tunned-geobr 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/list_geobr.py +112 -34
- {tunned_geobr-0.2.0.dist-info → tunned_geobr-0.2.2.dist-info}/METADATA +2 -1
- {tunned_geobr-0.2.0.dist-info → tunned_geobr-0.2.2.dist-info}/RECORD +6 -6
- {tunned_geobr-0.2.0.dist-info → tunned_geobr-0.2.2.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.0.dist-info → tunned_geobr-0.2.2.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.0.dist-info → tunned_geobr-0.2.2.dist-info}/licenses/LICENSE.txt +0 -0
tunned_geobr/list_geobr.py
CHANGED
@@ -1,39 +1,117 @@
|
|
1
|
-
from requests import get
|
2
1
|
import pandas as pd
|
3
|
-
from
|
4
|
-
from urllib.error import HTTPError
|
5
|
-
import re
|
2
|
+
from tabulate import tabulate
|
6
3
|
|
7
4
|
def list_geobr():
|
8
|
-
"""
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
5
|
+
"""Lists all available datasets in the tunned_geobr package.
|
6
|
+
|
7
|
+
This function displays a comprehensive table of all geographic datasets
|
8
|
+
available in the tunned_geobr package, including information about the
|
9
|
+
geographies, years, and sources.
|
10
|
+
|
11
|
+
Returns
|
12
|
+
-------
|
13
|
+
pandas.DataFrame
|
14
|
+
A DataFrame containing information about all available datasets
|
15
|
+
|
16
|
+
Example
|
17
|
+
-------
|
18
|
+
>>> from tunned_geobr import list_geobr
|
19
|
+
>>> datasets = list_geobr()
|
18
20
|
"""
|
21
|
+
|
22
|
+
# Create a comprehensive list of all datasets
|
23
|
+
datasets = [
|
24
|
+
# Original geobr datasets
|
25
|
+
{"Function": "read_country", "Geography": "Country", "Years": "All", "Source": "IBGE"},
|
26
|
+
{"Function": "read_region", "Geography": "Region", "Years": "All", "Source": "IBGE"},
|
27
|
+
{"Function": "read_state", "Geography": "State", "Years": "All", "Source": "IBGE"},
|
28
|
+
{"Function": "read_state_direct", "Geography": "State (direct)", "Years": "All", "Source": "IBGE"},
|
29
|
+
{"Function": "read_meso_region", "Geography": "Meso region", "Years": "1991, 2000, 2010, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020", "Source": "IBGE"},
|
30
|
+
{"Function": "read_micro_region", "Geography": "Micro region", "Years": "1991, 2000, 2010, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020", "Source": "IBGE"},
|
31
|
+
{"Function": "read_immediate_region", "Geography": "Immediate region", "Years": "2017, 2019, 2020", "Source": "IBGE"},
|
32
|
+
{"Function": "read_intermediate_region", "Geography": "Intermediate region", "Years": "2017, 2019, 2020", "Source": "IBGE"},
|
33
|
+
{"Function": "read_municipality", "Geography": "Municipality", "Years": "All", "Source": "IBGE"},
|
34
|
+
{"Function": "read_municipality_direct", "Geography": "Municipality (direct)", "Years": "All", "Source": "IBGE"},
|
35
|
+
{"Function": "read_weighting_area", "Geography": "Census weighting area", "Years": "2010", "Source": "IBGE"},
|
36
|
+
{"Function": "read_census_tract", "Geography": "Census tract", "Years": "2000, 2010", "Source": "IBGE"},
|
37
|
+
{"Function": "read_census_tract_2022", "Geography": "Census tract 2022", "Years": "2022", "Source": "IBGE"},
|
38
|
+
{"Function": "read_statistical_grid", "Geography": "Statistical grid", "Years": "2010", "Source": "IBGE"},
|
39
|
+
{"Function": "read_comparable_areas", "Geography": "Comparable areas", "Years": "1872, 1900, 1911, 1920, 1933, 1940, 1950, 1960, 1970, 1980, 1991, 2000, 2010", "Source": "IBGE"},
|
40
|
+
{"Function": "read_health_region", "Geography": "Health region", "Years": "1991, 1994, 1997, 2001, 2005, 2013", "Source": "DataSUS"},
|
41
|
+
{"Function": "read_metro_area", "Geography": "Metropolitan area", "Years": "All", "Source": "IBGE"},
|
42
|
+
{"Function": "read_urban_area", "Geography": "Urban area", "Years": "2005, 2015", "Source": "IBGE"},
|
43
|
+
{"Function": "read_urban_concentrations", "Geography": "Urban concentrations", "Years": "All", "Source": "IBGE"},
|
44
|
+
{"Function": "read_amazon", "Geography": "Amazon", "Years": "All", "Source": "IBGE, MMA, and others"},
|
45
|
+
{"Function": "read_biomes", "Geography": "Biomes", "Years": "2004, 2019", "Source": "IBGE"},
|
46
|
+
{"Function": "read_conservation_units", "Geography": "Conservation units", "Years": "All", "Source": "MMA"},
|
47
|
+
{"Function": "read_disaster_risk_area", "Geography": "Disaster risk areas", "Years": "2010", "Source": "CEMADEN and IBGE"},
|
48
|
+
{"Function": "read_indigenous_land", "Geography": "Indigenous lands", "Years": "All", "Source": "FUNAI"},
|
49
|
+
{"Function": "read_semiarid", "Geography": "Semi-arid region", "Years": "All", "Source": "IBGE and others"},
|
50
|
+
{"Function": "read_health_facilities", "Geography": "Health facilities", "Years": "All", "Source": "DataSUS"},
|
51
|
+
{"Function": "read_neighborhood", "Geography": "Neighborhood", "Years": "2010", "Source": "IBGE"},
|
52
|
+
{"Function": "read_neighborhoods_2022", "Geography": "Neighborhoods 2022", "Years": "2022", "Source": "IBGE"},
|
53
|
+
{"Function": "read_schools", "Geography": "Schools", "Years": "All", "Source": "INEP"},
|
54
|
+
{"Function": "read_ports", "Geography": "Ports", "Years": "All", "Source": "Ministério da Infraestrutura"},
|
55
|
+
{"Function": "read_municipal_seat", "Geography": "Municipal seats", "Years": "All", "Source": "IBGE"},
|
56
|
+
{"Function": "read_pop_arrangements", "Geography": "Population arrangements", "Years": "2015", "Source": "IBGE"},
|
57
|
+
{"Function": "read_rppn", "Geography": "Private Natural Heritage Reserves", "Years": "All", "Source": "ICMBio"},
|
58
|
+
{"Function": "read_settlements", "Geography": "Rural settlements", "Years": "All", "Source": "INCRA"},
|
59
|
+
|
60
|
+
# Additional datasets in tunned_geobr
|
61
|
+
{"Function": "read_mining_processes", "Geography": "Mining processes", "Years": "All", "Source": "ANM"},
|
62
|
+
{"Function": "read_ebas", "Geography": "Endemic Bird Areas", "Years": "All", "Source": "Global Forest Watch"},
|
63
|
+
{"Function": "read_vegetation", "Geography": "Brazilian Vegetation", "Years": "All", "Source": "IBGE"},
|
64
|
+
{"Function": "read_transmission_lines_ons", "Geography": "Transmission Lines", "Years": "All", "Source": "ONS"},
|
65
|
+
{"Function": "read_water_bodies_ana", "Geography": "Water Bodies", "Years": "All", "Source": "ANA"},
|
66
|
+
{"Function": "read_pan_strategic_areas", "Geography": "PAN Strategic Areas", "Years": "All", "Source": "ICMBio"},
|
67
|
+
{"Function": "read_geographic_regions", "Geography": "Geographic Regions", "Years": "All", "Source": "IBGE"},
|
68
|
+
{"Function": "read_biosphere_reserves", "Geography": "Biosphere Reserves", "Years": "All", "Source": "MMA"},
|
69
|
+
{"Function": "read_baze_sites", "Geography": "BAZE Sites", "Years": "2018", "Source": "MMA"},
|
70
|
+
|
71
|
+
# Environmental and conservation datasets
|
72
|
+
{"Function": "read_amazon_ibas", "Geography": "Amazon IBAs", "Years": "All", "Source": "SAVE Brasil"},
|
73
|
+
{"Function": "read_atlantic_forest_ibas", "Geography": "Atlantic Forest IBAs", "Years": "All", "Source": "SAVE Brasil"},
|
74
|
+
{"Function": "read_atlantic_forest_law_limits", "Geography": "Atlantic Forest Law Limits", "Years": "All", "Source": "MMA/IBGE"},
|
75
|
+
{"Function": "read_apcb_amazon", "Geography": "APCB Amazon", "Years": "All", "Source": "MMA"},
|
76
|
+
{"Function": "read_apcb_caatinga", "Geography": "APCB Caatinga", "Years": "All", "Source": "MMA"},
|
77
|
+
{"Function": "read_apcb_cerrado_pantanal", "Geography": "APCB Cerrado/Pantanal", "Years": "All", "Source": "MMA"},
|
78
|
+
{"Function": "read_apcb_mata_atlantica", "Geography": "APCB Atlantic Forest", "Years": "All", "Source": "MMA"},
|
79
|
+
{"Function": "read_apcb_pampa", "Geography": "APCB Pampa", "Years": "All", "Source": "MMA"},
|
80
|
+
{"Function": "read_apcb_zcm", "Geography": "APCB Coastal/Marine", "Years": "All", "Source": "MMA"},
|
81
|
+
|
82
|
+
# Geological and natural features datasets
|
83
|
+
{"Function": "read_natural_caves", "Geography": "Natural Caves", "Years": "All", "Source": "ICMBio"},
|
84
|
+
{"Function": "read_cave_potential", "Geography": "Cave Potential", "Years": "All", "Source": "ICMBio"},
|
85
|
+
{"Function": "read_fossil_occurrences", "Geography": "Fossil Occurrences", "Years": "All", "Source": "SGB"},
|
86
|
+
{"Function": "read_archaeological_sites", "Geography": "Archaeological Sites", "Years": "All", "Source": "IPHAN"},
|
87
|
+
{"Function": "read_geology", "Geography": "Geology", "Years": "All", "Source": "CPRM"},
|
88
|
+
{"Function": "read_geomorphology", "Geography": "Geomorphology", "Years": "All", "Source": "IBGE"},
|
89
|
+
{"Function": "read_pedology", "Geography": "Pedology", "Years": "All", "Source": "IBGE"},
|
90
|
+
{"Function": "read_climate_aggressiveness", "Geography": "Climate Aggressiveness", "Years": "All", "Source": "IBGE"},
|
91
|
+
|
92
|
+
# Transportation and infrastructure datasets
|
93
|
+
{"Function": "read_public_aerodromes", "Geography": "Public Aerodromes", "Years": "All", "Source": "MapBiomas"},
|
94
|
+
{"Function": "read_private_aerodromes", "Geography": "Private Aerodromes", "Years": "All", "Source": "MapBiomas"},
|
95
|
+
{"Function": "read_state_highways", "Geography": "State Highways", "Years": "All", "Source": "MapBiomas"},
|
96
|
+
{"Function": "read_federal_highways", "Geography": "Federal Highways", "Years": "All", "Source": "MapBiomas"},
|
97
|
+
{"Function": "read_railways", "Geography": "Railways", "Years": "All", "Source": "MapBiomas"},
|
98
|
+
{"Function": "read_waterways", "Geography": "Waterways", "Years": "All", "Source": "SNIRH"},
|
99
|
+
{"Function": "read_heliports", "Geography": "Heliports", "Years": "All", "Source": "MapBiomas"},
|
100
|
+
|
101
|
+
# Land tenure and property datasets
|
102
|
+
{"Function": "read_snci_properties", "Geography": "SNCI Properties", "Years": "All", "Source": "INCRA"},
|
103
|
+
{"Function": "read_sigef_properties", "Geography": "SIGEF Properties", "Years": "All", "Source": "INCRA"},
|
104
|
+
{"Function": "read_quilombola_areas", "Geography": "Quilombola Areas", "Years": "All", "Source": "INCRA"}
|
105
|
+
]
|
106
|
+
|
107
|
+
# Create DataFrame
|
108
|
+
df = pd.DataFrame(datasets)
|
109
|
+
|
110
|
+
# Display the table
|
111
|
+
print(tabulate(df, headers='keys', tablefmt='psql', showindex=False))
|
112
|
+
|
113
|
+
# Return the DataFrame for further use
|
114
|
+
return df
|
19
115
|
|
20
|
-
|
21
|
-
|
22
|
-
find_emoji = html_data.index("👉")
|
23
|
-
html_data = html_data[find_emoji:]
|
24
|
-
escaped_data = html_data.replace("\\u003c", "<").replace("\\u003e", ">")
|
25
|
-
tables = re.findall("<table>(.+?)</table>", escaped_data)
|
26
|
-
available_datasets = "<table>" + tables[0].replace("\\n", "") + "</table>"
|
27
|
-
df = pd.DataFrame(pd.read_html(StringIO(available_datasets))[0])
|
28
|
-
|
29
|
-
except HTTPError:
|
30
|
-
print(
|
31
|
-
"Geobr url functions list is broken"
|
32
|
-
'Please report an issue at "https://github.com/ipeaGIT/geobr/issues"'
|
33
|
-
)
|
34
|
-
|
35
|
-
for i in range(len(df)):
|
36
|
-
for each in df.columns:
|
37
|
-
print(f"{each}: {df.loc[i, each]}")
|
38
|
-
|
39
|
-
print("------------------------------")
|
116
|
+
if __name__ == "__main__":
|
117
|
+
list_geobr()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tunned-geobr
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.2
|
4
4
|
Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
|
5
5
|
Author: Anderson Stolfi
|
6
6
|
License: MIT
|
@@ -22,6 +22,7 @@ Requires-Dist: geobr<0.3.0,>=0.2.2
|
|
22
22
|
Requires-Dist: patool>=1.15.0
|
23
23
|
Requires-Dist: fiona>=1.10.1
|
24
24
|
Requires-Dist: gdown>=5.2.0
|
25
|
+
Requires-Dist: tabulate>=0.9.0
|
25
26
|
Description-Content-Type: text/markdown
|
26
27
|
|
27
28
|
# geobr: Download Official Spatial Data Sets of Brazil
|
@@ -1,11 +1,11 @@
|
|
1
|
-
tunned_geobr-0.2.
|
2
|
-
tunned_geobr-0.2.
|
3
|
-
tunned_geobr-0.2.
|
4
|
-
tunned_geobr-0.2.
|
1
|
+
tunned_geobr-0.2.2.dist-info/METADATA,sha256=e_X-ZIPmpkLULpa9wkiHpEahbflH1rKys-b8rEheoZs,5018
|
2
|
+
tunned_geobr-0.2.2.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.2.2.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.2.2.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
5
|
tunned_geobr/__init__.py,sha256=uxb92oXuVe5RRdfsRksj4rw0p0s0_H5k84t241qfu1g,3597
|
6
6
|
tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
|
7
7
|
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
8
|
-
tunned_geobr/list_geobr.py,sha256=
|
8
|
+
tunned_geobr/list_geobr.py,sha256=D0fKjZQGkF4olk3A7FOi5sic_qAMj_r5kkwZEpvsB4A,9382
|
9
9
|
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
10
10
|
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
11
|
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
@@ -79,4 +79,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJa
|
|
79
79
|
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
80
80
|
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
81
81
|
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
82
|
-
tunned_geobr-0.2.
|
82
|
+
tunned_geobr-0.2.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|