tunned-geobr 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. tunned_geobr/__init__.py +2 -3
  2. tunned_geobr/list_geobr.py +1 -5
  3. tunned_geobr/read_ama_anemometric_towers.py +8 -6
  4. tunned_geobr/read_areas_under_contract.py +3 -2
  5. tunned_geobr/read_biodiesel_plants.py +3 -2
  6. tunned_geobr/read_biomes.py +1 -1
  7. tunned_geobr/read_biomethane_plants.py +3 -2
  8. tunned_geobr/read_census_tract.py +90 -88
  9. tunned_geobr/read_comparable_areas.py +1 -1
  10. tunned_geobr/read_compression_stations.py +3 -2
  11. tunned_geobr/read_conservation_units.py +1 -1
  12. tunned_geobr/read_country.py +1 -1
  13. tunned_geobr/read_disaster_risk_area.py +1 -1
  14. tunned_geobr/read_drainage_ducts.py +3 -2
  15. tunned_geobr/read_etanol_plants.py +3 -2
  16. tunned_geobr/read_existent_biomass_ute.py +6 -2
  17. tunned_geobr/read_existent_fossile_ute.py +7 -3
  18. tunned_geobr/read_existent_nuclear_ute.py +5 -4
  19. tunned_geobr/read_existent_substations.py +5 -4
  20. tunned_geobr/read_existent_transmission_lines.py +6 -5
  21. tunned_geobr/read_exploration_production_environment.py +6 -8
  22. tunned_geobr/read_federal_union_areas.py +3 -2
  23. tunned_geobr/read_fuel_bases.py +3 -2
  24. tunned_geobr/read_gas_distribution_pipelines.py +3 -2
  25. tunned_geobr/read_gas_transport_pipelines.py +3 -2
  26. tunned_geobr/read_glp_bases.py +3 -2
  27. tunned_geobr/read_health_region.py +1 -1
  28. tunned_geobr/read_hydroelectric_feasibility_studies.py +9 -8
  29. tunned_geobr/read_hydroelectric_inventory_aai_studies.py +9 -8
  30. tunned_geobr/read_immediate_region.py +1 -1
  31. tunned_geobr/read_indigenous_land.py +1 -1
  32. tunned_geobr/read_intermediate_region.py +1 -1
  33. tunned_geobr/read_isolated_systems.py +5 -4
  34. tunned_geobr/read_meso_region.py +1 -1
  35. tunned_geobr/read_metro_area.py +1 -1
  36. tunned_geobr/read_micro_region.py +1 -1
  37. tunned_geobr/read_municipality.py +1 -1
  38. tunned_geobr/read_municipality_direct.py +1 -1
  39. tunned_geobr/read_neighborhood.py +1 -1
  40. tunned_geobr/read_og_basement.py +9 -8
  41. tunned_geobr/read_og_effective_geographic_basin.py +3 -2
  42. tunned_geobr/read_og_ipa_direct_evidence.py +6 -8
  43. tunned_geobr/read_og_ipa_exploratory_activity.py +9 -8
  44. tunned_geobr/read_og_ipa_exploratory_intensity.py +3 -0
  45. tunned_geobr/read_og_ipa_need_for_knowledge.py +6 -8
  46. tunned_geobr/read_og_ipa_prospectiveness.py +6 -8
  47. tunned_geobr/read_og_ipa_supply_infrastructure.py +6 -8
  48. tunned_geobr/read_og_legal_pre_salt_polygon.py +6 -8
  49. tunned_geobr/read_og_predominant_fluid_type.py +3 -2
  50. tunned_geobr/read_og_probabilistic_effective_basin.py +3 -2
  51. tunned_geobr/read_og_total_ipa.py +3 -2
  52. tunned_geobr/read_og_unconventional_resources.py +3 -2
  53. tunned_geobr/read_oil_and_derivatives_terminal.py +3 -2
  54. tunned_geobr/read_pio_terminals.py +3 -2
  55. tunned_geobr/read_pop_arrangements.py +1 -1
  56. tunned_geobr/read_processing_facilities.py +3 -2
  57. tunned_geobr/read_region.py +1 -1
  58. tunned_geobr/read_sedimentary_basins.py +6 -8
  59. tunned_geobr/read_semiarid.py +1 -1
  60. tunned_geobr/read_state.py +1 -1
  61. tunned_geobr/read_state_direct.py +1 -1
  62. tunned_geobr/read_urban_area.py +1 -1
  63. tunned_geobr/read_urban_concentrations.py +1 -1
  64. tunned_geobr/read_water_bodies_ana.py +1 -1
  65. tunned_geobr/read_weighting_area.py +1 -1
  66. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/METADATA +1 -1
  67. tunned_geobr-0.2.6.dist-info/RECORD +138 -0
  68. tunned_geobr/read_census_tract_2022.py +0 -101
  69. tunned_geobr-0.2.5.dist-info/RECORD +0 -139
  70. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/WHEEL +0 -0
  71. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/entry_points.txt +0 -0
  72. {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/licenses/LICENSE.txt +0 -0
@@ -7,7 +7,7 @@ import warnings
7
7
  import shutil
8
8
 
9
9
 
10
- def read_og_ipa_prospectiveness(simplified=True, verbose=False):
10
+ def read_og_ipa_prospectiveness(simplified=False, verbose=False):
11
11
  """Download data for Oil and Gas IPA Prospectiveness in Brazil.
12
12
 
13
13
  This function downloads, processes, and returns data for Oil and Gas IPA Prospectiveness
@@ -45,10 +45,7 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
45
45
  response.raise_for_status()
46
46
  response_json = response.json()
47
47
 
48
- if "value" not in response_json or not response_json["value"]:
49
- raise ValueError("No data found in the response")
50
-
51
- download_url = response_json["value"]["itemUrl"]
48
+ download_url = response_json['results'][0]['value']['url']
52
49
 
53
50
  if verbose:
54
51
  print(f"Download URL: {download_url}")
@@ -74,12 +71,13 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
74
71
  zip_ref.extractall(temp_dir)
75
72
 
76
73
  # Find the shapefile
77
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
74
+ zip_dir = os.path.join(temp_dir, 'zipfolder')
75
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
78
76
 
79
77
  if not shp_files:
80
78
  raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
79
 
82
- shp_path = os.path.join(temp_dir, shp_files[0])
80
+ shp_path = os.path.join(zip_dir, shp_files[0])
83
81
 
84
82
  if verbose:
85
83
  print(f"Reading shapefile from {shp_path}")
@@ -99,7 +97,7 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
99
97
  essential_cols = ["geometry"]
100
98
 
101
99
  # Add any other essential columns that exist in the dataset
102
- for col in ["CLASSE", "NOME", "DESCRICAO", "AREA_KM2"]:
100
+ for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
103
101
  if col in gdf.columns:
104
102
  essential_cols.append(col)
105
103
 
@@ -7,7 +7,7 @@ import warnings
7
7
  import shutil
8
8
 
9
9
 
10
- def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
10
+ def read_og_ipa_supply_infrastructure(simplified=False, verbose=False):
11
11
  """Download data for Oil and Gas IPA Supply Infrastructure in Brazil.
12
12
 
13
13
  This function downloads, processes, and returns data for Oil and Gas IPA Supply Infrastructure
@@ -45,10 +45,7 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
45
45
  response.raise_for_status()
46
46
  response_json = response.json()
47
47
 
48
- if "value" not in response_json or not response_json["value"]:
49
- raise ValueError("No data found in the response")
50
-
51
- download_url = response_json["value"]["itemUrl"]
48
+ download_url = response_json['results'][0]['value']['url']
52
49
 
53
50
  if verbose:
54
51
  print(f"Download URL: {download_url}")
@@ -74,12 +71,13 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
74
71
  zip_ref.extractall(temp_dir)
75
72
 
76
73
  # Find the shapefile
77
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
74
+ zip_dir = os.path.join(temp_dir, 'zipfolder')
75
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
78
76
 
79
77
  if not shp_files:
80
78
  raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
79
 
82
- shp_path = os.path.join(temp_dir, shp_files[0])
80
+ shp_path = os.path.join(zip_dir, shp_files[0])
83
81
 
84
82
  if verbose:
85
83
  print(f"Reading shapefile from {shp_path}")
@@ -99,7 +97,7 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
99
97
  essential_cols = ["geometry"]
100
98
 
101
99
  # Add any other essential columns that exist in the dataset
102
- for col in ["CLASSE", "NOME", "DESCRICAO", "AREA_KM2"]:
100
+ for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
103
101
  if col in gdf.columns:
104
102
  essential_cols.append(col)
105
103
 
@@ -7,7 +7,7 @@ import warnings
7
7
  import shutil
8
8
 
9
9
 
10
- def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
10
+ def read_og_legal_pre_salt_polygon(simplified=False, verbose=False):
11
11
  """Download data for Oil and Gas Legal Pre-Salt Polygon in Brazil.
12
12
 
13
13
  This function downloads, processes, and returns data for Oil and Gas Legal Pre-Salt Polygon
@@ -45,10 +45,7 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
45
45
  response.raise_for_status()
46
46
  response_json = response.json()
47
47
 
48
- if "value" not in response_json or not response_json["value"]:
49
- raise ValueError("No data found in the response")
50
-
51
- download_url = response_json["value"]["itemUrl"]
48
+ download_url = response_json['results'][0]['value']['url']
52
49
 
53
50
  if verbose:
54
51
  print(f"Download URL: {download_url}")
@@ -74,12 +71,13 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
74
71
  zip_ref.extractall(temp_dir)
75
72
 
76
73
  # Find the shapefile
77
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
74
+ zip_dir = os.path.join(temp_dir, 'zipfolder')
75
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
78
76
 
79
77
  if not shp_files:
80
78
  raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
79
 
82
- shp_path = os.path.join(temp_dir, shp_files[0])
80
+ shp_path = os.path.join(zip_dir, shp_files[0])
83
81
 
84
82
  if verbose:
85
83
  print(f"Reading shapefile from {shp_path}")
@@ -99,7 +97,7 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
99
97
  essential_cols = ["geometry"]
100
98
 
101
99
  # Add any other essential columns that exist in the dataset
102
- for col in ["NOME", "DESCRICAO", "AREA_KM2"]:
100
+ for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
103
101
  if col in gdf.columns:
104
102
  essential_cols.append(col)
105
103
 
@@ -86,8 +86,9 @@ def read_og_predominant_fluid_type(simplified=False, verbose=False):
86
86
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
87
87
  zip_ref.extractall(temp_dir)
88
88
 
89
+ zip_dir = os.path.join(temp_dir,'zipfolder')
89
90
  # Find the shapefile in the extracted files
90
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
91
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
91
92
 
92
93
  if not shp_files:
93
94
  raise Exception("No shapefile found in the downloaded zip file")
@@ -96,7 +97,7 @@ def read_og_predominant_fluid_type(simplified=False, verbose=False):
96
97
  if verbose:
97
98
  print("Reading shapefile")
98
99
 
99
- shp_path = os.path.join(temp_dir, shp_files[0])
100
+ shp_path = os.path.join(zip_dir, shp_files[0])
100
101
  gdf = gpd.read_file(shp_path)
101
102
 
102
103
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -86,8 +86,9 @@ def read_og_probabilistic_effective_basin(simplified=False, verbose=False):
86
86
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
87
87
  zip_ref.extractall(temp_dir)
88
88
 
89
+ zip_dir = os.path.join(temp_dir,'zipfolder')
89
90
  # Find the shapefile in the extracted files
90
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
91
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
91
92
 
92
93
  if not shp_files:
93
94
  raise Exception("No shapefile found in the downloaded zip file")
@@ -96,7 +97,7 @@ def read_og_probabilistic_effective_basin(simplified=False, verbose=False):
96
97
  if verbose:
97
98
  print("Reading shapefile")
98
99
 
99
- shp_path = os.path.join(temp_dir, shp_files[0])
100
+ shp_path = os.path.join(zip_dir, shp_files[0])
100
101
  gdf = gpd.read_file(shp_path)
101
102
 
102
103
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -86,8 +86,9 @@ def read_og_total_ipa(simplified=False, verbose=False):
86
86
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
87
87
  zip_ref.extractall(temp_dir)
88
88
 
89
+ zip_dir = os.path.join(temp_dir,'zipfolder')
89
90
  # Find the shapefile in the extracted files
90
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
91
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
91
92
 
92
93
  if not shp_files:
93
94
  raise Exception("No shapefile found in the downloaded zip file")
@@ -96,7 +97,7 @@ def read_og_total_ipa(simplified=False, verbose=False):
96
97
  if verbose:
97
98
  print("Reading shapefile")
98
99
 
99
- shp_path = os.path.join(temp_dir, shp_files[0])
100
+ shp_path = os.path.join(zip_dir, shp_files[0])
100
101
  gdf = gpd.read_file(shp_path)
101
102
 
102
103
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -86,8 +86,9 @@ def read_og_unconventional_resources(simplified=False, verbose=False):
86
86
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
87
87
  zip_ref.extractall(temp_dir)
88
88
 
89
+ zip_dir = os.path.join(temp_dir,'zipfolder')
89
90
  # Find the shapefile in the extracted files
90
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
91
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
91
92
 
92
93
  if not shp_files:
93
94
  raise Exception("No shapefile found in the downloaded zip file")
@@ -96,7 +97,7 @@ def read_og_unconventional_resources(simplified=False, verbose=False):
96
97
  if verbose:
97
98
  print("Reading shapefile")
98
99
 
99
- shp_path = os.path.join(temp_dir, shp_files[0])
100
+ shp_path = os.path.join(zip_dir, shp_files[0])
100
101
  gdf = gpd.read_file(shp_path)
101
102
 
102
103
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -85,8 +85,9 @@ def read_oil_and_derivatives_terminal(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_oil_and_derivatives_terminal(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -85,8 +85,9 @@ def read_pio_terminals(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_pio_terminals(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -2,7 +2,7 @@
2
2
  from geobr.utils import select_metadata, download_gpkg
3
3
 
4
4
 
5
- def read_pop_arrangements(year=2015, simplified=True, verbose=False):
5
+ def read_pop_arrangements(year=2015, simplified=False, verbose=False):
6
6
  r""" Download population arrangements in Brazil
7
7
 
8
8
  This function reads the official data on population arrangements (Arranjos
@@ -85,8 +85,9 @@ def read_processing_facilities(simplified=False, verbose=False):
85
85
  with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
86
  zip_ref.extractall(temp_dir)
87
87
 
88
+ zip_dir = os.path.join(temp_dir,'zipfolder')
88
89
  # Find the shapefile in the extracted files
89
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
90
91
 
91
92
  if not shp_files:
92
93
  raise Exception("No shapefile found in the downloaded zip file")
@@ -95,7 +96,7 @@ def read_processing_facilities(simplified=False, verbose=False):
95
96
  if verbose:
96
97
  print("Reading shapefile")
97
98
 
98
- shp_path = os.path.join(temp_dir, shp_files[0])
99
+ shp_path = os.path.join(zip_dir, shp_files[0])
99
100
  gdf = gpd.read_file(shp_path)
100
101
 
101
102
  # Convert to SIRGAS 2000 (EPSG:4674)
@@ -1,7 +1,7 @@
1
1
  from geobr import read_region as _read_region
2
2
 
3
3
 
4
- def read_region(year=2010, simplified=True, verbose=False):
4
+ def read_region(year=2010, simplified=False, verbose=False):
5
5
  """ Download shape file of Brazil Regions as sf objects.
6
6
 
7
7
  Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
@@ -7,7 +7,7 @@ import warnings
7
7
  import shutil
8
8
 
9
9
 
10
- def read_sedimentary_basins(simplified=True, verbose=False):
10
+ def read_sedimentary_basins(simplified=False, verbose=False):
11
11
  """Download data for Sedimentary Basins in Brazil.
12
12
 
13
13
  This function downloads, processes, and returns data for Sedimentary Basins
@@ -45,10 +45,7 @@ def read_sedimentary_basins(simplified=True, verbose=False):
45
45
  response.raise_for_status()
46
46
  response_json = response.json()
47
47
 
48
- if "value" not in response_json or not response_json["value"]:
49
- raise ValueError("No data found in the response")
50
-
51
- download_url = response_json["value"]["itemUrl"]
48
+ download_url = response_json['results'][0]['value']['url']
52
49
 
53
50
  if verbose:
54
51
  print(f"Download URL: {download_url}")
@@ -74,12 +71,13 @@ def read_sedimentary_basins(simplified=True, verbose=False):
74
71
  zip_ref.extractall(temp_dir)
75
72
 
76
73
  # Find the shapefile
77
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
74
+ zip_dir = os.path.join(temp_dir, 'zipfolder')
75
+ shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
78
76
 
79
77
  if not shp_files:
80
78
  raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
79
 
82
- shp_path = os.path.join(temp_dir, shp_files[0])
80
+ shp_path = os.path.join(zip_dir, shp_files[0])
83
81
 
84
82
  if verbose:
85
83
  print(f"Reading shapefile from {shp_path}")
@@ -99,7 +97,7 @@ def read_sedimentary_basins(simplified=True, verbose=False):
99
97
  essential_cols = ["geometry"]
100
98
 
101
99
  # Add any other essential columns that exist in the dataset
102
- for col in ["NOME", "DESCRICAO", "AREA_KM2"]:
100
+ for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
103
101
  if col in gdf.columns:
104
102
  essential_cols.append(col)
105
103
 
@@ -1,7 +1,7 @@
1
1
  from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
- def read_semiarid(year=2017, simplified=True, verbose=False):
4
+ def read_semiarid(year=2017, simplified=False, verbose=False):
5
5
  """ Download official data of Brazilian Semiarid as an sf object.
6
6
 
7
7
  This data set covers the whole of Brazilian Semiarid as defined in the resolution in 23/11/2017). The original
@@ -3,7 +3,7 @@ import geopandas as gpd
3
3
  from geobr.utils import select_metadata, download_gpkg
4
4
 
5
5
 
6
- def read_state(code_state="all", year=2010, simplified=True, verbose=False):
6
+ def read_state(code_state="all", year=2010, simplified=False, verbose=False):
7
7
  """Download shapefiles of Brazilian states as geopandas objects.
8
8
 
9
9
  Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
@@ -5,7 +5,7 @@ import requests
5
5
  from zipfile import ZipFile
6
6
  from io import BytesIO
7
7
 
8
- def read_state(code_state="all", simplified=True):
8
+ def read_state_direct(code_state="all", simplified=False):
9
9
  """Download shapefiles of Brazilian states as geopandas objects.
10
10
 
11
11
  This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
@@ -1,7 +1,7 @@
1
1
  from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
- def read_urban_area(year=2015, simplified=True, verbose=False):
4
+ def read_urban_area(year=2015, simplified=False, verbose=False):
5
5
  """ Download official data of urbanized areas in Brazil as an sf object.
6
6
 
7
7
  This function reads the official data on the urban footprint of Brazilian cities
@@ -2,7 +2,7 @@
2
2
  from geobr.utils import select_metadata, download_gpkg
3
3
 
4
4
 
5
- def read_urban_concentrations(year=2015, simplified=True, verbose=False):
5
+ def read_urban_concentrations(year=2015, simplified=False, verbose=False):
6
6
  r""" Download urban concentration areas in Brazil
7
7
 
8
8
  @description
@@ -31,7 +31,7 @@ def read_water_bodies_ana(simplified=False):
31
31
  """
32
32
 
33
33
  url = "https://metadados.snirh.gov.br/files/7d054e5a-8cc9-403c-9f1a-085fd933610c/geoft_bho_massa_dagua_v2019.zip"
34
-
34
+
35
35
  try:
36
36
  # Download the zip file
37
37
  response = requests.get(url)
@@ -2,7 +2,7 @@ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_weighting_area(
5
- code_weighting="all", year=2010, simplified=True, verbose=False
5
+ code_weighting="all", year=2010, simplified=False, verbose=False
6
6
  ):
7
7
  """Download shape files of Census Weighting Areas (area de ponderacao) of the Brazilian Population Census.
8
8
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.2.5
3
+ Version: 0.2.6
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -0,0 +1,138 @@
1
+ tunned_geobr-0.2.6.dist-info/METADATA,sha256=pDrSN-1ydH0SBHMfAVrgIMEmMgSqlM3mOnzNbcxXFsU,5018
2
+ tunned_geobr-0.2.6.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.2.6.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.2.6.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=U3syU2lTvCoBLJSLcAPnn9cOc33DFqnGuGuABwguNgg,7309
6
+ tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
+ tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
8
+ tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
+ tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
10
+ tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
+ tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
+ tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
+ tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
14
+ tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
15
+ tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
16
+ tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
17
+ tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
18
+ tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
19
+ tunned_geobr/read_areas_under_contract.py,sha256=76opqzIJdrt034KijQgs3hXX2nIV9RAACuD1YAtJjm8,5396
20
+ tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
21
+ tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
22
+ tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
23
+ tunned_geobr/read_biodiesel_plants.py,sha256=nqLNTuY3CnjghJU6aK3alJFl9yt4UHS8zEGjvlZzMLk,5319
24
+ tunned_geobr/read_biomes.py,sha256=gcr11eWknIl92MxF_oJ2RXlsZ6q8ARxnbdmdmsfT4kY,1338
25
+ tunned_geobr/read_biomethane_plants.py,sha256=HP51IQB7KMTOzpfcXNNn3Gg95nUlTjuDat_NOoHQVtY,5331
26
+ tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
27
+ tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
28
+ tunned_geobr/read_census_tract.py,sha256=aKSvMzfAYSR0P-TDS5xyo4XSO3NRjuYgfb_psDh3kUc,4005
29
+ tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
30
+ tunned_geobr/read_comparable_areas.py,sha256=XUOsBiDyYX5z4fj0bofD9Ty6dW4xKRY80MSo_f69Sac,2109
31
+ tunned_geobr/read_compression_stations.py,sha256=WH1edJ7FARZCDRJoIx-33olm_umIGBbVodWajgVrq3U,5337
32
+ tunned_geobr/read_conservation_units.py,sha256=_6fSF98rKFbsDH08_ZJobB-_h_0ZEMDMMgDiCpLVEYM,1380
33
+ tunned_geobr/read_country.py,sha256=VLE5rNTddsgxBB9N1i7EyxMgWDYda9G2AKDpmr_m36I,1358
34
+ tunned_geobr/read_disaster_risk_area.py,sha256=8b-LsdSjUduOtq9u5aJLPxJnP-TAv974bkBNn07Kttk,1846
35
+ tunned_geobr/read_drainage_ducts.py,sha256=xirIyirAde0awmFSTWRh65PueWD14kjulavlBc8xYMA,5254
36
+ tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
37
+ tunned_geobr/read_etanol_plants.py,sha256=aTK6oWNV61Crlf6LhK2yvn3r2SnAvhEbVb4XqysSwmE,5286
38
+ tunned_geobr/read_existent_biomass_ute.py,sha256=QM-FPcoCiho9_LI_vHDaD-FE6JoZwwk5vKqrPbR0xNo,5502
39
+ tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
40
+ tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
41
+ tunned_geobr/read_existent_fossile_ute.py,sha256=jjiDyEd9JTgVkre5247_YqIQP6pniIEvcLYy3u4Fth4,5501
42
+ tunned_geobr/read_existent_nuclear_ute.py,sha256=HjKHpA9GFN2Di8qG73A0Y73xMKdtSfjEXwIGYDWEw0M,5442
43
+ tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
44
+ tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
45
+ tunned_geobr/read_existent_substations.py,sha256=v9Noi50t5sGMaLqDh5L10H1qH6n5tO2zqx0objPWe50,5385
46
+ tunned_geobr/read_existent_transmission_lines.py,sha256=rImT61mjwKLauC6MLuN5csTOr1L6DZGezntXv8t7y8Y,5409
47
+ tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
48
+ tunned_geobr/read_exploration_production_environment.py,sha256=nmf5zUDXF1mFHqGudnctj94aEZzdtnCxM7Ikrx0p9kk,4695
49
+ tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
50
+ tunned_geobr/read_federal_union_areas.py,sha256=gP2yJMPzz0xna18ldLIbqK0m3LuW84NkX9L0E4ZjNXE,5358
51
+ tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
52
+ tunned_geobr/read_fuel_bases.py,sha256=1fUurX1HFznWr3KNWVjOzlhrvQva3fHbgQ1necfFnYA,5178
53
+ tunned_geobr/read_gas_distribution_pipelines.py,sha256=HSoEHWQukfKi079Jd_sgcj1iDJtfNXnCrsbUPr-s_Mg,5396
54
+ tunned_geobr/read_gas_transport_pipelines.py,sha256=Grck2pJTjDcs3oUnk7HEXU1akk2Ti9H4Xg3Y8cyq9-4,5354
55
+ tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
56
+ tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
57
+ tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
58
+ tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
59
+ tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
60
+ tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
61
+ tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
62
+ tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
63
+ tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
64
+ tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
65
+ tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
66
+ tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
67
+ tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
68
+ tunned_geobr/read_isolated_systems.py,sha256=k0dxfUNubsJXV3_5ph1CWghR_Mfpn4oe_4zLkg7c5Cs,5343
69
+ tunned_geobr/read_meso_region.py,sha256=UacQUroAZWcfhq2Piby-FDVTDmEVeLEQCvcLcc1w7rY,2602
70
+ tunned_geobr/read_metro_area.py,sha256=e18jyXrRMwQTv_ZO2hGoyC8qZsV6NlYfWXsu6DusRQM,1498
71
+ tunned_geobr/read_micro_region.py,sha256=61KbztQWYw-QPFLJOoxNWX32bHBKLb2pnunzSFo3S_0,2510
72
+ tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
73
+ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
74
+ tunned_geobr/read_municipality.py,sha256=k3uOalCwO4R33sG9aUWojED1CezFIo5JD7kLTC-slic,2594
75
+ tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
76
+ tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
77
+ tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
78
+ tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
79
+ tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
80
+ tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
81
+ tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
82
+ tunned_geobr/read_og_effective_geographic_basin.py,sha256=Qvy--_A8oGrL-Os3mfofr14MA0qWv3s5FFdtIabBJ8E,5457
83
+ tunned_geobr/read_og_ipa_direct_evidence.py,sha256=N5nDr7AinKFqhcfgnvygVjzpdN2D1TP5VSILS8gkIgU,4738
84
+ tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=uhNKpj_YqpT_Oioms_eZycCm7yJjOjyi53eGnoomcug,4753
85
+ tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=Erul-eohGVshbNOG0EU0DkxjCg0TzsElSUhE3cxy0V8,5468
86
+ tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=tXkn0beJeqJ0_DaR888txZNjqTDS4GHQOfibsS1bJyc,4677
87
+ tunned_geobr/read_og_ipa_prospectiveness.py,sha256=wSmFokLdlfXMfTx5BOhxbt6kJIYAOweJE4Kc5_-fumc,4643
88
+ tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=a4wTN7fIef_coffNvEyUcX0GRZV3x2C9Pk_qR-RSVU8,4699
89
+ tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=lXlp-c1rMbJ7uUqKZFxPpS96Ltx-0r1T-FoCG3fqJYQ,4683
90
+ tunned_geobr/read_og_predominant_fluid_type.py,sha256=kdbnhdxlLBUf_kjALdZm6WusC3bIBTRToQfvSK71lKY,5452
91
+ tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=ftdY--3rZJwhCfbuQULm30Gg2Sc-rF1evRoNozNKX58,5497
92
+ tunned_geobr/read_og_total_ipa.py,sha256=0Tz4x7ZD7bRvXiLR2AitAmx-hQEVxAzNugfg2o0L3gc,5300
93
+ tunned_geobr/read_og_unconventional_resources.py,sha256=97lUpkJQtBZTUb4oPdvT9wxlm2yj6euWzLR4oGiezrc,5444
94
+ tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg54FbZgUqJ_YTqbFak_7Y,5385
95
+ tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
96
+ tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
97
+ tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
98
+ tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
99
+ tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
100
+ tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
101
+ tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
102
+ tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
103
+ tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
104
+ tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
105
+ tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
106
+ tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
107
+ tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
108
+ tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
109
+ tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
110
+ tunned_geobr/read_pop_arrangements.py,sha256=D9Q1hT5t8yXfGoKaIRSPLjkVaf-eX2fS9ofC-La2Jew,1386
111
+ tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
112
+ tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
113
+ tunned_geobr/read_processing_facilities.py,sha256=8iCveDTk7MXm1bmb1pcknzen62HTGYQ3KEzvUGSdWfk,5349
114
+ tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
115
+ tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
116
+ tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
117
+ tunned_geobr/read_region.py,sha256=kfwjoMj-klayqSty_mUNILIQA8RYgNuB86y_0raDApQ,956
118
+ tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
119
+ tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
120
+ tunned_geobr/read_sedimentary_basins.py,sha256=mpCde4-WRdAAuHF-AwrODd0GpxRhzJOuP60U6Zbl9pE,4583
121
+ tunned_geobr/read_semiarid.py,sha256=pxxYTWq8_UPUyblA7_FXXXRz-XOCrrebCvYQ-kgDSrU,1358
122
+ tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
123
+ tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
124
+ tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
125
+ tunned_geobr/read_state.py,sha256=P5iLvT_j67al7KlDJo0Y9vys6X7rmI63Cr19dZ6eU2o,2699
126
+ tunned_geobr/read_state_direct.py,sha256=8Tdz-gVH_t90BJngcfcpr0VLs5HfCUxRgRQj8hy4Bt0,3826
127
+ tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
128
+ tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
129
+ tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
130
+ tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
131
+ tunned_geobr/read_urban_area.py,sha256=2zB6B-CXb5Hvvu6EjaXzWeLt0na3IFoSMdYdZmCHUGU,1364
132
+ tunned_geobr/read_urban_concentrations.py,sha256=RvkjCupcb1DL1HgEm9zYrfzS_dn4mOrBygl2N9OBt-w,1428
133
+ tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
134
+ tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz_2Bm-Pk4,3233
135
+ tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
136
+ tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
137
+ tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
138
+ tunned_geobr-0.2.6.dist-info/RECORD,,