tunned-geobr 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/__init__.py +2 -3
- tunned_geobr/list_geobr.py +1 -5
- tunned_geobr/read_ama_anemometric_towers.py +8 -6
- tunned_geobr/read_areas_under_contract.py +3 -2
- tunned_geobr/read_biodiesel_plants.py +3 -2
- tunned_geobr/read_biomes.py +1 -1
- tunned_geobr/read_biomethane_plants.py +3 -2
- tunned_geobr/read_census_tract.py +90 -88
- tunned_geobr/read_comparable_areas.py +1 -1
- tunned_geobr/read_compression_stations.py +3 -2
- tunned_geobr/read_conservation_units.py +1 -1
- tunned_geobr/read_country.py +1 -1
- tunned_geobr/read_disaster_risk_area.py +1 -1
- tunned_geobr/read_drainage_ducts.py +3 -2
- tunned_geobr/read_etanol_plants.py +3 -2
- tunned_geobr/read_existent_biomass_ute.py +6 -2
- tunned_geobr/read_existent_fossile_ute.py +7 -3
- tunned_geobr/read_existent_nuclear_ute.py +5 -4
- tunned_geobr/read_existent_substations.py +5 -4
- tunned_geobr/read_existent_transmission_lines.py +6 -5
- tunned_geobr/read_exploration_production_environment.py +6 -8
- tunned_geobr/read_federal_union_areas.py +3 -2
- tunned_geobr/read_fuel_bases.py +3 -2
- tunned_geobr/read_gas_distribution_pipelines.py +3 -2
- tunned_geobr/read_gas_transport_pipelines.py +3 -2
- tunned_geobr/read_glp_bases.py +3 -2
- tunned_geobr/read_health_region.py +1 -1
- tunned_geobr/read_hydroelectric_feasibility_studies.py +9 -8
- tunned_geobr/read_hydroelectric_inventory_aai_studies.py +9 -8
- tunned_geobr/read_immediate_region.py +1 -1
- tunned_geobr/read_indigenous_land.py +1 -1
- tunned_geobr/read_intermediate_region.py +1 -1
- tunned_geobr/read_isolated_systems.py +5 -4
- tunned_geobr/read_meso_region.py +1 -1
- tunned_geobr/read_metro_area.py +1 -1
- tunned_geobr/read_micro_region.py +1 -1
- tunned_geobr/read_municipality.py +1 -1
- tunned_geobr/read_municipality_direct.py +1 -1
- tunned_geobr/read_neighborhood.py +1 -1
- tunned_geobr/read_og_basement.py +9 -8
- tunned_geobr/read_og_effective_geographic_basin.py +3 -2
- tunned_geobr/read_og_ipa_direct_evidence.py +6 -8
- tunned_geobr/read_og_ipa_exploratory_activity.py +9 -8
- tunned_geobr/read_og_ipa_exploratory_intensity.py +3 -0
- tunned_geobr/read_og_ipa_need_for_knowledge.py +6 -8
- tunned_geobr/read_og_ipa_prospectiveness.py +6 -8
- tunned_geobr/read_og_ipa_supply_infrastructure.py +6 -8
- tunned_geobr/read_og_legal_pre_salt_polygon.py +6 -8
- tunned_geobr/read_og_predominant_fluid_type.py +3 -2
- tunned_geobr/read_og_probabilistic_effective_basin.py +3 -2
- tunned_geobr/read_og_total_ipa.py +3 -2
- tunned_geobr/read_og_unconventional_resources.py +3 -2
- tunned_geobr/read_oil_and_derivatives_terminal.py +3 -2
- tunned_geobr/read_pio_terminals.py +3 -2
- tunned_geobr/read_pop_arrangements.py +1 -1
- tunned_geobr/read_processing_facilities.py +3 -2
- tunned_geobr/read_region.py +1 -1
- tunned_geobr/read_sedimentary_basins.py +6 -8
- tunned_geobr/read_semiarid.py +1 -1
- tunned_geobr/read_state.py +1 -1
- tunned_geobr/read_state_direct.py +1 -1
- tunned_geobr/read_urban_area.py +1 -1
- tunned_geobr/read_urban_concentrations.py +1 -1
- tunned_geobr/read_water_bodies_ana.py +1 -1
- tunned_geobr/read_weighting_area.py +1 -1
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/METADATA +1 -1
- tunned_geobr-0.2.6.dist-info/RECORD +138 -0
- tunned_geobr/read_census_tract_2022.py +0 -101
- tunned_geobr-0.2.5.dist-info/RECORD +0 -139
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.5.dist-info → tunned_geobr-0.2.6.dist-info}/licenses/LICENSE.txt +0 -0
@@ -7,7 +7,7 @@ import warnings
|
|
7
7
|
import shutil
|
8
8
|
|
9
9
|
|
10
|
-
def read_og_ipa_prospectiveness(simplified=
|
10
|
+
def read_og_ipa_prospectiveness(simplified=False, verbose=False):
|
11
11
|
"""Download data for Oil and Gas IPA Prospectiveness in Brazil.
|
12
12
|
|
13
13
|
This function downloads, processes, and returns data for Oil and Gas IPA Prospectiveness
|
@@ -45,10 +45,7 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
|
|
45
45
|
response.raise_for_status()
|
46
46
|
response_json = response.json()
|
47
47
|
|
48
|
-
|
49
|
-
raise ValueError("No data found in the response")
|
50
|
-
|
51
|
-
download_url = response_json["value"]["itemUrl"]
|
48
|
+
download_url = response_json['results'][0]['value']['url']
|
52
49
|
|
53
50
|
if verbose:
|
54
51
|
print(f"Download URL: {download_url}")
|
@@ -74,12 +71,13 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
|
|
74
71
|
zip_ref.extractall(temp_dir)
|
75
72
|
|
76
73
|
# Find the shapefile
|
77
|
-
|
74
|
+
zip_dir = os.path.join(temp_dir, 'zipfolder')
|
75
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
|
78
76
|
|
79
77
|
if not shp_files:
|
80
78
|
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
79
|
|
82
|
-
shp_path = os.path.join(
|
80
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
83
81
|
|
84
82
|
if verbose:
|
85
83
|
print(f"Reading shapefile from {shp_path}")
|
@@ -99,7 +97,7 @@ def read_og_ipa_prospectiveness(simplified=True, verbose=False):
|
|
99
97
|
essential_cols = ["geometry"]
|
100
98
|
|
101
99
|
# Add any other essential columns that exist in the dataset
|
102
|
-
for col in ["
|
100
|
+
for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
|
103
101
|
if col in gdf.columns:
|
104
102
|
essential_cols.append(col)
|
105
103
|
|
@@ -7,7 +7,7 @@ import warnings
|
|
7
7
|
import shutil
|
8
8
|
|
9
9
|
|
10
|
-
def read_og_ipa_supply_infrastructure(simplified=
|
10
|
+
def read_og_ipa_supply_infrastructure(simplified=False, verbose=False):
|
11
11
|
"""Download data for Oil and Gas IPA Supply Infrastructure in Brazil.
|
12
12
|
|
13
13
|
This function downloads, processes, and returns data for Oil and Gas IPA Supply Infrastructure
|
@@ -45,10 +45,7 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
|
|
45
45
|
response.raise_for_status()
|
46
46
|
response_json = response.json()
|
47
47
|
|
48
|
-
|
49
|
-
raise ValueError("No data found in the response")
|
50
|
-
|
51
|
-
download_url = response_json["value"]["itemUrl"]
|
48
|
+
download_url = response_json['results'][0]['value']['url']
|
52
49
|
|
53
50
|
if verbose:
|
54
51
|
print(f"Download URL: {download_url}")
|
@@ -74,12 +71,13 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
|
|
74
71
|
zip_ref.extractall(temp_dir)
|
75
72
|
|
76
73
|
# Find the shapefile
|
77
|
-
|
74
|
+
zip_dir = os.path.join(temp_dir, 'zipfolder')
|
75
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
|
78
76
|
|
79
77
|
if not shp_files:
|
80
78
|
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
79
|
|
82
|
-
shp_path = os.path.join(
|
80
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
83
81
|
|
84
82
|
if verbose:
|
85
83
|
print(f"Reading shapefile from {shp_path}")
|
@@ -99,7 +97,7 @@ def read_og_ipa_supply_infrastructure(simplified=True, verbose=False):
|
|
99
97
|
essential_cols = ["geometry"]
|
100
98
|
|
101
99
|
# Add any other essential columns that exist in the dataset
|
102
|
-
for col in ["
|
100
|
+
for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
|
103
101
|
if col in gdf.columns:
|
104
102
|
essential_cols.append(col)
|
105
103
|
|
@@ -7,7 +7,7 @@ import warnings
|
|
7
7
|
import shutil
|
8
8
|
|
9
9
|
|
10
|
-
def read_og_legal_pre_salt_polygon(simplified=
|
10
|
+
def read_og_legal_pre_salt_polygon(simplified=False, verbose=False):
|
11
11
|
"""Download data for Oil and Gas Legal Pre-Salt Polygon in Brazil.
|
12
12
|
|
13
13
|
This function downloads, processes, and returns data for Oil and Gas Legal Pre-Salt Polygon
|
@@ -45,10 +45,7 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
|
|
45
45
|
response.raise_for_status()
|
46
46
|
response_json = response.json()
|
47
47
|
|
48
|
-
|
49
|
-
raise ValueError("No data found in the response")
|
50
|
-
|
51
|
-
download_url = response_json["value"]["itemUrl"]
|
48
|
+
download_url = response_json['results'][0]['value']['url']
|
52
49
|
|
53
50
|
if verbose:
|
54
51
|
print(f"Download URL: {download_url}")
|
@@ -74,12 +71,13 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
|
|
74
71
|
zip_ref.extractall(temp_dir)
|
75
72
|
|
76
73
|
# Find the shapefile
|
77
|
-
|
74
|
+
zip_dir = os.path.join(temp_dir, 'zipfolder')
|
75
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
|
78
76
|
|
79
77
|
if not shp_files:
|
80
78
|
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
79
|
|
82
|
-
shp_path = os.path.join(
|
80
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
83
81
|
|
84
82
|
if verbose:
|
85
83
|
print(f"Reading shapefile from {shp_path}")
|
@@ -99,7 +97,7 @@ def read_og_legal_pre_salt_polygon(simplified=True, verbose=False):
|
|
99
97
|
essential_cols = ["geometry"]
|
100
98
|
|
101
99
|
# Add any other essential columns that exist in the dataset
|
102
|
-
for col in ["NOME", "
|
100
|
+
for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
|
103
101
|
if col in gdf.columns:
|
104
102
|
essential_cols.append(col)
|
105
103
|
|
@@ -86,8 +86,9 @@ def read_og_predominant_fluid_type(simplified=False, verbose=False):
|
|
86
86
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
87
87
|
zip_ref.extractall(temp_dir)
|
88
88
|
|
89
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
89
90
|
# Find the shapefile in the extracted files
|
90
|
-
shp_files = [f for f in os.listdir(
|
91
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
91
92
|
|
92
93
|
if not shp_files:
|
93
94
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -96,7 +97,7 @@ def read_og_predominant_fluid_type(simplified=False, verbose=False):
|
|
96
97
|
if verbose:
|
97
98
|
print("Reading shapefile")
|
98
99
|
|
99
|
-
shp_path = os.path.join(
|
100
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
100
101
|
gdf = gpd.read_file(shp_path)
|
101
102
|
|
102
103
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -86,8 +86,9 @@ def read_og_probabilistic_effective_basin(simplified=False, verbose=False):
|
|
86
86
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
87
87
|
zip_ref.extractall(temp_dir)
|
88
88
|
|
89
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
89
90
|
# Find the shapefile in the extracted files
|
90
|
-
shp_files = [f for f in os.listdir(
|
91
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
91
92
|
|
92
93
|
if not shp_files:
|
93
94
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -96,7 +97,7 @@ def read_og_probabilistic_effective_basin(simplified=False, verbose=False):
|
|
96
97
|
if verbose:
|
97
98
|
print("Reading shapefile")
|
98
99
|
|
99
|
-
shp_path = os.path.join(
|
100
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
100
101
|
gdf = gpd.read_file(shp_path)
|
101
102
|
|
102
103
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -86,8 +86,9 @@ def read_og_total_ipa(simplified=False, verbose=False):
|
|
86
86
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
87
87
|
zip_ref.extractall(temp_dir)
|
88
88
|
|
89
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
89
90
|
# Find the shapefile in the extracted files
|
90
|
-
shp_files = [f for f in os.listdir(
|
91
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
91
92
|
|
92
93
|
if not shp_files:
|
93
94
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -96,7 +97,7 @@ def read_og_total_ipa(simplified=False, verbose=False):
|
|
96
97
|
if verbose:
|
97
98
|
print("Reading shapefile")
|
98
99
|
|
99
|
-
shp_path = os.path.join(
|
100
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
100
101
|
gdf = gpd.read_file(shp_path)
|
101
102
|
|
102
103
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -86,8 +86,9 @@ def read_og_unconventional_resources(simplified=False, verbose=False):
|
|
86
86
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
87
87
|
zip_ref.extractall(temp_dir)
|
88
88
|
|
89
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
89
90
|
# Find the shapefile in the extracted files
|
90
|
-
shp_files = [f for f in os.listdir(
|
91
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
91
92
|
|
92
93
|
if not shp_files:
|
93
94
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -96,7 +97,7 @@ def read_og_unconventional_resources(simplified=False, verbose=False):
|
|
96
97
|
if verbose:
|
97
98
|
print("Reading shapefile")
|
98
99
|
|
99
|
-
shp_path = os.path.join(
|
100
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
100
101
|
gdf = gpd.read_file(shp_path)
|
101
102
|
|
102
103
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -85,8 +85,9 @@ def read_oil_and_derivatives_terminal(simplified=False, verbose=False):
|
|
85
85
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
86
|
zip_ref.extractall(temp_dir)
|
87
87
|
|
88
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
88
89
|
# Find the shapefile in the extracted files
|
89
|
-
shp_files = [f for f in os.listdir(
|
90
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
90
91
|
|
91
92
|
if not shp_files:
|
92
93
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -95,7 +96,7 @@ def read_oil_and_derivatives_terminal(simplified=False, verbose=False):
|
|
95
96
|
if verbose:
|
96
97
|
print("Reading shapefile")
|
97
98
|
|
98
|
-
shp_path = os.path.join(
|
99
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
99
100
|
gdf = gpd.read_file(shp_path)
|
100
101
|
|
101
102
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -85,8 +85,9 @@ def read_pio_terminals(simplified=False, verbose=False):
|
|
85
85
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
86
|
zip_ref.extractall(temp_dir)
|
87
87
|
|
88
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
88
89
|
# Find the shapefile in the extracted files
|
89
|
-
shp_files = [f for f in os.listdir(
|
90
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
90
91
|
|
91
92
|
if not shp_files:
|
92
93
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -95,7 +96,7 @@ def read_pio_terminals(simplified=False, verbose=False):
|
|
95
96
|
if verbose:
|
96
97
|
print("Reading shapefile")
|
97
98
|
|
98
|
-
shp_path = os.path.join(
|
99
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
99
100
|
gdf = gpd.read_file(shp_path)
|
100
101
|
|
101
102
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
@@ -2,7 +2,7 @@
|
|
2
2
|
from geobr.utils import select_metadata, download_gpkg
|
3
3
|
|
4
4
|
|
5
|
-
def read_pop_arrangements(year=2015, simplified=
|
5
|
+
def read_pop_arrangements(year=2015, simplified=False, verbose=False):
|
6
6
|
r""" Download population arrangements in Brazil
|
7
7
|
|
8
8
|
This function reads the official data on population arrangements (Arranjos
|
@@ -85,8 +85,9 @@ def read_processing_facilities(simplified=False, verbose=False):
|
|
85
85
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
86
|
zip_ref.extractall(temp_dir)
|
87
87
|
|
88
|
+
zip_dir = os.path.join(temp_dir,'zipfolder')
|
88
89
|
# Find the shapefile in the extracted files
|
89
|
-
shp_files = [f for f in os.listdir(
|
90
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith('.shp')]
|
90
91
|
|
91
92
|
if not shp_files:
|
92
93
|
raise Exception("No shapefile found in the downloaded zip file")
|
@@ -95,7 +96,7 @@ def read_processing_facilities(simplified=False, verbose=False):
|
|
95
96
|
if verbose:
|
96
97
|
print("Reading shapefile")
|
97
98
|
|
98
|
-
shp_path = os.path.join(
|
99
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
99
100
|
gdf = gpd.read_file(shp_path)
|
100
101
|
|
101
102
|
# Convert to SIRGAS 2000 (EPSG:4674)
|
tunned_geobr/read_region.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
from geobr import read_region as _read_region
|
2
2
|
|
3
3
|
|
4
|
-
def read_region(year=2010, simplified=
|
4
|
+
def read_region(year=2010, simplified=False, verbose=False):
|
5
5
|
""" Download shape file of Brazil Regions as sf objects.
|
6
6
|
|
7
7
|
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
|
@@ -7,7 +7,7 @@ import warnings
|
|
7
7
|
import shutil
|
8
8
|
|
9
9
|
|
10
|
-
def read_sedimentary_basins(simplified=
|
10
|
+
def read_sedimentary_basins(simplified=False, verbose=False):
|
11
11
|
"""Download data for Sedimentary Basins in Brazil.
|
12
12
|
|
13
13
|
This function downloads, processes, and returns data for Sedimentary Basins
|
@@ -45,10 +45,7 @@ def read_sedimentary_basins(simplified=True, verbose=False):
|
|
45
45
|
response.raise_for_status()
|
46
46
|
response_json = response.json()
|
47
47
|
|
48
|
-
|
49
|
-
raise ValueError("No data found in the response")
|
50
|
-
|
51
|
-
download_url = response_json["value"]["itemUrl"]
|
48
|
+
download_url = response_json['results'][0]['value']['url']
|
52
49
|
|
53
50
|
if verbose:
|
54
51
|
print(f"Download URL: {download_url}")
|
@@ -74,12 +71,13 @@ def read_sedimentary_basins(simplified=True, verbose=False):
|
|
74
71
|
zip_ref.extractall(temp_dir)
|
75
72
|
|
76
73
|
# Find the shapefile
|
77
|
-
|
74
|
+
zip_dir = os.path.join(temp_dir, 'zipfolder')
|
75
|
+
shp_files = [f for f in os.listdir(zip_dir) if f.endswith(".shp")]
|
78
76
|
|
79
77
|
if not shp_files:
|
80
78
|
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
79
|
|
82
|
-
shp_path = os.path.join(
|
80
|
+
shp_path = os.path.join(zip_dir, shp_files[0])
|
83
81
|
|
84
82
|
if verbose:
|
85
83
|
print(f"Reading shapefile from {shp_path}")
|
@@ -99,7 +97,7 @@ def read_sedimentary_basins(simplified=True, verbose=False):
|
|
99
97
|
essential_cols = ["geometry"]
|
100
98
|
|
101
99
|
# Add any other essential columns that exist in the dataset
|
102
|
-
for col in ["NOME", "
|
100
|
+
for col in ["NOME", "MUNICIPIO", "UF", "ALTURA", "SITUACAO"]:
|
103
101
|
if col in gdf.columns:
|
104
102
|
essential_cols.append(col)
|
105
103
|
|
tunned_geobr/read_semiarid.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
|
-
def read_semiarid(year=2017, simplified=
|
4
|
+
def read_semiarid(year=2017, simplified=False, verbose=False):
|
5
5
|
""" Download official data of Brazilian Semiarid as an sf object.
|
6
6
|
|
7
7
|
This data set covers the whole of Brazilian Semiarid as defined in the resolution in 23/11/2017). The original
|
tunned_geobr/read_state.py
CHANGED
@@ -3,7 +3,7 @@ import geopandas as gpd
|
|
3
3
|
from geobr.utils import select_metadata, download_gpkg
|
4
4
|
|
5
5
|
|
6
|
-
def read_state(code_state="all", year=2010, simplified=
|
6
|
+
def read_state(code_state="all", year=2010, simplified=False, verbose=False):
|
7
7
|
"""Download shapefiles of Brazilian states as geopandas objects.
|
8
8
|
|
9
9
|
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
|
@@ -5,7 +5,7 @@ import requests
|
|
5
5
|
from zipfile import ZipFile
|
6
6
|
from io import BytesIO
|
7
7
|
|
8
|
-
def
|
8
|
+
def read_state_direct(code_state="all", simplified=False):
|
9
9
|
"""Download shapefiles of Brazilian states as geopandas objects.
|
10
10
|
|
11
11
|
This function downloads and processes state data directly from IBGE (Brazilian Institute of Geography and Statistics).
|
tunned_geobr/read_urban_area.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
|
-
def read_urban_area(year=2015, simplified=
|
4
|
+
def read_urban_area(year=2015, simplified=False, verbose=False):
|
5
5
|
""" Download official data of urbanized areas in Brazil as an sf object.
|
6
6
|
|
7
7
|
This function reads the official data on the urban footprint of Brazilian cities
|
@@ -2,7 +2,7 @@
|
|
2
2
|
from geobr.utils import select_metadata, download_gpkg
|
3
3
|
|
4
4
|
|
5
|
-
def read_urban_concentrations(year=2015, simplified=
|
5
|
+
def read_urban_concentrations(year=2015, simplified=False, verbose=False):
|
6
6
|
r""" Download urban concentration areas in Brazil
|
7
7
|
|
8
8
|
@description
|
@@ -2,7 +2,7 @@ from geobr.utils import select_metadata, download_gpkg
|
|
2
2
|
|
3
3
|
|
4
4
|
def read_weighting_area(
|
5
|
-
code_weighting="all", year=2010, simplified=
|
5
|
+
code_weighting="all", year=2010, simplified=False, verbose=False
|
6
6
|
):
|
7
7
|
"""Download shape files of Census Weighting Areas (area de ponderacao) of the Brazilian Population Census.
|
8
8
|
|
@@ -0,0 +1,138 @@
|
|
1
|
+
tunned_geobr-0.2.6.dist-info/METADATA,sha256=pDrSN-1ydH0SBHMfAVrgIMEmMgSqlM3mOnzNbcxXFsU,5018
|
2
|
+
tunned_geobr-0.2.6.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.2.6.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.2.6.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
+
tunned_geobr/__init__.py,sha256=U3syU2lTvCoBLJSLcAPnn9cOc33DFqnGuGuABwguNgg,7309
|
6
|
+
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
7
|
+
tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
|
8
|
+
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
9
|
+
tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
|
10
|
+
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
+
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
+
tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
|
13
|
+
tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
|
14
|
+
tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
|
15
|
+
tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
|
16
|
+
tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
|
17
|
+
tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
|
18
|
+
tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
|
19
|
+
tunned_geobr/read_areas_under_contract.py,sha256=76opqzIJdrt034KijQgs3hXX2nIV9RAACuD1YAtJjm8,5396
|
20
|
+
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
21
|
+
tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
|
22
|
+
tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
|
23
|
+
tunned_geobr/read_biodiesel_plants.py,sha256=nqLNTuY3CnjghJU6aK3alJFl9yt4UHS8zEGjvlZzMLk,5319
|
24
|
+
tunned_geobr/read_biomes.py,sha256=gcr11eWknIl92MxF_oJ2RXlsZ6q8ARxnbdmdmsfT4kY,1338
|
25
|
+
tunned_geobr/read_biomethane_plants.py,sha256=HP51IQB7KMTOzpfcXNNn3Gg95nUlTjuDat_NOoHQVtY,5331
|
26
|
+
tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
|
27
|
+
tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
|
28
|
+
tunned_geobr/read_census_tract.py,sha256=aKSvMzfAYSR0P-TDS5xyo4XSO3NRjuYgfb_psDh3kUc,4005
|
29
|
+
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
30
|
+
tunned_geobr/read_comparable_areas.py,sha256=XUOsBiDyYX5z4fj0bofD9Ty6dW4xKRY80MSo_f69Sac,2109
|
31
|
+
tunned_geobr/read_compression_stations.py,sha256=WH1edJ7FARZCDRJoIx-33olm_umIGBbVodWajgVrq3U,5337
|
32
|
+
tunned_geobr/read_conservation_units.py,sha256=_6fSF98rKFbsDH08_ZJobB-_h_0ZEMDMMgDiCpLVEYM,1380
|
33
|
+
tunned_geobr/read_country.py,sha256=VLE5rNTddsgxBB9N1i7EyxMgWDYda9G2AKDpmr_m36I,1358
|
34
|
+
tunned_geobr/read_disaster_risk_area.py,sha256=8b-LsdSjUduOtq9u5aJLPxJnP-TAv974bkBNn07Kttk,1846
|
35
|
+
tunned_geobr/read_drainage_ducts.py,sha256=xirIyirAde0awmFSTWRh65PueWD14kjulavlBc8xYMA,5254
|
36
|
+
tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
|
37
|
+
tunned_geobr/read_etanol_plants.py,sha256=aTK6oWNV61Crlf6LhK2yvn3r2SnAvhEbVb4XqysSwmE,5286
|
38
|
+
tunned_geobr/read_existent_biomass_ute.py,sha256=QM-FPcoCiho9_LI_vHDaD-FE6JoZwwk5vKqrPbR0xNo,5502
|
39
|
+
tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
|
40
|
+
tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
|
41
|
+
tunned_geobr/read_existent_fossile_ute.py,sha256=jjiDyEd9JTgVkre5247_YqIQP6pniIEvcLYy3u4Fth4,5501
|
42
|
+
tunned_geobr/read_existent_nuclear_ute.py,sha256=HjKHpA9GFN2Di8qG73A0Y73xMKdtSfjEXwIGYDWEw0M,5442
|
43
|
+
tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
|
44
|
+
tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
|
45
|
+
tunned_geobr/read_existent_substations.py,sha256=v9Noi50t5sGMaLqDh5L10H1qH6n5tO2zqx0objPWe50,5385
|
46
|
+
tunned_geobr/read_existent_transmission_lines.py,sha256=rImT61mjwKLauC6MLuN5csTOr1L6DZGezntXv8t7y8Y,5409
|
47
|
+
tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
|
48
|
+
tunned_geobr/read_exploration_production_environment.py,sha256=nmf5zUDXF1mFHqGudnctj94aEZzdtnCxM7Ikrx0p9kk,4695
|
49
|
+
tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
|
50
|
+
tunned_geobr/read_federal_union_areas.py,sha256=gP2yJMPzz0xna18ldLIbqK0m3LuW84NkX9L0E4ZjNXE,5358
|
51
|
+
tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
|
52
|
+
tunned_geobr/read_fuel_bases.py,sha256=1fUurX1HFznWr3KNWVjOzlhrvQva3fHbgQ1necfFnYA,5178
|
53
|
+
tunned_geobr/read_gas_distribution_pipelines.py,sha256=HSoEHWQukfKi079Jd_sgcj1iDJtfNXnCrsbUPr-s_Mg,5396
|
54
|
+
tunned_geobr/read_gas_transport_pipelines.py,sha256=Grck2pJTjDcs3oUnk7HEXU1akk2Ti9H4Xg3Y8cyq9-4,5354
|
55
|
+
tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
|
56
|
+
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
57
|
+
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
58
|
+
tunned_geobr/read_glp_bases.py,sha256=4-cgL0NU9bkKMTddMfaTedjzV5OnzEVr4iWglACU7x4,5190
|
59
|
+
tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
|
60
|
+
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
61
|
+
tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i_tQgU,1843
|
62
|
+
tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
|
63
|
+
tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
|
64
|
+
tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
|
65
|
+
tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
|
66
|
+
tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
|
67
|
+
tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
|
68
|
+
tunned_geobr/read_isolated_systems.py,sha256=k0dxfUNubsJXV3_5ph1CWghR_Mfpn4oe_4zLkg7c5Cs,5343
|
69
|
+
tunned_geobr/read_meso_region.py,sha256=UacQUroAZWcfhq2Piby-FDVTDmEVeLEQCvcLcc1w7rY,2602
|
70
|
+
tunned_geobr/read_metro_area.py,sha256=e18jyXrRMwQTv_ZO2hGoyC8qZsV6NlYfWXsu6DusRQM,1498
|
71
|
+
tunned_geobr/read_micro_region.py,sha256=61KbztQWYw-QPFLJOoxNWX32bHBKLb2pnunzSFo3S_0,2510
|
72
|
+
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
73
|
+
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
74
|
+
tunned_geobr/read_municipality.py,sha256=k3uOalCwO4R33sG9aUWojED1CezFIo5JD7kLTC-slic,2594
|
75
|
+
tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdnmJp-QgdkmFg,5658
|
76
|
+
tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
|
77
|
+
tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
|
78
|
+
tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
|
79
|
+
tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
|
80
|
+
tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
|
81
|
+
tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
|
82
|
+
tunned_geobr/read_og_effective_geographic_basin.py,sha256=Qvy--_A8oGrL-Os3mfofr14MA0qWv3s5FFdtIabBJ8E,5457
|
83
|
+
tunned_geobr/read_og_ipa_direct_evidence.py,sha256=N5nDr7AinKFqhcfgnvygVjzpdN2D1TP5VSILS8gkIgU,4738
|
84
|
+
tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=uhNKpj_YqpT_Oioms_eZycCm7yJjOjyi53eGnoomcug,4753
|
85
|
+
tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=Erul-eohGVshbNOG0EU0DkxjCg0TzsElSUhE3cxy0V8,5468
|
86
|
+
tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=tXkn0beJeqJ0_DaR888txZNjqTDS4GHQOfibsS1bJyc,4677
|
87
|
+
tunned_geobr/read_og_ipa_prospectiveness.py,sha256=wSmFokLdlfXMfTx5BOhxbt6kJIYAOweJE4Kc5_-fumc,4643
|
88
|
+
tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=a4wTN7fIef_coffNvEyUcX0GRZV3x2C9Pk_qR-RSVU8,4699
|
89
|
+
tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=lXlp-c1rMbJ7uUqKZFxPpS96Ltx-0r1T-FoCG3fqJYQ,4683
|
90
|
+
tunned_geobr/read_og_predominant_fluid_type.py,sha256=kdbnhdxlLBUf_kjALdZm6WusC3bIBTRToQfvSK71lKY,5452
|
91
|
+
tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=ftdY--3rZJwhCfbuQULm30Gg2Sc-rF1evRoNozNKX58,5497
|
92
|
+
tunned_geobr/read_og_total_ipa.py,sha256=0Tz4x7ZD7bRvXiLR2AitAmx-hQEVxAzNugfg2o0L3gc,5300
|
93
|
+
tunned_geobr/read_og_unconventional_resources.py,sha256=97lUpkJQtBZTUb4oPdvT9wxlm2yj6euWzLR4oGiezrc,5444
|
94
|
+
tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=-BzLd9WpWWgH1pUaz9y16rg54FbZgUqJ_YTqbFak_7Y,5385
|
95
|
+
tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
|
96
|
+
tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
|
97
|
+
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
98
|
+
tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
|
99
|
+
tunned_geobr/read_pio_terminals.py,sha256=uslr1Zy2bNaxAHbsieMkyWND8zLvJpWOkdey3-4i1Xc,5246
|
100
|
+
tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
|
101
|
+
tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
|
102
|
+
tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
|
103
|
+
tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
|
104
|
+
tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
|
105
|
+
tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
|
106
|
+
tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
|
107
|
+
tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
|
108
|
+
tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
|
109
|
+
tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
|
110
|
+
tunned_geobr/read_pop_arrangements.py,sha256=D9Q1hT5t8yXfGoKaIRSPLjkVaf-eX2fS9ofC-La2Jew,1386
|
111
|
+
tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
|
112
|
+
tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
|
113
|
+
tunned_geobr/read_processing_facilities.py,sha256=8iCveDTk7MXm1bmb1pcknzen62HTGYQ3KEzvUGSdWfk,5349
|
114
|
+
tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
|
115
|
+
tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
116
|
+
tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
|
117
|
+
tunned_geobr/read_region.py,sha256=kfwjoMj-klayqSty_mUNILIQA8RYgNuB86y_0raDApQ,956
|
118
|
+
tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
|
119
|
+
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
120
|
+
tunned_geobr/read_sedimentary_basins.py,sha256=mpCde4-WRdAAuHF-AwrODd0GpxRhzJOuP60U6Zbl9pE,4583
|
121
|
+
tunned_geobr/read_semiarid.py,sha256=pxxYTWq8_UPUyblA7_FXXXRz-XOCrrebCvYQ-kgDSrU,1358
|
122
|
+
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
123
|
+
tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
|
124
|
+
tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
|
125
|
+
tunned_geobr/read_state.py,sha256=P5iLvT_j67al7KlDJo0Y9vys6X7rmI63Cr19dZ6eU2o,2699
|
126
|
+
tunned_geobr/read_state_direct.py,sha256=8Tdz-gVH_t90BJngcfcpr0VLs5HfCUxRgRQj8hy4Bt0,3826
|
127
|
+
tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
|
128
|
+
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
129
|
+
tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
|
130
|
+
tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
|
131
|
+
tunned_geobr/read_urban_area.py,sha256=2zB6B-CXb5Hvvu6EjaXzWeLt0na3IFoSMdYdZmCHUGU,1364
|
132
|
+
tunned_geobr/read_urban_concentrations.py,sha256=RvkjCupcb1DL1HgEm9zYrfzS_dn4mOrBygl2N9OBt-w,1428
|
133
|
+
tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
|
134
|
+
tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz_2Bm-Pk4,3233
|
135
|
+
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
136
|
+
tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
|
137
|
+
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
138
|
+
tunned_geobr-0.2.6.dist-info/RECORD,,
|