tunned-geobr 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. tunned_geobr/__init__.py +2 -3
  2. tunned_geobr/list_geobr.py +1 -5
  3. tunned_geobr/read_ama_anemometric_towers.py +8 -6
  4. tunned_geobr/read_areas_under_contract.py +3 -2
  5. tunned_geobr/read_biodiesel_plants.py +3 -2
  6. tunned_geobr/read_biomes.py +1 -1
  7. tunned_geobr/read_biomethane_plants.py +3 -2
  8. tunned_geobr/read_census_tract.py +90 -88
  9. tunned_geobr/read_comparable_areas.py +1 -1
  10. tunned_geobr/read_compression_stations.py +3 -2
  11. tunned_geobr/read_conservation_units.py +1 -1
  12. tunned_geobr/read_country.py +1 -1
  13. tunned_geobr/read_disaster_risk_area.py +1 -1
  14. tunned_geobr/read_drainage_ducts.py +3 -2
  15. tunned_geobr/read_etanol_plants.py +3 -2
  16. tunned_geobr/read_existent_biomass_ute.py +6 -2
  17. tunned_geobr/read_existent_fossile_ute.py +7 -3
  18. tunned_geobr/read_existent_nuclear_ute.py +5 -4
  19. tunned_geobr/read_existent_substations.py +5 -4
  20. tunned_geobr/read_existent_transmission_lines.py +6 -5
  21. tunned_geobr/read_exploration_production_environment.py +6 -8
  22. tunned_geobr/read_federal_union_areas.py +3 -2
  23. tunned_geobr/read_fuel_bases.py +3 -2
  24. tunned_geobr/read_gas_distribution_pipelines.py +3 -2
  25. tunned_geobr/read_gas_transport_pipelines.py +3 -2
  26. tunned_geobr/read_glp_bases.py +3 -2
  27. tunned_geobr/read_health_region.py +1 -1
  28. tunned_geobr/read_hydroelectric_feasibility_studies.py +9 -8
  29. tunned_geobr/read_hydroelectric_inventory_aai_studies.py +9 -8
  30. tunned_geobr/read_immediate_region.py +1 -1
  31. tunned_geobr/read_indigenous_land.py +1 -1
  32. tunned_geobr/read_intermediate_region.py +1 -1
  33. tunned_geobr/read_isolated_systems.py +5 -4
  34. tunned_geobr/read_meso_region.py +1 -1
  35. tunned_geobr/read_metro_area.py +1 -1
  36. tunned_geobr/read_micro_region.py +1 -1
  37. tunned_geobr/read_municipality.py +111 -67
  38. tunned_geobr/read_municipality_direct.py +1 -1
  39. tunned_geobr/read_neighborhood.py +1 -1
  40. tunned_geobr/read_og_basement.py +9 -8
  41. tunned_geobr/read_og_effective_geographic_basin.py +3 -2
  42. tunned_geobr/read_og_ipa_direct_evidence.py +6 -8
  43. tunned_geobr/read_og_ipa_exploratory_activity.py +9 -8
  44. tunned_geobr/read_og_ipa_exploratory_intensity.py +3 -0
  45. tunned_geobr/read_og_ipa_need_for_knowledge.py +6 -8
  46. tunned_geobr/read_og_ipa_prospectiveness.py +6 -8
  47. tunned_geobr/read_og_ipa_supply_infrastructure.py +6 -8
  48. tunned_geobr/read_og_legal_pre_salt_polygon.py +6 -8
  49. tunned_geobr/read_og_predominant_fluid_type.py +3 -2
  50. tunned_geobr/read_og_probabilistic_effective_basin.py +3 -2
  51. tunned_geobr/read_og_total_ipa.py +3 -2
  52. tunned_geobr/read_og_unconventional_resources.py +3 -2
  53. tunned_geobr/read_oil_and_derivatives_terminal.py +3 -2
  54. tunned_geobr/read_pio_terminals.py +3 -2
  55. tunned_geobr/read_pop_arrangements.py +1 -1
  56. tunned_geobr/read_processing_facilities.py +3 -2
  57. tunned_geobr/read_region.py +1 -1
  58. tunned_geobr/read_sedimentary_basins.py +6 -8
  59. tunned_geobr/read_semiarid.py +1 -1
  60. tunned_geobr/read_state.py +83 -68
  61. tunned_geobr/read_state_direct.py +1 -1
  62. tunned_geobr/read_urban_area.py +1 -1
  63. tunned_geobr/read_urban_concentrations.py +1 -1
  64. tunned_geobr/read_water_bodies_ana.py +1 -1
  65. tunned_geobr/read_weighting_area.py +1 -1
  66. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/METADATA +1 -1
  67. tunned_geobr-0.2.7.dist-info/RECORD +138 -0
  68. tunned_geobr/read_census_tract_2022.py +0 -101
  69. tunned_geobr-0.2.5.dist-info/RECORD +0 -139
  70. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/WHEEL +0 -0
  71. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/entry_points.txt +0 -0
  72. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.7.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,88 +1,103 @@
1
1
  import geopandas as gpd
2
+ import tempfile
3
+ import os
4
+ import requests
5
+ from zipfile import ZipFile
6
+ from io import BytesIO
2
7
 
3
- from geobr.utils import select_metadata, download_gpkg
4
-
5
-
6
- def read_state(code_state="all", year=2010, simplified=True, verbose=False):
8
+ def read_state(code_state="all", simplified=False):
7
9
  """Download shapefiles of Brazilian states as geopandas objects.
8
10
 
9
- Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
10
-
11
+ This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
12
+ Data uses Geodetic reference system "SIRGAS2000" and CRS(4674).
13
+
11
14
  Parameters
12
15
  ----------
13
16
  code_state : str, optional
14
17
  The two-digit code of a state or a two-letter uppercase abbreviation
15
18
  (e.g. 33 or "RJ"). If code_state="all", all states will be loaded (Default).
16
- year : int, optional
17
- Year of the data, by default 2010
18
- simplified: boolean, by default True
19
- Data 'type', indicating whether the function returns the 'original' dataset
20
- with high resolution or a dataset with 'simplified' borders (Default)
21
- verbose : bool, optional
22
- by default False
19
+ simplified : boolean, by default True
20
+ If True, returns a simplified version of the dataset with fewer columns
23
21
 
24
22
  Returns
25
23
  -------
26
24
  gpd.GeoDataFrame
27
- Metadata and geopackage of selected states
28
-
29
- Raises
30
- ------
31
- Exception
32
- If parameters are not found or not well defined
25
+ Geodataframe with state boundaries
33
26
 
34
27
  Example
35
28
  -------
36
- >>> from geobr import read_state
29
+ >>> from tunned_geobr import read_state
37
30
 
38
- # Read specific state at a given year
39
- >>> uf = read_state(code_state=12, year=2017)
31
+ # Read all states
32
+ >>> states = read_state()
40
33
 
41
- # Read specific state at a given year with normal geopackages
42
- >>> uf = read_state(code_state="SC", year=2000, tp='normal')
34
+ # Read specific state by code
35
+ >>> state = read_state(code_state=33)
43
36
 
44
- # Read all states at a given year
45
- >>> ufs = read_state(code_state="all", year=2010)
37
+ # Read specific state by abbreviation
38
+ >>> state = read_state(code_state="RJ")
46
39
  """
47
-
48
- metadata = select_metadata("state", year=year, simplified=simplified)
49
-
50
- if code_state is None:
51
- raise Exception("Value to argument 'code_state' cannot be None")
52
-
53
- # From 1872 to 1991 and all
54
- if (year < 1992) or (code_state == "all"):
55
-
56
- if verbose:
57
- print("Loading data for the whole country\n")
58
-
59
- return download_gpkg(metadata)
60
-
61
- # From 2000 onwards
62
- else:
63
-
64
- if (
65
- str(code_state)[0:2] not in metadata["code"].unique()
66
- and str(code_state)[0:2] not in metadata["code_abbrev"].unique()
67
- ):
68
-
69
- raise Exception("Error: Invalid Value to argument code_state.")
70
-
71
- else:
72
-
73
- if isinstance(code_state, int):
74
- metadata = metadata.query(f'code == "{str(code_state)[0:2]}"')
75
-
76
- if isinstance(code_state, str):
77
- metadata = metadata.query(f'code_abbrev == "{code_state[0:2]}"')
78
-
79
- gdf = download_gpkg(metadata)
80
-
81
- if len(str(code_state)) == 2:
82
- return gdf
83
-
84
- elif code_state in list(gdf["code_state"]):
85
- return gdf.query('code_state == "code_state"')
86
-
87
- else:
88
- raise Exception("Error: Invalid Value to argument code_state.")
40
+
41
+ url = "https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2023/Brasil/BR_UF_2023.zip"
42
+
43
+ try:
44
+ # Download the zip file
45
+ response = requests.get(url)
46
+ if response.status_code != 200:
47
+ raise Exception("Failed to download state data from IBGE")
48
+
49
+ # Create a temporary directory
50
+ with tempfile.TemporaryDirectory() as temp_dir:
51
+ # Extract the zip file
52
+ with ZipFile(BytesIO(response.content)) as zip_ref:
53
+ zip_ref.extractall(temp_dir)
54
+
55
+ # Find the shapefile
56
+ shp_files = []
57
+ for root, dirs, files in os.walk(temp_dir):
58
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
59
+
60
+ if not shp_files:
61
+ raise Exception("No shapefile found in the downloaded data")
62
+
63
+ # Read the shapefile
64
+ gdf = gpd.read_file(shp_files[0])
65
+
66
+ # Convert to SIRGAS 2000 (EPSG:4674) if not already
67
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
68
+ gdf = gdf.to_crs(4674)
69
+
70
+ # Filter by code_state if not "all"
71
+ if code_state != "all":
72
+ if isinstance(code_state, int) or code_state.isdigit():
73
+ # Filter by numeric code
74
+ code = str(code_state).zfill(2)
75
+ gdf = gdf[gdf['CD_UF'] == code]
76
+ elif isinstance(code_state, str) and len(code_state) == 2:
77
+ # Filter by state abbreviation
78
+ gdf = gdf[gdf['SIGLA_UF'] == code_state.upper()]
79
+
80
+ if len(gdf) == 0:
81
+ raise Exception(f"No data found for code_state={code_state}")
82
+
83
+ if simplified:
84
+ # Keep only the most relevant columns
85
+ columns_to_keep = [
86
+ 'geometry',
87
+ 'CD_UF', # State code
88
+ 'SIGLA_UF', # State abbreviation
89
+ 'NM_UF', # State name
90
+ 'AREA_KM2' # Area in square kilometers
91
+ ]
92
+
93
+ # Filter columns that actually exist in the dataset
94
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
95
+ gdf = gdf[existing_columns]
96
+
97
+ except Exception as e:
98
+ raise Exception(f"Error downloading state data: {str(e)}")
99
+
100
+ return gdf
101
+
102
+ if __name__ == '__main__':
103
+ read_state()
@@ -5,7 +5,7 @@ import requests
5
5
  from zipfile import ZipFile
6
6
  from io import BytesIO
7
7
 
8
- def read_state(code_state="all", simplified=True):
8
+ def read_state_direct(code_state="all", simplified=False):
9
9
  """Download shapefiles of Brazilian states as geopandas objects.
10
10
 
11
11
  This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
@@ -1,7 +1,7 @@
1
1
  from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
- def read_urban_area(year=2015, simplified=True, verbose=False):
4
+ def read_urban_area(year=2015, simplified=False, verbose=False):
5
5
  """ Download official data of urbanized areas in Brazil as an sf object.
6
6
 
7
7
  This function reads the official data on the urban footprint of Brazilian cities
@@ -2,7 +2,7 @@
2
2
  from geobr.utils import select_metadata, download_gpkg
3
3
 
4
4
 
5
- def read_urban_concentrations(year=2015, simplified=True, verbose=False):
5
+ def read_urban_concentrations(year=2015, simplified=False, verbose=False):
6
6
  r""" Download urban concentration areas in Brazil
7
7
 
8
8
  @description
@@ -31,7 +31,7 @@ def read_water_bodies_ana(simplified=False):
31
31
  """
32
32
 
33
33
  url = "https://metadados.snirh.gov.br/files/7d054e5a-8cc9-403c-9f1a-085fd933610c/geoft_bho_massa_dagua_v2019.zip"
34
-
34
+
35
35
  try:
36
36
  # Download the zip file
37
37
  response = requests.get(url)
@@ -2,7 +2,7 @@ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_weighting_area(
5
- code_weighting="all", year=2010, simplified=True, verbose=False
5
+ code_weighting="all", year=2010, simplified=False, verbose=False
6
6
  ):
7
7
  """Download shape files of Census Weighting Areas (area de ponderacao) of the Brazilian Population Census.
8
8
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.2.5
3
+ Version: 0.2.7
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -0,0 +1,138 @@
1
+ tunned_geobr-0.2.7.dist-info/METADATA,sha256=LxruVTULsN43uGIOC6L4L1K2Sv9qdt1yWb_-gnkvues,5018
2
+ tunned_geobr-0.2.7.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.2.7.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.2.7.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=U3syU2lTvCoBLJSLcAPnn9cOc33DFqnGuGuABwguNgg,7309
6
+ tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
+ tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
8
+ tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
+ tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
10
+ tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
+ tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
+ tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
+ tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
14
+ tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
15
+ tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
16
+ tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
17
+ tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
18
+ tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
19
+ tunned_geobr/read_areas_under_contract.py,sha256=76opqzIJdrt034KijQgs3hXX2nIV9RAACuD1YAtJjm8,5396
20
+ tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
21
+ tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
22
+ tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
23
+ tunned_geobr/read_biodiesel_plants.py,sha256=nqLNTuY3CnjghJU6aK3alJFl9yt4UHS8zEGjvlZzMLk,5319
24
+ tunned_geobr/read_biomes.py,sha256=gcr11eWknIl92MxF_oJ2RXlsZ6q8ARxnbdmdmsfT4kY,1338
25
+ tunned_geobr/read_biomethane_plants.py,sha256=HP51IQB7KMTOzpfcXNNn3Gg95nUlTjuDat_NOoHQVtY,5331
26
+ tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
27
+ tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
28
+ tunned_geobr/read_census_tract.py,sha256=aKSvMzfAYSR0P-TDS5xyo4XSO3NRjuYgfb_psDh3kUc,4005
29
+ tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
30
+ tunned_geobr/read_comparable_areas.py,sha256=XUOsBiDyYX5z4fj0bofD9Ty6dW4xKRY80MSo_f69Sac,2109
31
+ tunned_geobr/read_compression_stations.py,sha256=WH1edJ7FARZCDRJoIx-33olm_umIGBbVodWajgVrq3U,5337
32
+ tunned_geobr/read_conservation_units.py,sha256=_6fSF98rKFbsDH08_ZJobB-_h_0ZEMDMMgDiCpLVEYM,1380
33
+ tunned_geobr/read_country.py,sha256=VLE5rNTddsgxBB9N1i7EyxMgWDYda9G2AKDpmr_m36I,1358
34
+ tunned_geobr/read_disaster_risk_area.py,sha256=8b-LsdSjUduOtq9u5aJLPxJnP-TAv974bkBNn07Kttk,1846
35
+ tunned_geobr/read_drainage_ducts.py,sha256=xirIyirAde0awmFSTWRh65PueWD14kjulavlBc8xYMA,5254
36
+ tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
37
+ tunned_geobr/read_etanol_plants.py,sha256=aTK6oWNV61Crlf6LhK2yvn3r2SnAvhEbVb4XqysSwmE,5286
38
+ tunned_geobr/read_existent_biomass_ute.py,sha256=QM-FPcoCiho9_LI_vHDaD-FE6JoZwwk5vKqrPbR0xNo,5502
39
+ tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
40
+ tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
41
+ tunned_geobr/read_existent_fossile_ute.py,sha256=jjiDyEd9JTgVkre5247_YqIQP6pniIEvcLYy3u4Fth4,5501
42
+ tunned_geobr/read_existent_nuclear_ute.py,sha256=HjKHpA9GFN2Di8qG73A0Y73xMKdtSfjEXwIGYDWEw0M,5442
43
+ tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
44
+ tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
45
+ tunned_geobr/read_existent_substations.py,sha256=v9Noi50t5sGMaLqDh5L10H1qH6n5tO2zqx0objPWe50,5385
46
+ tunned_geobr/read_existent_transmission_lines.py,sha256=rImT61mjwKLauC6MLuN5csTOr1L6DZGezntXv8t7y8Y,5409
47
+ tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
48
+ tunned_geobr/read_exploration_production_environment.py,sha256=nmf5zUDXF1mFHqGudnctj94aEZzdtnCxM7Ikrx0p9kk,4695
49
+ tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
50
+ tunned_geobr/read_federal_union_areas.py,sha256=gP2yJMPzz0xna18ldLIbqK0m3LuW84NkX9L0E4ZjNXE,5358
51
+ tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
52
+ tunned_geobr/read_fuel_bases.py,sha256=1fUurX1HFznWr3KNWVjOzlhrvQva3fHbgQ1necfFnYA,5178
53
+ tunned_geobr/read_gas_distribution_pipelines.py,sha256=HSoEHWQukfKi079Jd_sgcj1iDJtfNXnCrsbUPr-s_Mg,5396
54
+ tunned_geobr/read_gas_transport_pipelines.py,sha256=Grck2pJTjDcs3oUnk7HEXU1akk2Ti9H4Xg3Y8cyq9-4,5354
55
+ tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
56
+ tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
57
+ tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
58
+ tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
59
+ tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
60
+ tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
61
+ tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
62
+ tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
63
+ tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
64
+ tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
65
+ tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
66
+ tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
67
+ tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
68
+ tunned_geobr/read_isolated_systems.py,sha256=k0dxfUNubsJXV3_5ph1CWghR_Mfpn4oe_4zLkg7c5Cs,5343
69
+ tunned_geobr/read_meso_region.py,sha256=UacQUroAZWcfhq2Piby-FDVTDmEVeLEQCvcLcc1w7rY,2602
70
+ tunned_geobr/read_metro_area.py,sha256=e18jyXrRMwQTv_ZO2hGoyC8qZsV6NlYfWXsu6DusRQM,1498
71
+ tunned_geobr/read_micro_region.py,sha256=61KbztQWYw-QPFLJOoxNWX32bHBKLb2pnunzSFo3S_0,2510
72
+ tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
73
+ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
74
+ tunned_geobr/read_municipality.py,sha256=dZM1BVi3U9ZvasLADV-ciKVr9R4o92dRowpEVdVkvYw,5651
75
+ tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
76
+ tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
77
+ tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
78
+ tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
79
+ tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
80
+ tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
81
+ tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
82
+ tunned_geobr/read_og_effective_geographic_basin.py,sha256=Qvy--_A8oGrL-Os3mfofr14MA0qWv3s5FFdtIabBJ8E,5457
83
+ tunned_geobr/read_og_ipa_direct_evidence.py,sha256=N5nDr7AinKFqhcfgnvygVjzpdN2D1TP5VSILS8gkIgU,4738
84
+ tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=uhNKpj_YqpT_Oioms_eZycCm7yJjOjyi53eGnoomcug,4753
85
+ tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=Erul-eohGVshbNOG0EU0DkxjCg0TzsElSUhE3cxy0V8,5468
86
+ tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=tXkn0beJeqJ0_DaR888txZNjqTDS4GHQOfibsS1bJyc,4677
87
+ tunned_geobr/read_og_ipa_prospectiveness.py,sha256=wSmFokLdlfXMfTx5BOhxbt6kJIYAOweJE4Kc5_-fumc,4643
88
+ tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=a4wTN7fIef_coffNvEyUcX0GRZV3x2C9Pk_qR-RSVU8,4699
89
+ tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=lXlp-c1rMbJ7uUqKZFxPpS96Ltx-0r1T-FoCG3fqJYQ,4683
90
+ tunned_geobr/read_og_predominant_fluid_type.py,sha256=kdbnhdxlLBUf_kjALdZm6WusC3bIBTRToQfvSK71lKY,5452
91
+ tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=ftdY--3rZJwhCfbuQULm30Gg2Sc-rF1evRoNozNKX58,5497
92
+ tunned_geobr/read_og_total_ipa.py,sha256=0Tz4x7ZD7bRvXiLR2AitAmx-hQEVxAzNugfg2o0L3gc,5300
93
+ tunned_geobr/read_og_unconventional_resources.py,sha256=97lUpkJQtBZTUb4oPdvT9wxlm2yj6euWzLR4oGiezrc,5444
94
+ tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg54FbZgUqJ_YTqbFak_7Y,5385
95
+ tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
96
+ tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
97
+ tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
98
+ tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
99
+ tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
100
+ tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
101
+ tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
102
+ tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
103
+ tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
104
+ tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
105
+ tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
106
+ tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
107
+ tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
108
+ tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
109
+ tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
110
+ tunned_geobr/read_pop_arrangements.py,sha256=D9Q1hT5t8yXfGoKaIRSPLjkVaf-eX2fS9ofC-La2Jew,1386
111
+ tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
112
+ tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
113
+ tunned_geobr/read_processing_facilities.py,sha256=8iCveDTk7MXm1bmb1pcknzen62HTGYQ3KEzvUGSdWfk,5349
114
+ tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
115
+ tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
116
+ tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
117
+ tunned_geobr/read_region.py,sha256=kfwjoMj-klayqSty_mUNILIQA8RYgNuB86y_0raDApQ,956
118
+ tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
119
+ tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
120
+ tunned_geobr/read_sedimentary_basins.py,sha256=mpCde4-WRdAAuHF-AwrODd0GpxRhzJOuP60U6Zbl9pE,4583
121
+ tunned_geobr/read_semiarid.py,sha256=pxxYTWq8_UPUyblA7_FXXXRz-XOCrrebCvYQ-kgDSrU,1358
122
+ tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
123
+ tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
124
+ tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
125
+ tunned_geobr/read_state.py,sha256=JgV3cR0LFbmwIzuzPbR_Zfy1bR_2eBeEPxunozctuag,3819
126
+ tunned_geobr/read_state_direct.py,sha256=8Tdz-gVH_t90BJngcfcpr0VLs5HfCUxRgRQj8hy4Bt0,3826
127
+ tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
128
+ tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
129
+ tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
130
+ tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
131
+ tunned_geobr/read_urban_area.py,sha256=2zB6B-CXb5Hvvu6EjaXzWeLt0na3IFoSMdYdZmCHUGU,1364
132
+ tunned_geobr/read_urban_concentrations.py,sha256=RvkjCupcb1DL1HgEm9zYrfzS_dn4mOrBygl2N9OBt-w,1428
133
+ tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
134
+ tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz_2Bm-Pk4,3233
135
+ tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
136
+ tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
137
+ tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
138
+ tunned_geobr-0.2.7.dist-info/RECORD,,
@@ -1,101 +0,0 @@
1
- import geopandas as gpd
2
- import tempfile
3
- import os
4
- import requests
5
- import subprocess
6
- from io import BytesIO
7
-
8
- def read_census_tract_2022(simplified=False):
9
- """Download Brazilian Census Tracts data from IBGE (2022 Census).
10
-
11
- This function downloads and processes the Brazilian Census Tracts data
12
- from IBGE (Brazilian Institute of Geography and Statistics) for the 2022 Census.
13
- Original source: IBGE - Instituto Brasileiro de Geografia e Estatística
14
-
15
- Parameters
16
- ----------
17
- simplified : boolean, by default False
18
- If True, returns a simplified version of the dataset with fewer columns
19
-
20
- Returns
21
- -------
22
- gpd.GeoDataFrame
23
- Geodataframe with Brazilian census tracts data
24
-
25
- Example
26
- -------
27
- >>> from tunned_geobr import read_census_tract_2022
28
-
29
- # Read census tracts data
30
- >>> census_tracts = read_census_tract_2022()
31
- """
32
-
33
- url = "https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_de_setores_censitarios__divisoes_intramunicipais/censo_2022/setores/shp/BR/BR_setores_CD2022.zip"
34
-
35
- try:
36
- # Create a temporary directory
37
- with tempfile.TemporaryDirectory() as temp_dir:
38
- # Download the zip file to the temporary directory
39
- zip_file_path = os.path.join(temp_dir, "census_tracts.zip")
40
-
41
- # Download the file
42
- response = requests.get(url)
43
- if response.status_code != 200:
44
- raise Exception("Failed to download census tracts data from IBGE")
45
-
46
- # Save the content to a file
47
- with open(zip_file_path, 'wb') as f:
48
- f.write(response.content)
49
-
50
- # Use unzip command line tool to extract the file (handles more compression methods)
51
- try:
52
- subprocess.run(['unzip', '-o', zip_file_path, '-d', temp_dir],
53
- check=True,
54
- stdout=subprocess.PIPE,
55
- stderr=subprocess.PIPE)
56
- except subprocess.CalledProcessError as e:
57
- raise Exception(f"Failed to extract zip file: {e.stderr.decode()}")
58
-
59
- # Find the shapefile
60
- shp_files = []
61
- for root, dirs, files in os.walk(temp_dir):
62
- shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
63
-
64
- if not shp_files:
65
- raise Exception("No shapefile found in the downloaded data")
66
-
67
- # Read the shapefile
68
- gdf = gpd.read_file(shp_files[0])
69
-
70
- # Convert to SIRGAS 2000 (EPSG:4674) if not already
71
- if gdf.crs is None or gdf.crs.to_epsg() != 4674:
72
- gdf = gdf.to_crs(4674)
73
-
74
- if simplified:
75
- # Keep only the most relevant columns
76
- # Note: Column names may need adjustment based on actual data
77
- columns_to_keep = [
78
- 'geometry',
79
- 'CD_SETOR', # Census Tract Code
80
- 'NM_SETOR', # Census Tract Name
81
- 'CD_SIT', # Situation Code
82
- 'NM_SIT', # Situation Name (Urban/Rural)
83
- 'CD_MUN', # Municipality Code
84
- 'NM_MUN', # Municipality Name
85
- 'CD_UF', # State Code
86
- 'NM_UF', # State Name
87
- 'SIGLA_UF', # State Abbreviation
88
- 'AREA_KM2' # Area in square kilometers
89
- ]
90
-
91
- # Filter columns that actually exist in the dataset
92
- existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
93
- gdf = gdf[existing_columns]
94
-
95
- except Exception as e:
96
- raise Exception(f"Error downloading census tracts data: {str(e)}")
97
-
98
- return gdf
99
-
100
- if __name__ == '__main__':
101
- read_census_tract_2022()
@@ -1,139 +0,0 @@
1
- tunned_geobr-0.2.5.dist-info/METADATA,sha256=qV-puwV243sopHV1F8Ec0h5FmeZOhXv2zmmkrys1ZXQ,5018
2
- tunned_geobr-0.2.5.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.2.5.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.2.5.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=6kbBMfBy0NidzGz_heNFEFPLLVVaNphTqGOFV-6qzqI,7354
6
- tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
- tunned_geobr/list_geobr.py,sha256=l-sXzMr94uHZfeYDKgcdlnwaVbB50rrw02I0ehRIWAg,17305
8
- tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
- tunned_geobr/read_ama_anemometric_towers.py,sha256=I3YUhwt_-kOYYupTM3H0-MgmyMpz3zLgI4l3re7U4K8,4691
10
- tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
- tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
- tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
- tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
14
- tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
15
- tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
16
- tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
17
- tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
18
- tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
19
- tunned_geobr/read_areas_under_contract.py,sha256=y0fMHrqgnZpTXNKPb6GEaU0X9Fylwwqj0PRonLVUV5M,5341
20
- tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
21
- tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
22
- tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
23
- tunned_geobr/read_biodiesel_plants.py,sha256=aCEbxtCe1L00UF2mGvRcyywNG_82-q1IlYiyiq0g4R0,5264
24
- tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
25
- tunned_geobr/read_biomethane_plants.py,sha256=7fWgZtoiGfVX72bLyLgIEGU8zvxkazTgBLCaLVAwTEA,5276
26
- tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
27
- tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
28
- tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
29
- tunned_geobr/read_census_tract_2022.py,sha256=JtoJJtZ2rFiC5gtuZ7V_5teYFkuq1-GkV4GalSkhorQ,4066
30
- tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
31
- tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
32
- tunned_geobr/read_compression_stations.py,sha256=oTBMziFpYy2WML95pz1PNbaKtkhlklLvzjPYAebcz2Q,5282
33
- tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
34
- tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
35
- tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
36
- tunned_geobr/read_drainage_ducts.py,sha256=slK44CLo9sN9tVaY0rkpJT-IsKBjuHcMYojc-y7SPME,5199
37
- tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
38
- tunned_geobr/read_etanol_plants.py,sha256=jMMZ_DBVNcbqFyc00j7JHK-bJmZiBqYubgDrtN3YhhU,5231
39
- tunned_geobr/read_existent_biomass_ute.py,sha256=LxPz2C-gX3ZZAfS-3IhrUIidE7p8v5J8wX2qwnx714M,5388
40
- tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
41
- tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
42
- tunned_geobr/read_existent_fossile_ute.py,sha256=S_AdxedciScLc3vUjDsOylUeYkGUGP5hTM92spwCb-8,5385
43
- tunned_geobr/read_existent_nuclear_ute.py,sha256=j8Qvykm0Yyuim3_8src_Hq6iQfVHHRQ9VjD6u1Se8Gk,5373
44
- tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
45
- tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
46
- tunned_geobr/read_existent_substations.py,sha256=hKVMz09Fm5ES1L_26vlPF96j45HOJmNepsVvaTvD6lk,5301
47
- tunned_geobr/read_existent_transmission_lines.py,sha256=yWoHMPoa66eMApAqtC_0WMGquULqxMXO0G_Y8i7jRzE,5327
48
- tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
49
- tunned_geobr/read_exploration_production_environment.py,sha256=M8u7k0JCzOKGof-Emps0CvIC0SUUkZjvZ9KsImXUzik,4754
50
- tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
51
- tunned_geobr/read_federal_union_areas.py,sha256=SnzdGs0zJreh8RALGairO57mvva3wUJjTWTUv-O1Ai0,5303
52
- tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
53
- tunned_geobr/read_fuel_bases.py,sha256=Fmu9swdPp4Pdri_HDP95Hegj2ZY87ZGE6C7t0vd61MM,5123
54
- tunned_geobr/read_gas_distribution_pipelines.py,sha256=ALNxscxsc8uq_Lw_oPpBW2yeHlPJXug-7l8Weaatqdg,5341
55
- tunned_geobr/read_gas_transport_pipelines.py,sha256=xItLOd_HClYg7e-Zf6X5LJzVDR1bOGw--PCFqkQsM30,5299
56
- tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
57
- tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
58
- tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
59
- tunned_geobr/read_glp_bases.py,sha256=PZK3iUHoeZipB80DvpzDg4jjPE8YiiMzeFq8ik70uKw,5135
60
- tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
61
- tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
62
- tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
63
- tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
64
- tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=61hBf0218A--VF_SP9F4xcgtM3GYAjFuBk6VkZtvmP0,4764
65
- tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=_2Cl6haiM4lJwDW5d2SNCVkUfywBOs9Q4qBLCndiamw,4814
66
- tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
67
- tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
68
- tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
69
- tunned_geobr/read_isolated_systems.py,sha256=dWhfm8CnB7cgi1DetuHr6e0F5QDjIKEsAHOcj0chQIk,5231
70
- tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
71
- tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
72
- tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
73
- tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
74
- tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
75
- tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
76
- tunned_geobr/read_municipality_direct.py,sha256=v2oRUyYlkOrJy_FTmxZMo3kug9rzAoescrkc293H1OY,5650
77
- tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
78
- tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
79
- tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
80
- tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
81
- tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
82
- tunned_geobr/read_og_basement.py,sha256=9fdOoMDPBUkDgwxBU_3BL0BZDANPSoIgXWhKjtQVlxk,4618
83
- tunned_geobr/read_og_effective_geographic_basin.py,sha256=lDnVSh8R4Ic-ldkkDLN7ugUkUpScMLeaLjNpdat4iwQ,5402
84
- tunned_geobr/read_og_ipa_direct_evidence.py,sha256=dqIVIonwujERYTR_Kz3I9F3FzBiWHIGK_cOeoM0FQyo,4799
85
- tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=BZOVfhi524zKQFOWK445y09JBFwHKS3i8JndjXgF378,4748
86
- tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=A1Boae3YoKCH0jn7Z0sWUkVBYJ8aKl4naMpqOs3DS3I,5401
87
- tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=_E9g6psmo0HWzg9WxSrNQtiiQv3kUIKvq-NtjyifLSA,4738
88
- tunned_geobr/read_og_ipa_prospectiveness.py,sha256=yuY25wAeUIaPMBEePKmTT_cvpjGKpwIDq-GyM8dpDEw,4704
89
- tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=RIze4M4K5DpUISZ3MlYRKWaiki-XOTdh_kUg5MPtn0s,4760
90
- tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=2NSqvlqqCu_PjRMKyIjzbOrA1s390LGeuyDpcoE4Pu4,4734
91
- tunned_geobr/read_og_predominant_fluid_type.py,sha256=tYAZeHYKHT8qN1f_Iko3GIVCKZxx27T_d_G0rtGwcr0,5397
92
- tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=5VZixVU5wDclBhiXYQHPs5azK_3KJkr-N5vndeujcTg,5442
93
- tunned_geobr/read_og_total_ipa.py,sha256=HWFI6-HcEvhvhBK4eWVTsZcqx2UC8b7zOjjtQxxNT_4,5245
94
- tunned_geobr/read_og_unconventional_resources.py,sha256=E2Kkv6N3V2aMhViyrJWmGxgC6kLhshdRzP4oJnBmKU8,5389
95
- tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=7l6vBVX23JEMH06sjn5E8vHiW0R-ws3rzBav_G50pNA,5330
96
- tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
97
- tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
98
- tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
99
- tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
100
- tunned_geobr/read_pio_terminals.py,sha256=NduuiA1AOc7vvMnwJlqc9V4QeiXlWtFaylS3prKjG14,5191
101
- tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
102
- tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
103
- tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
104
- tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
105
- tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
106
- tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
107
- tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
108
- tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
109
- tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
110
- tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
111
- tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
112
- tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
113
- tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
114
- tunned_geobr/read_processing_facilities.py,sha256=BABgyK2FBlHyVSBBzuYN5kRyq9H6LzinPbVOcVsgvgg,5294
115
- tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
116
- tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
117
- tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
118
- tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
119
- tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
120
- tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
121
- tunned_geobr/read_sedimentary_basins.py,sha256=HsL-QHpEVrzUyEJ9qW8xZOkhoJw4LRxCPoeI7G7GByI,4634
122
- tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
123
- tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
124
- tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
125
- tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
126
- tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
127
- tunned_geobr/read_state_direct.py,sha256=AA3a7XxO2NocRNBGd1FpYriTE2_l-f8sbxwOgRMf9Fw,3818
128
- tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
129
- tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
130
- tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
131
- tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
132
- tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
133
- tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
134
- tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
135
- tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJapaqWYjck,3237
136
- tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
137
- tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
138
- tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
139
- tunned_geobr-0.2.5.dist-info/RECORD,,