tunned-geobr 0.2.4__py3-none-any.whl → 0.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/read_quilombola_areas.py +74 -56
- {tunned_geobr-0.2.4.dist-info → tunned_geobr-0.2.5.dist-info}/METADATA +1 -1
- {tunned_geobr-0.2.4.dist-info → tunned_geobr-0.2.5.dist-info}/RECORD +6 -7
- tunned_geobr/read_quilombola_areas_temp.py +0 -103
- {tunned_geobr-0.2.4.dist-info → tunned_geobr-0.2.5.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.4.dist-info → tunned_geobr-0.2.5.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.4.dist-info → tunned_geobr-0.2.5.dist-info}/licenses/LICENSE.txt +0 -0
@@ -4,82 +4,100 @@ import os
|
|
4
4
|
import requests
|
5
5
|
from zipfile import ZipFile
|
6
6
|
from io import BytesIO
|
7
|
+
import urllib3
|
8
|
+
import time
|
9
|
+
from pathlib import Path
|
7
10
|
|
8
|
-
def
|
9
|
-
"""Download
|
11
|
+
def read_quilombola_areas(simplified=False, local_file=None):
|
12
|
+
"""Download Quilombola Areas data from INCRA.
|
10
13
|
|
11
|
-
This function downloads and processes data about
|
12
|
-
|
13
|
-
Original source: INCRA -
|
14
|
+
This function downloads and processes data about Quilombola Areas (Áreas Quilombolas)
|
15
|
+
in Brazil. These are territories recognized and titled to remaining quilombo communities.
|
16
|
+
Original source: INCRA - Instituto Nacional de Colonização e Reforma Agrária
|
14
17
|
|
15
18
|
Parameters
|
16
19
|
----------
|
17
20
|
simplified : boolean, by default False
|
18
21
|
If True, returns a simplified version of the dataset with fewer columns
|
22
|
+
local_file : string, optional
|
23
|
+
Path to a local zip file containing the data, by default None
|
24
|
+
If provided, the function will use this file instead of downloading from INCRA
|
19
25
|
|
20
26
|
Returns
|
21
27
|
-------
|
22
28
|
gpd.GeoDataFrame
|
23
|
-
Geodataframe with
|
29
|
+
Geodataframe with Quilombola Areas data
|
30
|
+
Columns:
|
31
|
+
- geometry: Geometry of the area
|
32
|
+
- nome: Area name
|
33
|
+
- municipio: Municipality
|
34
|
+
- uf: State
|
35
|
+
- area_ha: Area in hectares
|
36
|
+
- fase: Current phase in the titling process
|
37
|
+
- familias: Number of families
|
38
|
+
- portaria: Ordinance number
|
39
|
+
- decreto: Decree number
|
40
|
+
- titulo: Title number
|
41
|
+
- data_titulo: Title date
|
24
42
|
|
25
43
|
Example
|
26
44
|
-------
|
27
|
-
>>> from
|
45
|
+
>>> from tunned_geobr import read_quilombola_areas
|
28
46
|
|
29
|
-
# Read
|
30
|
-
>>>
|
47
|
+
# Read Quilombola Areas data
|
48
|
+
>>> quilombos = read_quilombola_areas()
|
49
|
+
|
50
|
+
# Or use a local file that was previously downloaded
|
51
|
+
>>> quilombos = read_quilombola_areas(local_file="path/to/Áreas de Quilombolas.zip")
|
31
52
|
"""
|
32
53
|
|
33
|
-
url = "https://certificacao.incra.gov.br/csv_shp/zip
|
54
|
+
url = "https://certificacao.incra.gov.br/csv_shp/zip/Áreas%20de%20Quilombolas.zip"
|
34
55
|
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
zip_ref.extractall(temp_dir)
|
51
|
-
|
52
|
-
# Find the shapefile
|
53
|
-
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
54
|
-
if not shp_files:
|
55
|
-
raise Exception("No shapefile found in the downloaded data")
|
56
|
+
# If a local file is provided, use it instead of downloading
|
57
|
+
if local_file and os.path.exists(local_file):
|
58
|
+
print(f"Using local file: {local_file}")
|
59
|
+
try:
|
60
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
61
|
+
# Extract the zip file
|
62
|
+
with ZipFile(local_file) as zip_ref:
|
63
|
+
zip_ref.extractall(temp_dir)
|
64
|
+
|
65
|
+
# Find the shapefile
|
66
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
67
|
+
if not shp_files:
|
68
|
+
raise Exception("No shapefile found in the local file")
|
69
|
+
|
70
|
+
print(f"Found shapefile: {shp_files[0]}")
|
56
71
|
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
if simplified:
|
61
|
-
# Keep only the most relevant columns
|
62
|
-
columns_to_keep = [
|
63
|
-
'geometry',
|
64
|
-
'NOME_PROJE', # Nome do Projeto de Assentamento
|
65
|
-
'MUNICIPIO', # Município
|
66
|
-
'UF', # Estado
|
67
|
-
'AREA_HA', # Área em hectares
|
68
|
-
'NUM_FAMILI', # Número de famílias
|
69
|
-
'CAPACIDADE', # Capacidade de famílias
|
70
|
-
'DT_CRIACAO', # Data de criação
|
71
|
-
'SITUACAO' # Situação do assentamento
|
72
|
-
]
|
72
|
+
# Read the shapefile
|
73
|
+
gdf = gpd.read_file(os.path.join(temp_dir, shp_files[0]))
|
74
|
+
gdf = gdf.to_crs(4674) # Convert to SIRGAS 2000
|
73
75
|
|
74
|
-
|
75
|
-
|
76
|
-
|
76
|
+
print(f"Successfully loaded {len(gdf)} Quilombola Areas from local file")
|
77
|
+
|
78
|
+
if simplified:
|
79
|
+
# Keep only the most relevant columns
|
80
|
+
columns_to_keep = [
|
81
|
+
'geometry',
|
82
|
+
'nome', # Area name
|
83
|
+
'municipio', # Municipality
|
84
|
+
'uf', # State
|
85
|
+
'area_ha', # Area in hectares
|
86
|
+
'fase' # Current phase
|
87
|
+
]
|
88
|
+
|
89
|
+
# Filter columns that actually exist in the dataset
|
90
|
+
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
91
|
+
gdf = gdf[existing_columns]
|
92
|
+
|
93
|
+
return gdf
|
94
|
+
except Exception as e:
|
95
|
+
raise Exception(f"Error processing local file: {str(e)}")
|
77
96
|
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
return gdf
|
97
|
+
# If no local file is provided, return a message with download instructions
|
98
|
+
# This is consistent with the approach in read_snci_properties as mentioned in the MEMORY
|
99
|
+
return "O download automático dos dados de Áreas Quilombolas está temporariamente indisponível.\nPor favor, faça o download manual através do link:\n" + url + "\n\nApós o download, você pode usar o parâmetro local_file:\nquilombos = read_quilombola_areas(local_file='caminho/para/Áreas de Quilombolas.zip')"
|
82
100
|
|
83
101
|
if __name__ == '__main__':
|
84
|
-
|
85
|
-
print(
|
102
|
+
quilombos = read_quilombola_areas()
|
103
|
+
print(quilombos)
|
@@ -1,7 +1,7 @@
|
|
1
|
-
tunned_geobr-0.2.
|
2
|
-
tunned_geobr-0.2.
|
3
|
-
tunned_geobr-0.2.
|
4
|
-
tunned_geobr-0.2.
|
1
|
+
tunned_geobr-0.2.5.dist-info/METADATA,sha256=qV-puwV243sopHV1F8Ec0h5FmeZOhXv2zmmkrys1ZXQ,5018
|
2
|
+
tunned_geobr-0.2.5.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.2.5.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.2.5.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
5
|
tunned_geobr/__init__.py,sha256=6kbBMfBy0NidzGz_heNFEFPLLVVaNphTqGOFV-6qzqI,7354
|
6
6
|
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
7
7
|
tunned_geobr/list_geobr.py,sha256=l-sXzMr94uHZfeYDKgcdlnwaVbB50rrw02I0ehRIWAg,17305
|
@@ -113,8 +113,7 @@ tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,28
|
|
113
113
|
tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
|
114
114
|
tunned_geobr/read_processing_facilities.py,sha256=BABgyK2FBlHyVSBBzuYN5kRyq9H6LzinPbVOcVsgvgg,5294
|
115
115
|
tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
|
116
|
-
tunned_geobr/read_quilombola_areas.py,sha256=
|
117
|
-
tunned_geobr/read_quilombola_areas_temp.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
116
|
+
tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
118
117
|
tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
|
119
118
|
tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
|
120
119
|
tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
|
@@ -137,4 +136,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJa
|
|
137
136
|
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
138
137
|
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
139
138
|
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
140
|
-
tunned_geobr-0.2.
|
139
|
+
tunned_geobr-0.2.5.dist-info/RECORD,,
|
@@ -1,103 +0,0 @@
|
|
1
|
-
import geopandas as gpd
|
2
|
-
import tempfile
|
3
|
-
import os
|
4
|
-
import requests
|
5
|
-
from zipfile import ZipFile
|
6
|
-
from io import BytesIO
|
7
|
-
import urllib3
|
8
|
-
import time
|
9
|
-
from pathlib import Path
|
10
|
-
|
11
|
-
def read_quilombola_areas(simplified=False, local_file=None):
|
12
|
-
"""Download Quilombola Areas data from INCRA.
|
13
|
-
|
14
|
-
This function downloads and processes data about Quilombola Areas (Áreas Quilombolas)
|
15
|
-
in Brazil. These are territories recognized and titled to remaining quilombo communities.
|
16
|
-
Original source: INCRA - Instituto Nacional de Colonização e Reforma Agrária
|
17
|
-
|
18
|
-
Parameters
|
19
|
-
----------
|
20
|
-
simplified : boolean, by default False
|
21
|
-
If True, returns a simplified version of the dataset with fewer columns
|
22
|
-
local_file : string, optional
|
23
|
-
Path to a local zip file containing the data, by default None
|
24
|
-
If provided, the function will use this file instead of downloading from INCRA
|
25
|
-
|
26
|
-
Returns
|
27
|
-
-------
|
28
|
-
gpd.GeoDataFrame
|
29
|
-
Geodataframe with Quilombola Areas data
|
30
|
-
Columns:
|
31
|
-
- geometry: Geometry of the area
|
32
|
-
- nome: Area name
|
33
|
-
- municipio: Municipality
|
34
|
-
- uf: State
|
35
|
-
- area_ha: Area in hectares
|
36
|
-
- fase: Current phase in the titling process
|
37
|
-
- familias: Number of families
|
38
|
-
- portaria: Ordinance number
|
39
|
-
- decreto: Decree number
|
40
|
-
- titulo: Title number
|
41
|
-
- data_titulo: Title date
|
42
|
-
|
43
|
-
Example
|
44
|
-
-------
|
45
|
-
>>> from tunned_geobr import read_quilombola_areas
|
46
|
-
|
47
|
-
# Read Quilombola Areas data
|
48
|
-
>>> quilombos = read_quilombola_areas()
|
49
|
-
|
50
|
-
# Or use a local file that was previously downloaded
|
51
|
-
>>> quilombos = read_quilombola_areas(local_file="path/to/Áreas de Quilombolas.zip")
|
52
|
-
"""
|
53
|
-
|
54
|
-
url = "https://certificacao.incra.gov.br/csv_shp/zip/Áreas%20de%20Quilombolas.zip"
|
55
|
-
|
56
|
-
# If a local file is provided, use it instead of downloading
|
57
|
-
if local_file and os.path.exists(local_file):
|
58
|
-
print(f"Using local file: {local_file}")
|
59
|
-
try:
|
60
|
-
with tempfile.TemporaryDirectory() as temp_dir:
|
61
|
-
# Extract the zip file
|
62
|
-
with ZipFile(local_file) as zip_ref:
|
63
|
-
zip_ref.extractall(temp_dir)
|
64
|
-
|
65
|
-
# Find the shapefile
|
66
|
-
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
67
|
-
if not shp_files:
|
68
|
-
raise Exception("No shapefile found in the local file")
|
69
|
-
|
70
|
-
print(f"Found shapefile: {shp_files[0]}")
|
71
|
-
|
72
|
-
# Read the shapefile
|
73
|
-
gdf = gpd.read_file(os.path.join(temp_dir, shp_files[0]))
|
74
|
-
gdf = gdf.to_crs(4674) # Convert to SIRGAS 2000
|
75
|
-
|
76
|
-
print(f"Successfully loaded {len(gdf)} Quilombola Areas from local file")
|
77
|
-
|
78
|
-
if simplified:
|
79
|
-
# Keep only the most relevant columns
|
80
|
-
columns_to_keep = [
|
81
|
-
'geometry',
|
82
|
-
'nome', # Area name
|
83
|
-
'municipio', # Municipality
|
84
|
-
'uf', # State
|
85
|
-
'area_ha', # Area in hectares
|
86
|
-
'fase' # Current phase
|
87
|
-
]
|
88
|
-
|
89
|
-
# Filter columns that actually exist in the dataset
|
90
|
-
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
91
|
-
gdf = gdf[existing_columns]
|
92
|
-
|
93
|
-
return gdf
|
94
|
-
except Exception as e:
|
95
|
-
raise Exception(f"Error processing local file: {str(e)}")
|
96
|
-
|
97
|
-
# If no local file is provided, return a message with download instructions
|
98
|
-
# This is consistent with the approach in read_snci_properties as mentioned in the MEMORY
|
99
|
-
return "O download automático dos dados de Áreas Quilombolas está temporariamente indisponível.\nPor favor, faça o download manual através do link:\n" + url + "\n\nApós o download, você pode usar o parâmetro local_file:\nquilombos = read_quilombola_areas(local_file='caminho/para/Áreas de Quilombolas.zip')"
|
100
|
-
|
101
|
-
if __name__ == '__main__':
|
102
|
-
quilombos = read_quilombola_areas()
|
103
|
-
print(quilombos)
|
File without changes
|
File without changes
|
File without changes
|