tunned-geobr 0.1.2__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. tunned_geobr/__init__.py +34 -2
  2. tunned_geobr/list_geobr.py +112 -34
  3. tunned_geobr/read_apcb_amazon.py +78 -0
  4. tunned_geobr/read_apcb_caatinga.py +78 -0
  5. tunned_geobr/read_apcb_cerrado_pantanal.py +78 -0
  6. tunned_geobr/read_apcb_mata_atlantica.py +78 -0
  7. tunned_geobr/read_apcb_pampa.py +78 -0
  8. tunned_geobr/read_apcb_zcm.py +78 -0
  9. tunned_geobr/read_archaeological_sites.py +94 -0
  10. tunned_geobr/read_atlantic_forest_law_limits.py +74 -0
  11. tunned_geobr/read_baze_sites.py +155 -0
  12. tunned_geobr/read_biosphere_reserves.py +85 -0
  13. tunned_geobr/read_cave_potential.py +79 -0
  14. tunned_geobr/read_census_tract_2022.py +101 -0
  15. tunned_geobr/read_ebas.py +80 -0
  16. tunned_geobr/read_federal_highways.py +79 -0
  17. tunned_geobr/read_fossil_occurrences.py +94 -0
  18. tunned_geobr/read_geographic_regions.py +88 -0
  19. tunned_geobr/read_heliports.py +81 -0
  20. tunned_geobr/read_municipality_direct.py +127 -0
  21. tunned_geobr/read_natural_caves.py +83 -0
  22. tunned_geobr/read_neighborhoods_2022.py +99 -0
  23. tunned_geobr/read_pan_strategic_areas.py +89 -0
  24. tunned_geobr/read_ports.py +80 -0
  25. tunned_geobr/read_private_aerodromes.py +81 -0
  26. tunned_geobr/read_public_aerodromes.py +81 -0
  27. tunned_geobr/read_quilombola_areas.py +85 -0
  28. tunned_geobr/read_quilombola_areas_temp.py +103 -0
  29. tunned_geobr/read_railways.py +80 -0
  30. tunned_geobr/read_rppn.py +107 -0
  31. tunned_geobr/read_sigef_properties.py +83 -0
  32. tunned_geobr/read_snci_properties.py +83 -0
  33. tunned_geobr/read_state_direct.py +103 -0
  34. tunned_geobr/read_state_highways.py +79 -0
  35. tunned_geobr/read_transmission_lines_ons.py +87 -0
  36. tunned_geobr/read_vegetation.py +84 -0
  37. tunned_geobr/read_water_bodies_ana.py +87 -0
  38. tunned_geobr/read_waterways.py +80 -0
  39. {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/METADATA +35 -3
  40. tunned_geobr-0.2.1.dist-info/RECORD +82 -0
  41. tunned_geobr-0.1.2.dist-info/RECORD +0 -46
  42. {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/WHEEL +0 -0
  43. {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/entry_points.txt +0 -0
  44. {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,84 @@
1
+ import geopandas as gpd
2
+ import tempfile
3
+ import os
4
+ import requests
5
+ from zipfile import ZipFile
6
+ from io import BytesIO
7
+
8
+ def read_vegetation(simplified=False):
9
+ """Download Brazilian Vegetation data from IBGE.
10
+
11
+ This function downloads and processes the Brazilian Vegetation data at 1:250,000 scale
12
+ from IBGE (Brazilian Institute of Geography and Statistics).
13
+ Original source: IBGE - Instituto Brasileiro de Geografia e Estatística
14
+
15
+ Parameters
16
+ ----------
17
+ simplified : boolean, by default False
18
+ If True, returns a simplified version of the dataset with fewer columns
19
+
20
+ Returns
21
+ -------
22
+ gpd.GeoDataFrame
23
+ Geodataframe with Brazilian vegetation data
24
+
25
+ Example
26
+ -------
27
+ >>> from tunned_geobr import read_vegetation
28
+
29
+ # Read vegetation data
30
+ >>> vegetation = read_vegetation()
31
+ """
32
+
33
+ url = "https://geoftp.ibge.gov.br/informacoes_ambientais/vegetacao/vetores/escala_250_mil/versao_2023/vege_area.zip"
34
+
35
+ try:
36
+ # Download the zip file
37
+ response = requests.get(url)
38
+ if response.status_code != 200:
39
+ raise Exception("Failed to download vegetation data from IBGE")
40
+
41
+ # Create a temporary directory
42
+ with tempfile.TemporaryDirectory() as temp_dir:
43
+ # Extract the zip file
44
+ with ZipFile(BytesIO(response.content)) as zip_ref:
45
+ zip_ref.extractall(temp_dir)
46
+
47
+ # Find the shapefile
48
+ shp_files = []
49
+ for root, dirs, files in os.walk(temp_dir):
50
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
51
+
52
+ if not shp_files:
53
+ raise Exception("No shapefile found in the downloaded data")
54
+
55
+ # Read the shapefile
56
+ gdf = gpd.read_file(shp_files[0])
57
+
58
+ # Convert to SIRGAS 2000 (EPSG:4674) if not already
59
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
60
+ gdf = gdf.to_crs(4674)
61
+
62
+ if simplified:
63
+ # Keep only the most relevant columns
64
+ # Note: Column names may need adjustment based on actual data
65
+ columns_to_keep = [
66
+ 'geometry',
67
+ 'NOME', # Vegetation name
68
+ 'TIPO', # Vegetation type
69
+ 'REGIAO', # Region
70
+ 'BIOMA', # Biome
71
+ 'AREA_KM2' # Area in square kilometers
72
+ ]
73
+
74
+ # Filter columns that actually exist in the dataset
75
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
76
+ gdf = gdf[existing_columns]
77
+
78
+ except Exception as e:
79
+ raise Exception(f"Error downloading vegetation data: {str(e)}")
80
+
81
+ return gdf
82
+
83
+ if __name__ == '__main__':
84
+ read_vegetation()
@@ -0,0 +1,87 @@
1
+ import geopandas as gpd
2
+ import tempfile
3
+ import os
4
+ import requests
5
+ from zipfile import ZipFile
6
+ from io import BytesIO
7
+
8
+ def read_water_bodies_ana(simplified=False):
9
+ """Download Brazilian Water Bodies data from ANA.
10
+
11
+ This function downloads and processes the Brazilian Water Bodies data
12
+ from ANA (National Water Agency). The data includes lakes, reservoirs, and other water bodies.
13
+ Original source: ANA - Agência Nacional de Águas e Saneamento Básico
14
+
15
+ Parameters
16
+ ----------
17
+ simplified : boolean, by default False
18
+ If True, returns a simplified version of the dataset with fewer columns
19
+
20
+ Returns
21
+ -------
22
+ gpd.GeoDataFrame
23
+ Geodataframe with Brazilian water bodies data
24
+
25
+ Example
26
+ -------
27
+ >>> from tunned_geobr import read_water_bodies_ana
28
+
29
+ # Read water bodies data
30
+ >>> water_bodies = read_water_bodies_ana()
31
+ """
32
+
33
+ url = "https://metadados.snirh.gov.br/files/7d054e5a-8cc9-403c-9f1a-085fd933610c/geoft_bho_massa_dagua_v2019.zip"
34
+
35
+ try:
36
+ # Download the zip file
37
+ response = requests.get(url)
38
+ if response.status_code != 200:
39
+ raise Exception("Failed to download water bodies data from ANA")
40
+
41
+ # Create a temporary directory
42
+ with tempfile.TemporaryDirectory() as temp_dir:
43
+ # Extract the zip file
44
+ with ZipFile(BytesIO(response.content)) as zip_ref:
45
+ zip_ref.extractall(temp_dir)
46
+
47
+ # Find the shapefile
48
+ shp_files = []
49
+ for root, dirs, files in os.walk(temp_dir):
50
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
51
+
52
+ if not shp_files:
53
+ raise Exception("No shapefile found in the downloaded data")
54
+
55
+ # Read the shapefile
56
+ gdf = gpd.read_file(shp_files[0])
57
+
58
+ # Convert to SIRGAS 2000 (EPSG:4674) if not already
59
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
60
+ gdf = gdf.to_crs(4674)
61
+
62
+ if simplified:
63
+ # Keep only the most relevant columns
64
+ # Note: Column names may need adjustment based on actual data
65
+ columns_to_keep = [
66
+ 'geometry',
67
+ 'nome', # Water body name
68
+ 'tipo', # Type of water body
69
+ 'area_km2', # Area in square kilometers
70
+ 'cocursodag', # Water course code
71
+ 'cobacia', # Basin code
72
+ 'nuareacont', # Contribution area
73
+ 'nuvolumehm', # Volume in cubic hectometers
74
+ 'dsoperacao' # Operation status
75
+ ]
76
+
77
+ # Filter columns that actually exist in the dataset
78
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
79
+ gdf = gdf[existing_columns]
80
+
81
+ except Exception as e:
82
+ raise Exception(f"Error downloading water bodies data: {str(e)}")
83
+
84
+ return gdf
85
+
86
+ if __name__ == '__main__':
87
+ read_water_bodies_ana()
@@ -0,0 +1,80 @@
1
+ import geopandas as gpd
2
+ import tempfile
3
+ import os
4
+ import requests
5
+ from zipfile import ZipFile
6
+ from io import BytesIO
7
+
8
+ def read_waterways(simplified=False):
9
+ """Download Waterways data from SNIRH.
10
+
11
+ This function downloads and processes waterways data from SNIRH (National Water Resources Information System).
12
+ The data includes information about navigable waterways across Brazil.
13
+ Original source: SNIRH (Sistema Nacional de Informações sobre Recursos Hídricos)
14
+
15
+ Parameters
16
+ ----------
17
+ simplified : boolean, by default False
18
+ If True, returns a simplified version of the dataset with fewer columns
19
+
20
+ Returns
21
+ -------
22
+ gpd.GeoDataFrame
23
+ Geodataframe with waterways data
24
+
25
+ Example
26
+ -------
27
+ >>> from tunned_geobr import read_waterways
28
+
29
+ # Read waterways data
30
+ >>> waterways = read_waterways()
31
+ """
32
+
33
+ url = "https://metadados.snirh.gov.br/geonetwork/srv/api/records/48e26e99-db01-45dc-a270-79f27680167b/attachments/GEOFT_TRECHO_HIDROVIARIO.zip"
34
+
35
+ try:
36
+ # Download the zip file
37
+ response = requests.get(url)
38
+ if response.status_code != 200:
39
+ raise Exception("Failed to download data from SNIRH")
40
+
41
+ # Create a temporary directory
42
+ with tempfile.TemporaryDirectory() as temp_dir:
43
+ # Extract the zip file
44
+ with ZipFile(BytesIO(response.content)) as zip_ref:
45
+ zip_ref.extractall(temp_dir)
46
+
47
+ # Find the shapefile
48
+ shp_files = []
49
+ for root, dirs, files in os.walk(temp_dir):
50
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
51
+
52
+ if not shp_files:
53
+ raise Exception("No shapefile found in the downloaded data")
54
+
55
+ # Read the shapefile
56
+ gdf = gpd.read_file(shp_files[0])
57
+ gdf = gdf.to_crs(4674) # Convert to SIRGAS 2000
58
+
59
+ if simplified:
60
+ # Keep only the most relevant columns
61
+ columns_to_keep = [
62
+ 'geometry',
63
+ 'nome', # Waterway name
64
+ 'hidrovia', # Waterway system
65
+ 'rio', # River name
66
+ 'situacao', # Status
67
+ 'extensao_km', # Length in km
68
+ 'administra', # Administration
69
+ 'regime', # Water regime
70
+ 'classifica' # Classification
71
+ ]
72
+
73
+ # Filter columns that actually exist in the dataset
74
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
75
+ gdf = gdf[existing_columns]
76
+
77
+ except Exception as e:
78
+ raise Exception(f"Error downloading waterways data: {str(e)}")
79
+
80
+ return gdf
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.1.2
3
+ Version: 0.2.1
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -20,6 +20,8 @@ Requires-Dist: lxml<6.0.0,>=5.1.0
20
20
  Requires-Dist: html5lib==1.1
21
21
  Requires-Dist: geobr<0.3.0,>=0.2.2
22
22
  Requires-Dist: patool>=1.15.0
23
+ Requires-Dist: fiona>=1.10.1
24
+ Requires-Dist: gdown>=5.2.0
23
25
  Description-Content-Type: text/markdown
24
26
 
25
27
  # geobr: Download Official Spatial Data Sets of Brazil
@@ -59,8 +61,40 @@ It adds:
59
61
 
60
62
  ! Be aware that if the function that you are adding is more complicated than the template. So, always double check !
61
63
 
64
+ ## System Dependencies
62
65
 
66
+ Some functions in geobr require additional system tools to be installed:
63
67
 
68
+ ### For RAR file extraction (`read_baze_sites`)
69
+
70
+ This function requires one of the following tools to be installed:
71
+
72
+ - **unrar**:
73
+ - macOS: `brew install unrar`
74
+ - Ubuntu/Debian: `sudo apt-get install unrar`
75
+ - Windows: Install WinRAR
76
+
77
+ - **unar**:
78
+ - macOS: `brew install unar`
79
+ - Ubuntu/Debian: `sudo apt-get install unar`
80
+ - Windows: Install The Unarchiver
81
+
82
+ - **7-Zip**:
83
+ - macOS: `brew install p7zip`
84
+ - Ubuntu/Debian: `sudo apt-get install p7zip-full`
85
+ - Windows: Install 7-Zip
86
+
87
+ ### For ZIP file extraction (IBGE files)
88
+
89
+ Some IBGE files use compression methods not supported by Python's built-in zipfile module. The following functions use the system's `unzip` command:
90
+
91
+ - `read_census_tract_2022`
92
+ - `read_neighborhoods_2022`
93
+
94
+ Make sure you have the `unzip` command available on your system:
95
+ - macOS: Typically pre-installed
96
+ - Ubuntu/Debian: `sudo apt-get install unzip`
97
+ - Windows: Install a tool like 7-Zip or add unzip via WSL
64
98
 
65
99
  ## Translation Status
66
100
 
@@ -94,10 +128,8 @@ It adds:
94
128
  | lookup_muni | Yes | No |
95
129
  | read_neighborhood | Yes | Yes |
96
130
 
97
-
98
131
  # Release new version
99
132
 
100
133
  ```
101
134
  poetry version [patch|minor|major]
102
135
  poetry publish --build
103
- ```
@@ -0,0 +1,82 @@
1
+ tunned_geobr-0.2.1.dist-info/METADATA,sha256=9q8qF3BSpGBDxdQFpb-Ki6YY2-hBrKqKEjZHqtFnNpg,4987
2
+ tunned_geobr-0.2.1.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.2.1.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.2.1.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=uxb92oXuVe5RRdfsRksj4rw0p0s0_H5k84t241qfu1g,3597
6
+ tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
7
+ tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
8
+ tunned_geobr/list_geobr.py,sha256=D0fKjZQGkF4olk3A7FOi5sic_qAMj_r5kkwZEpvsB4A,9382
9
+ tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
10
+ tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
+ tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
+ tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
13
+ tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
14
+ tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
15
+ tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
16
+ tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
17
+ tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
18
+ tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
19
+ tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
20
+ tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
21
+ tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
22
+ tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
23
+ tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
24
+ tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
25
+ tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
26
+ tunned_geobr/read_census_tract_2022.py,sha256=JtoJJtZ2rFiC5gtuZ7V_5teYFkuq1-GkV4GalSkhorQ,4066
27
+ tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
28
+ tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
29
+ tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
30
+ tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
31
+ tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
32
+ tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
33
+ tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
34
+ tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
35
+ tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
36
+ tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
37
+ tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
38
+ tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
39
+ tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
40
+ tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
41
+ tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
42
+ tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
43
+ tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
44
+ tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
45
+ tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
46
+ tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
47
+ tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
48
+ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
49
+ tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
50
+ tunned_geobr/read_municipality_direct.py,sha256=v2oRUyYlkOrJy_FTmxZMo3kug9rzAoescrkc293H1OY,5650
51
+ tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
52
+ tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
53
+ tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
54
+ tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
55
+ tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
56
+ tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
57
+ tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
58
+ tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
59
+ tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
60
+ tunned_geobr/read_quilombola_areas.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
61
+ tunned_geobr/read_quilombola_areas_temp.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
62
+ tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
63
+ tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
64
+ tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
65
+ tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
66
+ tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
67
+ tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
68
+ tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
69
+ tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
70
+ tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
71
+ tunned_geobr/read_state_direct.py,sha256=AA3a7XxO2NocRNBGd1FpYriTE2_l-f8sbxwOgRMf9Fw,3818
72
+ tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
73
+ tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
74
+ tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
75
+ tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
76
+ tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
77
+ tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
78
+ tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJapaqWYjck,3237
79
+ tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
80
+ tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
81
+ tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
82
+ tunned_geobr-0.2.1.dist-info/RECORD,,
@@ -1,46 +0,0 @@
1
- tunned_geobr-0.1.2.dist-info/METADATA,sha256=euxhNxJq9oDNAksmW_dzvqEguhjmWKisuQ2TZk9Fo6A,3896
2
- tunned_geobr-0.1.2.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.1.2.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.1.2.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
6
- tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
7
- tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
8
- tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
9
- tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
10
- tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
- tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
- tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
13
- tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
14
- tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
15
- tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
16
- tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
17
- tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
18
- tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
19
- tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
20
- tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
21
- tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
22
- tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
23
- tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
24
- tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
25
- tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
26
- tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
27
- tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
28
- tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
29
- tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
30
- tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
31
- tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
32
- tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
33
- tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
34
- tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
35
- tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
36
- tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
37
- tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
38
- tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
39
- tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
40
- tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
41
- tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
42
- tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
43
- tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
44
- tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
45
- tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
46
- tunned_geobr-0.1.2.dist-info/RECORD,,