tunned-geobr 0.2.10__py3-none-any.whl → 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,13 +1,13 @@
1
- tunned_geobr-0.2.10.dist-info/METADATA,sha256=S09EYfuUDkadt5dMe0WbbxWP8D_BOm49QafErbSG3mc,5019
2
- tunned_geobr-0.2.10.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.2.10.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.2.10.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=6PWQAn9Swox7mMNRrwD42BX04qfR11_Vm1599EOQnP0,7281
1
+ tunned_geobr-1.0.1.dist-info/METADATA,sha256=wE3K7FyuqHYaAkuYveEmGfbR7fP8x726haqssiyCs4M,5018
2
+ tunned_geobr-1.0.1.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-1.0.1.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-1.0.1.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=rxOGWhc2o3F8qDORi34uF4sCGouQFK74bKpuuAXWlHY,7393
6
6
  tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
7
- tunned_geobr/list_geobr.py,sha256=bJJ5Vk25jejfmXDRnjt_QYxrIeO7gOOU8pLDvIBwC5U,16860
7
+ tunned_geobr/list_geobr.py,sha256=6rsdtSZUvFrS-n5KXLOSQ34P1AK_yMFAj_MVZRvvZmQ,17278
8
8
  tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
9
  tunned_geobr/read_ama_anemometric_towers.py,sha256=M3qKBTBYdqHzTuWtRrBiLA88Ymt6g0cf7sakJd5mTRo,4686
10
- tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
10
+ tunned_geobr/read_amazon.py,sha256=HiwKnYebWe3nDMDRUqHpKJIO76bA4ERm4iJlCPhagQg,1286
11
11
  tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
12
  tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
13
  tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
@@ -62,13 +62,16 @@ tunned_geobr/read_health_region.py,sha256=zGkoQZ_mf-snBEy00RUd3GF_pJu6PIoqvcbS_i
62
62
  tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
63
63
  tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=tyCD-VyYW1paJLoN8woO_sR4aFC8NIIRj_As0jrQSLE,4770
64
64
  tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=GWnSzsnMJSDjSpXFHyQbYL3d8xTwqh9ilxxi2r61idE,4814
65
- tunned_geobr/read_immediate_region.py,sha256=K-i5UBdxB1ZQw2R8fGMp1GqX5sXJwUkjVHqC84QtJtc,2555
66
- tunned_geobr/read_indigenous_land.py,sha256=ZyHcJ93cDNjUcc5CyBKiWHjlrt9owDv993IFKUlEPZ4,1460
67
- tunned_geobr/read_intermediate_region.py,sha256=PipeQFGVpZf6a_J7OrttPOnE7o6E5IJHJXLKvzYjoEY,2186
65
+ tunned_geobr/read_ibama_embargoes.py,sha256=hzbWiifgoCgq7TP4X3H4TWFFkLnE5Y9969KUd3aJsek,3251
66
+ tunned_geobr/read_icmbio_embargoes.py,sha256=Xn3oxt4yK8wE6sAKWsU91EyU2h0yLysIbtQk2VUuJ5A,3107
67
+ tunned_geobr/read_icmbio_infractions.py,sha256=Heolqhuxc3sUby4RhxJZ88djIBWRcXkFbubhXgkpYos,3182
68
+ tunned_geobr/read_immediate_region.py,sha256=rxPfNYTvYM1n09KNJ1QkdLdXukvO6gZ4wU9IZP-Mum0,2465
69
+ tunned_geobr/read_indigenous_land.py,sha256=0QmsWQjq1RNS6GqF_vfPzTibBv09Qrxw-Mgg0GE9yzA,2839
70
+ tunned_geobr/read_intermediate_region.py,sha256=b-Txa79C5MIcQDUwudAorah4QFARM277-bhAgcQ7jOo,2513
68
71
  tunned_geobr/read_isolated_systems.py,sha256=k0dxfUNubsJXV3_5ph1CWghR_Mfpn4oe_4zLkg7c5Cs,5343
69
- tunned_geobr/read_meso_region.py,sha256=UacQUroAZWcfhq2Piby-FDVTDmEVeLEQCvcLcc1w7rY,2602
72
+ tunned_geobr/read_meso_region.py,sha256=siwlqiZ9Q8XMmrEf4YjS6TJiQW0fsTq0udi2oByIiL0,2396
70
73
  tunned_geobr/read_metro_area.py,sha256=e18jyXrRMwQTv_ZO2hGoyC8qZsV6NlYfWXsu6DusRQM,1498
71
- tunned_geobr/read_micro_region.py,sha256=61KbztQWYw-QPFLJOoxNWX32bHBKLb2pnunzSFo3S_0,2510
74
+ tunned_geobr/read_micro_region.py,sha256=hs1NhVfb_LazLLp9EmLxQCDscPlkqqG-OjTv2fIGoFw,2412
72
75
  tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
73
76
  tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
74
77
  tunned_geobr/read_municipality.py,sha256=dZM1BVi3U9ZvasLADV-ciKVr9R4o92dRowpEVdVkvYw,5651
@@ -76,8 +79,7 @@ tunned_geobr/read_municipality_direct.py,sha256=VrZR_5__DsV5IbbX-sr56WT-P4M_tVdn
76
79
  tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
77
80
  tunned_geobr/read_natural_gas_delivery_points.py,sha256=nJJmqbJJ5Xx2P2wVL9yXdGLuPI0O8pCCL9zDkHQtZOs,5387
78
81
  tunned_geobr/read_natural_gas_processing_hub.py,sha256=qI5o-4TmPfi3h0gYNWjeMR5GsRAq-fsXoB62llqt9RA,5367
79
- tunned_geobr/read_neighborhood.py,sha256=2QWMz-TVkTJmbVQ_aKNyh2NNJ6KIJqnrPL1CrB9Oqdw,1085
80
- tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
82
+ tunned_geobr/read_neighborhood.py,sha256=xM2Ztl2uvaQ4fLmO9lCboa-lqGoUNlo_OM_ktVqlOn0,3946
81
83
  tunned_geobr/read_og_basement.py,sha256=nwUOn-BMYC3mvvP9uTBLYly00drIw6CwU5lHJeOdi-Y,4617
82
84
  tunned_geobr/read_og_effective_geographic_basin.py,sha256=Qvy--_A8oGrL-Os3mfofr14MA0qWv3s5FFdtIabBJ8E,5457
83
85
  tunned_geobr/read_og_ipa_direct_evidence.py,sha256=N5nDr7AinKFqhcfgnvygVjzpdN2D1TP5VSILS8gkIgU,4738
@@ -114,7 +116,7 @@ tunned_geobr/read_processing_facilities.py,sha256=8iCveDTk7MXm1bmb1pcknzen62HTGY
114
116
  tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
115
117
  tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
116
118
  tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
117
- tunned_geobr/read_region.py,sha256=kfwjoMj-klayqSty_mUNILIQA8RYgNuB86y_0raDApQ,956
119
+ tunned_geobr/read_region.py,sha256=X7IwsAVxwUl0apsExSuBr9kIK_7IUehPenLXAF-JFDA,2331
118
120
  tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
119
121
  tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
120
122
  tunned_geobr/read_sedimentary_basins.py,sha256=mpCde4-WRdAAuHF-AwrODd0GpxRhzJOuP60U6Zbl9pE,4583
@@ -135,4 +137,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=Z-dpTPVgRHVndTeSFxx8uXn7ufMg2jm0Dlz
135
137
  tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
136
138
  tunned_geobr/read_weighting_area.py,sha256=m2X5Ua3jRqLlkqCQbIzR2jmo58pzqkyR3UYcGtgy20E,2325
137
139
  tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
138
- tunned_geobr-0.2.10.dist-info/RECORD,,
140
+ tunned_geobr-1.0.1.dist-info/RECORD,,
@@ -1,99 +0,0 @@
1
- import geopandas as gpd
2
- import tempfile
3
- import os
4
- import requests
5
- import subprocess
6
- from io import BytesIO
7
-
8
- def read_neighborhoods_2022(simplified=False):
9
- """Download Brazilian Neighborhoods data from IBGE (2022 Census).
10
-
11
- This function downloads and processes the Brazilian Neighborhoods data
12
- from IBGE (Brazilian Institute of Geography and Statistics) for the 2022 Census.
13
- Original source: IBGE - Instituto Brasileiro de Geografia e Estatística
14
-
15
- Parameters
16
- ----------
17
- simplified : boolean, by default False
18
- If True, returns a simplified version of the dataset with fewer columns
19
-
20
- Returns
21
- -------
22
- gpd.GeoDataFrame
23
- Geodataframe with Brazilian neighborhoods data
24
-
25
- Example
26
- -------
27
- >>> from tunned_geobr import read_neighborhoods_2022
28
-
29
- # Read neighborhoods data
30
- >>> neighborhoods = read_neighborhoods_2022()
31
- """
32
-
33
- url = "https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_de_setores_censitarios__divisoes_intramunicipais/censo_2022/bairros/shp/BR/BR_bairros_CD2022.zip"
34
-
35
- try:
36
- # Create a temporary directory
37
- with tempfile.TemporaryDirectory() as temp_dir:
38
- # Download the zip file to the temporary directory
39
- zip_file_path = os.path.join(temp_dir, "neighborhoods.zip")
40
-
41
- # Download the file
42
- response = requests.get(url)
43
- if response.status_code != 200:
44
- raise Exception("Failed to download neighborhoods data from IBGE")
45
-
46
- # Save the content to a file
47
- with open(zip_file_path, 'wb') as f:
48
- f.write(response.content)
49
-
50
- # Use unzip command line tool to extract the file (handles more compression methods)
51
- try:
52
- subprocess.run(['unzip', '-o', zip_file_path, '-d', temp_dir],
53
- check=True,
54
- stdout=subprocess.PIPE,
55
- stderr=subprocess.PIPE)
56
- except subprocess.CalledProcessError as e:
57
- raise Exception(f"Failed to extract zip file: {e.stderr.decode()}")
58
-
59
- # Find the shapefile
60
- shp_files = []
61
- for root, dirs, files in os.walk(temp_dir):
62
- shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
63
-
64
- if not shp_files:
65
- raise Exception("No shapefile found in the downloaded data")
66
-
67
- # Read the shapefile
68
- gdf = gpd.read_file(shp_files[0])
69
-
70
- # Convert to SIRGAS 2000 (EPSG:4674) if not already
71
- if gdf.crs is None or gdf.crs.to_epsg() != 4674:
72
- gdf = gdf.to_crs(4674)
73
-
74
- if simplified:
75
- # Keep only the most relevant columns
76
- # Note: Column names may need adjustment based on actual data
77
- columns_to_keep = [
78
- 'geometry',
79
- 'CD_BAIRRO', # Neighborhood Code
80
- 'NM_BAIRRO', # Neighborhood Name
81
- 'CD_MUN', # Municipality Code
82
- 'NM_MUN', # Municipality Name
83
- 'CD_UF', # State Code
84
- 'NM_UF', # State Name
85
- 'SIGLA_UF', # State Abbreviation
86
- 'AREA_KM2' # Area in square kilometers
87
- ]
88
-
89
- # Filter columns that actually exist in the dataset
90
- existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
91
- gdf = gdf[existing_columns]
92
-
93
- except Exception as e:
94
- raise Exception(f"Error downloading neighborhoods data: {str(e)}")
95
-
96
- return gdf
97
-
98
- if __name__ == '__main__':
99
- read_neighborhoods_2022()