_dir],
|
53
|
-
check=True,
|
54
|
-
stdout=subprocess.PIPE,
|
55
|
-
stderr=subprocess.PIPE)
|
56
|
-
except subprocess.CalledProcessError as e:
|
57
|
-
raise Exception(f"Failed to extract zip file: {e.stderr.decode()}")
|
58
|
-
|
59
|
-
# Find the shapefile
|
60
|
-
shp_files = []
|
61
|
-
for root, dirs, files in os.walk(temp_dir):
|
62
|
-
shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
|
63
|
-
|
64
|
-
if not shp_files:
|
65
|
-
raise Exception("No shapefile found in the downloaded data")
|
66
|
-
|
67
|
-
# Read the shapefile
|
68
|
-
gdf = gpd.read_file(shp_files[0])
|
69
|
-
|
70
|
-
# Convert to SIRGAS 2000 (EPSG:4674) if not already
|
71
|
-
if gdf.crs is None or gdf.crs.to_epsg() != 4674:
|
72
|
-
gdf = gdf.to_crs(4674)
|
73
|
-
|
74
|
-
if simplified:
|
75
|
-
# Keep only the most relevant columns
|
76
|
-
# Note: Column names may need adjustment based on actual data
|
77
|
-
columns_to_keep = [
|
78
|
-
'geometry',
|
79
|
-
'CD_SETOR', # Census Tract Code
|
80
|
-
'NM_SETOR', # Census Tract Name
|
81
|
-
'CD_SIT', # Situation Code
|
82
|
-
'NM_SIT', # Situation Name (Urban/Rural)
|
83
|
-
'CD_MUN', # Municipality Code
|
84
|
-
'NM_MUN', # Municipality Name
|
85
|
-
'CD_UF', # State Code
|
86
|
-
'NM_UF', # State Name
|
87
|
-
'SIGLA_UF', # State Abbreviation
|
88
|
-
'AREA_KM2' # Area in square kilometers
|
89
|
-
]
|
90
|
-
|
91
|
-
# Filter columns that actually exist in the dataset
|
92
|
-
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
93
|
-
gdf = gdf[existing_columns]
|
94
|
-
|
95
|
-
except Exception as e:
|
96
|
-
raise Exception(f"Error downloading census tracts data: {str(e)}")
|
97
|
-
|
98
|
-
return gdf
|
99
|
-
|
100
|
-
if __name__ == '__main__':
|
101
|
-
read_census_tract_2022()
|
@@ -1,139 +0,0 @@
|
|
1
|
-
tunned_geobr-0.2.5.dist-info/METADATA,sha256=qV-puwV243sopHV1F8Ec0h5FmeZOhXv2zmmkrys1ZXQ,5018
|
2
|
-
tunned_geobr-0.2.5.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
-
tunned_geobr-0.2.5.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
-
tunned_geobr-0.2.5.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
-
tunned_geobr/__init__.py,sha256=6kbBMfBy0NidzGz_heNFEFPLLVVaNphTqGOFV-6qzqI,7354
|
6
|
-
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
7
|
-
tunned_geobr/list_geobr.py,sha256=l-sXzMr94uHZfeYDKgcdlnwaVbB50rrw02I0ehRIWAg,17305
|
8
|
-
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
9
|
-
tunned_geobr/read_ama_anemometric_towers.py,sha256=I3YUhwt_-kOYYupTM3H0-MgmyMpz3zLgI4l3re7U4K8,4691
|
10
|
-
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
-
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
-
tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
|
13
|
-
tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
|
14
|
-
tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
|
15
|
-
tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
|
16
|
-
tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
|
17
|
-
tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
|
18
|
-
tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
|
19
|
-
tunned_geobr/read_areas_under_contract.py,sha256=y0fMHrqgnZpTXNKPb6GEaU0X9Fylwwqj0PRonLVUV5M,5341
|
20
|
-
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
21
|
-
tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
|
22
|
-
tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
|
23
|
-
tunned_geobr/read_biodiesel_plants.py,sha256=aCEbxtCe1L00UF2mGvRcyywNG_82-q1IlYiyiq0g4R0,5264
|
24
|
-
tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
|
25
|
-
tunned_geobr/read_biomethane_plants.py,sha256=7fWgZtoiGfVX72bLyLgIEGU8zvxkazTgBLCaLVAwTEA,5276
|
26
|
-
tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
|
27
|
-
tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
|
28
|
-
tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
|
29
|
-
tunned_geobr/read_census_tract_2022.py,sha256=JtoJJtZ2rFiC5gtuZ7V_5teYFkuq1-GkV4GalSkhorQ,4066
|
30
|
-
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
31
|
-
tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
|
32
|
-
tunned_geobr/read_compression_stations.py,sha256=oTBMziFpYy2WML95pz1PNbaKtkhlklLvzjPYAebcz2Q,5282
|
33
|
-
tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
|
34
|
-
tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
|
35
|
-
tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
|
36
|
-
tunned_geobr/read_drainage_ducts.py,sha256=slK44CLo9sN9tVaY0rkpJT-IsKBjuHcMYojc-y7SPME,5199
|
37
|
-
tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
|
38
|
-
tunned_geobr/read_etanol_plants.py,sha256=jMMZ_DBVNcbqFyc00j7JHK-bJmZiBqYubgDrtN3YhhU,5231
|
39
|
-
tunned_geobr/read_existent_biomass_ute.py,sha256=LxPz2C-gX3ZZAfS-3IhrUIidE7p8v5J8wX2qwnx714M,5388
|
40
|
-
tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
|
41
|
-
tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
|
42
|
-
tunned_geobr/read_existent_fossile_ute.py,sha256=S_AdxedciScLc3vUjDsOylUeYkGUGP5hTM92spwCb-8,5385
|
43
|
-
tunned_geobr/read_existent_nuclear_ute.py,sha256=j8Qvykm0Yyuim3_8src_Hq6iQfVHHRQ9VjD6u1Se8Gk,5373
|
44
|
-
tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
|
45
|
-
tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
|
46
|
-
tunned_geobr/read_existent_substations.py,sha256=hKVMz09Fm5ES1L_26vlPF96j45HOJmNepsVvaTvD6lk,5301
|
47
|
-
tunned_geobr/read_existent_transmission_lines.py,sha256=yWoHMPoa66eMApAqtC_0WMGquULqxMXO0G_Y8i7jRzE,5327
|
48
|
-
tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
|
49
|
-
tunned_geobr/read_exploration_production_environment.py,sha256=M8u7k0JCzOKGof-Emps0CvIC0SUUkZjvZ9KsImXUzik,4754
|
50
|
-
tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
|
51
|
-
tunned_geobr/read_federal_union_areas.py,sha256=SnzdGs0zJreh8RALGairO57mvva3wUJjTWTUv-O1Ai0,5303
|
52
|
-
tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
|
53
|
-
tunned_geobr/read_fuel_bases.py,sha256=Fmu9swdPp4Pdri_HDP95Hegj2ZY87ZGE6C7t0vd61MM,5123
|
54
|
-
tunned_geobr/read_gas_distribution_pipelines.py,sha256=ALNxscxsc8uq_Lw_oPpBW2yeHlPJXug-7l8Weaatqdg,5341
|
55
|
-
tunned_geobr/read_gas_transport_pipelines.py,sha256=xItLOd_HClYg7e-Zf6X5LJzVDR1bOGw--PCFqkQsM30,5299
|
56
|
-
tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
|
57
|
-
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
58
|
-
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
59
|
-
tunned_geobr/read_glp_bases.py,sha256=PZK3iUHoeZipB80DvpzDg4jjPE8YiiMzeFq8ik70uKw,5135
|
60
|
-
tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
|
61
|
-
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
62
|
-
tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
|
63
|
-
tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
|
64
|
-
tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=61hBf0218A--VF_SP9F4xcgtM3GYAjFuBk6VkZtvmP0,4764
|
65
|
-
tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=_2Cl6haiM4lJwDW5d2SNCVkUfywBOs9Q4qBLCndiamw,4814
|
66
|
-
tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
|
67
|
-
tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
|
68
|
-
tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
|
69
|
-
tunned_geobr/read_isolated_systems.py,sha256=dWhfm8CnB7cgi1DetuHr6e0F5QDjIKEsAHOcj0chQIk,5231
|
70
|
-
tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
|
71
|
-
tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
|
72
|
-
tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
|
73
|
-
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
74
|
-
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
75
|
-
tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
|
76
|
-
tunned_geobr/read_municipality_direct.py,sha256=v2oRUyYlkOrJy_FTmxZMo3kug9rzAoescrkc293H1OY,5650
|
77
|
-
tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
|
78
|
-
tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
|
79
|
-
tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
|
80
|
-
tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
|
81
|
-
tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
|
82
|
-
tunned_geobr/read_og_basement.py,sha256=9fdOoMDPBUkDgwxBU_3BL0BZDANPSoIgXWhKjtQVlxk,4618
|
83
|
-
tunned_geobr/read_og_effective_geographic_basin.py,sha256=lDnVSh8R4Ic-ldkkDLN7ugUkUpScMLeaLjNpdat4iwQ,5402
|
84
|
-
tunned_geobr/read_og_ipa_direct_evidence.py,sha256=dqIVIonwujERYTR_Kz3I9F3FzBiWHIGK_cOeoM0FQyo,4799
|
85
|
-
tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=BZOVfhi524zKQFOWK445y09JBFwHKS3i8JndjXgF378,4748
|
86
|
-
tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=A1Boae3YoKCH0jn7Z0sWUkVBYJ8aKl4naMpqOs3DS3I,5401
|
87
|
-
tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=_E9g6psmo0HWzg9WxSrNQtiiQv3kUIKvq-NtjyifLSA,4738
|
88
|
-
tunned_geobr/read_og_ipa_prospectiveness.py,sha256=yuY25wAeUIaPMBEePKmTT_cvpjGKpwIDq-GyM8dpDEw,4704
|
89
|
-
tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=RIze4M4K5DpUISZ3MlYRKWaiki-XOTdh_kUg5MPtn0s,4760
|
90
|
-
tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=2NSqvlqqCu_PjRMKyIjzbOrA1s390LGeuyDpcoE4Pu4,4734
|
91
|
-
tunned_geobr/read_og_predominant_fluid_type.py,sha256=tYAZeHYKHT8qN1f_Iko3GIVCKZxx27T_d_G0rtGwcr0,5397
|
92
|
-
tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=5VZixVU5wDclBhiXYQHPs5azK_3KJkr-N5vndeujcTg,5442
|
93
|
-
tunned_geobr/read_og_total_ipa.py,sha256=HWFI6-HcEvhvhBK4eWVTsZcqx2UC8b7zOjjtQxxNT_4,5245
|
94
|
-
tunned_geobr/read_og_unconventional_resources.py,sha256=E2Kkv6N3V2aMhViyrJWmGxgC6kLhshdRzP4oJnBmKU8,5389
|
95
|
-
tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=7l6vBVX23JEMH06sjn5E8vHiW0R-ws3rzBav_G50pNA,5330
|
96
|
-
tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
|
97
|
-
tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
|
98
|
-
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
99
|
-
tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
|
100
|
-
tunned_geobr/read_pio_terminals.py,sha256=NduuiA1AOc7vvMnwJlqc9V4QeiXlWtFaylS3prKjG14,5191
|
101
|
-
tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
|
102
|
-
tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
|
103
|
-
tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
|
104
|
-
tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
|
105
|
-
tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
|
106
|
-
tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
|
107
|
-
tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
|
108
|
-
tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
|
109
|
-
tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
|
110
|
-
tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
|
111
|
-
tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
|
112
|
-
tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
|
113
|
-
tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
|
114
|
-
tunned_geobr/read_processing_facilities.py,sha256=BABgyK2FBlHyVSBBzuYN5kRyq9H6LzinPbVOcVsgvgg,5294
|
115
|
-
tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
|
116
|
-
tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
117
|
-
tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
|
118
|
-
tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
|
119
|
-
tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
|
120
|
-
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
121
|
-
tunned_geobr/read_sedimentary_basins.py,sha256=HsL-QHpEVrzUyEJ9qW8xZOkhoJw4LRxCPoeI7G7GByI,4634
|
122
|
-
tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
|
123
|
-
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
124
|
-
tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
|
125
|
-
tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
|
126
|
-
tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
|
127
|
-
tunned_geobr/read_state_direct.py,sha256=AA3a7XxO2NocRNBGd1FpYriTE2_l-f8sbxwOgRMf9Fw,3818
|
128
|
-
tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
|
129
|
-
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
130
|
-
tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
|
131
|
-
tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
|
132
|
-
tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
|
133
|
-
tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
|
134
|
-
tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
|
135
|
-
tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJapaqWYjck,3237
|
136
|
-
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
137
|
-
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
138
|
-
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
139
|
-
tunned_geobr-0.2.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|