tunned-geobr 0.1.2__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/__init__.py +34 -2
- tunned_geobr/list_geobr.py +112 -34
- tunned_geobr/read_apcb_amazon.py +78 -0
- tunned_geobr/read_apcb_caatinga.py +78 -0
- tunned_geobr/read_apcb_cerrado_pantanal.py +78 -0
- tunned_geobr/read_apcb_mata_atlantica.py +78 -0
- tunned_geobr/read_apcb_pampa.py +78 -0
- tunned_geobr/read_apcb_zcm.py +78 -0
- tunned_geobr/read_archaeological_sites.py +94 -0
- tunned_geobr/read_atlantic_forest_law_limits.py +74 -0
- tunned_geobr/read_baze_sites.py +155 -0
- tunned_geobr/read_biosphere_reserves.py +85 -0
- tunned_geobr/read_cave_potential.py +79 -0
- tunned_geobr/read_census_tract_2022.py +101 -0
- tunned_geobr/read_ebas.py +80 -0
- tunned_geobr/read_federal_highways.py +79 -0
- tunned_geobr/read_fossil_occurrences.py +94 -0
- tunned_geobr/read_geographic_regions.py +88 -0
- tunned_geobr/read_heliports.py +81 -0
- tunned_geobr/read_municipality_direct.py +127 -0
- tunned_geobr/read_natural_caves.py +83 -0
- tunned_geobr/read_neighborhoods_2022.py +99 -0
- tunned_geobr/read_pan_strategic_areas.py +89 -0
- tunned_geobr/read_ports.py +80 -0
- tunned_geobr/read_private_aerodromes.py +81 -0
- tunned_geobr/read_public_aerodromes.py +81 -0
- tunned_geobr/read_quilombola_areas.py +85 -0
- tunned_geobr/read_quilombola_areas_temp.py +103 -0
- tunned_geobr/read_railways.py +80 -0
- tunned_geobr/read_rppn.py +107 -0
- tunned_geobr/read_sigef_properties.py +83 -0
- tunned_geobr/read_snci_properties.py +83 -0
- tunned_geobr/read_state_direct.py +103 -0
- tunned_geobr/read_state_highways.py +79 -0
- tunned_geobr/read_transmission_lines_ons.py +87 -0
- tunned_geobr/read_vegetation.py +84 -0
- tunned_geobr/read_water_bodies_ana.py +87 -0
- tunned_geobr/read_waterways.py +80 -0
- {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/METADATA +35 -3
- tunned_geobr-0.2.1.dist-info/RECORD +82 -0
- tunned_geobr-0.1.2.dist-info/RECORD +0 -46
- {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.1.2.dist-info → tunned_geobr-0.2.1.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,84 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import tempfile
|
3
|
+
import os
|
4
|
+
import requests
|
5
|
+
from zipfile import ZipFile
|
6
|
+
from io import BytesIO
|
7
|
+
|
8
|
+
def read_vegetation(simplified=False):
|
9
|
+
"""Download Brazilian Vegetation data from IBGE.
|
10
|
+
|
11
|
+
This function downloads and processes the Brazilian Vegetation data at 1:250,000 scale
|
12
|
+
from IBGE (Brazilian Institute of Geography and Statistics).
|
13
|
+
Original source: IBGE - Instituto Brasileiro de Geografia e Estatística
|
14
|
+
|
15
|
+
Parameters
|
16
|
+
----------
|
17
|
+
simplified : boolean, by default False
|
18
|
+
If True, returns a simplified version of the dataset with fewer columns
|
19
|
+
|
20
|
+
Returns
|
21
|
+
-------
|
22
|
+
gpd.GeoDataFrame
|
23
|
+
Geodataframe with Brazilian vegetation data
|
24
|
+
|
25
|
+
Example
|
26
|
+
-------
|
27
|
+
>>> from tunned_geobr import read_vegetation
|
28
|
+
|
29
|
+
# Read vegetation data
|
30
|
+
>>> vegetation = read_vegetation()
|
31
|
+
"""
|
32
|
+
|
33
|
+
url = "https://geoftp.ibge.gov.br/informacoes_ambientais/vegetacao/vetores/escala_250_mil/versao_2023/vege_area.zip"
|
34
|
+
|
35
|
+
try:
|
36
|
+
# Download the zip file
|
37
|
+
response = requests.get(url)
|
38
|
+
if response.status_code != 200:
|
39
|
+
raise Exception("Failed to download vegetation data from IBGE")
|
40
|
+
|
41
|
+
# Create a temporary directory
|
42
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
43
|
+
# Extract the zip file
|
44
|
+
with ZipFile(BytesIO(response.content)) as zip_ref:
|
45
|
+
zip_ref.extractall(temp_dir)
|
46
|
+
|
47
|
+
# Find the shapefile
|
48
|
+
shp_files = []
|
49
|
+
for root, dirs, files in os.walk(temp_dir):
|
50
|
+
shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
|
51
|
+
|
52
|
+
if not shp_files:
|
53
|
+
raise Exception("No shapefile found in the downloaded data")
|
54
|
+
|
55
|
+
# Read the shapefile
|
56
|
+
gdf = gpd.read_file(shp_files[0])
|
57
|
+
|
58
|
+
# Convert to SIRGAS 2000 (EPSG:4674) if not already
|
59
|
+
if gdf.crs is None or gdf.crs.to_epsg() != 4674:
|
60
|
+
gdf = gdf.to_crs(4674)
|
61
|
+
|
62
|
+
if simplified:
|
63
|
+
# Keep only the most relevant columns
|
64
|
+
# Note: Column names may need adjustment based on actual data
|
65
|
+
columns_to_keep = [
|
66
|
+
'geometry',
|
67
|
+
'NOME', # Vegetation name
|
68
|
+
'TIPO', # Vegetation type
|
69
|
+
'REGIAO', # Region
|
70
|
+
'BIOMA', # Biome
|
71
|
+
'AREA_KM2' # Area in square kilometers
|
72
|
+
]
|
73
|
+
|
74
|
+
# Filter columns that actually exist in the dataset
|
75
|
+
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
76
|
+
gdf = gdf[existing_columns]
|
77
|
+
|
78
|
+
except Exception as e:
|
79
|
+
raise Exception(f"Error downloading vegetation data: {str(e)}")
|
80
|
+
|
81
|
+
return gdf
|
82
|
+
|
83
|
+
if __name__ == '__main__':
|
84
|
+
read_vegetation()
|
@@ -0,0 +1,87 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import tempfile
|
3
|
+
import os
|
4
|
+
import requests
|
5
|
+
from zipfile import ZipFile
|
6
|
+
from io import BytesIO
|
7
|
+
|
8
|
+
def read_water_bodies_ana(simplified=False):
|
9
|
+
"""Download Brazilian Water Bodies data from ANA.
|
10
|
+
|
11
|
+
This function downloads and processes the Brazilian Water Bodies data
|
12
|
+
from ANA (National Water Agency). The data includes lakes, reservoirs, and other water bodies.
|
13
|
+
Original source: ANA - Agência Nacional de Águas e Saneamento Básico
|
14
|
+
|
15
|
+
Parameters
|
16
|
+
----------
|
17
|
+
simplified : boolean, by default False
|
18
|
+
If True, returns a simplified version of the dataset with fewer columns
|
19
|
+
|
20
|
+
Returns
|
21
|
+
-------
|
22
|
+
gpd.GeoDataFrame
|
23
|
+
Geodataframe with Brazilian water bodies data
|
24
|
+
|
25
|
+
Example
|
26
|
+
-------
|
27
|
+
>>> from tunned_geobr import read_water_bodies_ana
|
28
|
+
|
29
|
+
# Read water bodies data
|
30
|
+
>>> water_bodies = read_water_bodies_ana()
|
31
|
+
"""
|
32
|
+
|
33
|
+
url = "https://metadados.snirh.gov.br/files/7d054e5a-8cc9-403c-9f1a-085fd933610c/geoft_bho_massa_dagua_v2019.zip"
|
34
|
+
|
35
|
+
try:
|
36
|
+
# Download the zip file
|
37
|
+
response = requests.get(url)
|
38
|
+
if response.status_code != 200:
|
39
|
+
raise Exception("Failed to download water bodies data from ANA")
|
40
|
+
|
41
|
+
# Create a temporary directory
|
42
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
43
|
+
# Extract the zip file
|
44
|
+
with ZipFile(BytesIO(response.content)) as zip_ref:
|
45
|
+
zip_ref.extractall(temp_dir)
|
46
|
+
|
47
|
+
# Find the shapefile
|
48
|
+
shp_files = []
|
49
|
+
for root, dirs, files in os.walk(temp_dir):
|
50
|
+
shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
|
51
|
+
|
52
|
+
if not shp_files:
|
53
|
+
raise Exception("No shapefile found in the downloaded data")
|
54
|
+
|
55
|
+
# Read the shapefile
|
56
|
+
gdf = gpd.read_file(shp_files[0])
|
57
|
+
|
58
|
+
# Convert to SIRGAS 2000 (EPSG:4674) if not already
|
59
|
+
if gdf.crs is None or gdf.crs.to_epsg() != 4674:
|
60
|
+
gdf = gdf.to_crs(4674)
|
61
|
+
|
62
|
+
if simplified:
|
63
|
+
# Keep only the most relevant columns
|
64
|
+
# Note: Column names may need adjustment based on actual data
|
65
|
+
columns_to_keep = [
|
66
|
+
'geometry',
|
67
|
+
'nome', # Water body name
|
68
|
+
'tipo', # Type of water body
|
69
|
+
'area_km2', # Area in square kilometers
|
70
|
+
'cocursodag', # Water course code
|
71
|
+
'cobacia', # Basin code
|
72
|
+
'nuareacont', # Contribution area
|
73
|
+
'nuvolumehm', # Volume in cubic hectometers
|
74
|
+
'dsoperacao' # Operation status
|
75
|
+
]
|
76
|
+
|
77
|
+
# Filter columns that actually exist in the dataset
|
78
|
+
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
79
|
+
gdf = gdf[existing_columns]
|
80
|
+
|
81
|
+
except Exception as e:
|
82
|
+
raise Exception(f"Error downloading water bodies data: {str(e)}")
|
83
|
+
|
84
|
+
return gdf
|
85
|
+
|
86
|
+
if __name__ == '__main__':
|
87
|
+
read_water_bodies_ana()
|
@@ -0,0 +1,80 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import tempfile
|
3
|
+
import os
|
4
|
+
import requests
|
5
|
+
from zipfile import ZipFile
|
6
|
+
from io import BytesIO
|
7
|
+
|
8
|
+
def read_waterways(simplified=False):
|
9
|
+
"""Download Waterways data from SNIRH.
|
10
|
+
|
11
|
+
This function downloads and processes waterways data from SNIRH (National Water Resources Information System).
|
12
|
+
The data includes information about navigable waterways across Brazil.
|
13
|
+
Original source: SNIRH (Sistema Nacional de Informações sobre Recursos Hídricos)
|
14
|
+
|
15
|
+
Parameters
|
16
|
+
----------
|
17
|
+
simplified : boolean, by default False
|
18
|
+
If True, returns a simplified version of the dataset with fewer columns
|
19
|
+
|
20
|
+
Returns
|
21
|
+
-------
|
22
|
+
gpd.GeoDataFrame
|
23
|
+
Geodataframe with waterways data
|
24
|
+
|
25
|
+
Example
|
26
|
+
-------
|
27
|
+
>>> from tunned_geobr import read_waterways
|
28
|
+
|
29
|
+
# Read waterways data
|
30
|
+
>>> waterways = read_waterways()
|
31
|
+
"""
|
32
|
+
|
33
|
+
url = "https://metadados.snirh.gov.br/geonetwork/srv/api/records/48e26e99-db01-45dc-a270-79f27680167b/attachments/GEOFT_TRECHO_HIDROVIARIO.zip"
|
34
|
+
|
35
|
+
try:
|
36
|
+
# Download the zip file
|
37
|
+
response = requests.get(url)
|
38
|
+
if response.status_code != 200:
|
39
|
+
raise Exception("Failed to download data from SNIRH")
|
40
|
+
|
41
|
+
# Create a temporary directory
|
42
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
43
|
+
# Extract the zip file
|
44
|
+
with ZipFile(BytesIO(response.content)) as zip_ref:
|
45
|
+
zip_ref.extractall(temp_dir)
|
46
|
+
|
47
|
+
# Find the shapefile
|
48
|
+
shp_files = []
|
49
|
+
for root, dirs, files in os.walk(temp_dir):
|
50
|
+
shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
|
51
|
+
|
52
|
+
if not shp_files:
|
53
|
+
raise Exception("No shapefile found in the downloaded data")
|
54
|
+
|
55
|
+
# Read the shapefile
|
56
|
+
gdf = gpd.read_file(shp_files[0])
|
57
|
+
gdf = gdf.to_crs(4674) # Convert to SIRGAS 2000
|
58
|
+
|
59
|
+
if simplified:
|
60
|
+
# Keep only the most relevant columns
|
61
|
+
columns_to_keep = [
|
62
|
+
'geometry',
|
63
|
+
'nome', # Waterway name
|
64
|
+
'hidrovia', # Waterway system
|
65
|
+
'rio', # River name
|
66
|
+
'situacao', # Status
|
67
|
+
'extensao_km', # Length in km
|
68
|
+
'administra', # Administration
|
69
|
+
'regime', # Water regime
|
70
|
+
'classifica' # Classification
|
71
|
+
]
|
72
|
+
|
73
|
+
# Filter columns that actually exist in the dataset
|
74
|
+
existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
|
75
|
+
gdf = gdf[existing_columns]
|
76
|
+
|
77
|
+
except Exception as e:
|
78
|
+
raise Exception(f"Error downloading waterways data: {str(e)}")
|
79
|
+
|
80
|
+
return gdf
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tunned-geobr
|
3
|
-
Version: 0.1
|
3
|
+
Version: 0.2.1
|
4
4
|
Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
|
5
5
|
Author: Anderson Stolfi
|
6
6
|
License: MIT
|
@@ -20,6 +20,8 @@ Requires-Dist: lxml<6.0.0,>=5.1.0
|
|
20
20
|
Requires-Dist: html5lib==1.1
|
21
21
|
Requires-Dist: geobr<0.3.0,>=0.2.2
|
22
22
|
Requires-Dist: patool>=1.15.0
|
23
|
+
Requires-Dist: fiona>=1.10.1
|
24
|
+
Requires-Dist: gdown>=5.2.0
|
23
25
|
Description-Content-Type: text/markdown
|
24
26
|
|
25
27
|
# geobr: Download Official Spatial Data Sets of Brazil
|
@@ -59,8 +61,40 @@ It adds:
|
|
59
61
|
|
60
62
|
! Be aware that if the function that you are adding is more complicated than the template. So, always double check !
|
61
63
|
|
64
|
+
## System Dependencies
|
62
65
|
|
66
|
+
Some functions in geobr require additional system tools to be installed:
|
63
67
|
|
68
|
+
### For RAR file extraction (`read_baze_sites`)
|
69
|
+
|
70
|
+
This function requires one of the following tools to be installed:
|
71
|
+
|
72
|
+
- **unrar**:
|
73
|
+
- macOS: `brew install unrar`
|
74
|
+
- Ubuntu/Debian: `sudo apt-get install unrar`
|
75
|
+
- Windows: Install WinRAR
|
76
|
+
|
77
|
+
- **unar**:
|
78
|
+
- macOS: `brew install unar`
|
79
|
+
- Ubuntu/Debian: `sudo apt-get install unar`
|
80
|
+
- Windows: Install The Unarchiver
|
81
|
+
|
82
|
+
- **7-Zip**:
|
83
|
+
- macOS: `brew install p7zip`
|
84
|
+
- Ubuntu/Debian: `sudo apt-get install p7zip-full`
|
85
|
+
- Windows: Install 7-Zip
|
86
|
+
|
87
|
+
### For ZIP file extraction (IBGE files)
|
88
|
+
|
89
|
+
Some IBGE files use compression methods not supported by Python's built-in zipfile module. The following functions use the system's `unzip` command:
|
90
|
+
|
91
|
+
- `read_census_tract_2022`
|
92
|
+
- `read_neighborhoods_2022`
|
93
|
+
|
94
|
+
Make sure you have the `unzip` command available on your system:
|
95
|
+
- macOS: Typically pre-installed
|
96
|
+
- Ubuntu/Debian: `sudo apt-get install unzip`
|
97
|
+
- Windows: Install a tool like 7-Zip or add unzip via WSL
|
64
98
|
|
65
99
|
## Translation Status
|
66
100
|
|
@@ -94,10 +128,8 @@ It adds:
|
|
94
128
|
| lookup_muni | Yes | No |
|
95
129
|
| read_neighborhood | Yes | Yes |
|
96
130
|
|
97
|
-
|
98
131
|
# Release new version
|
99
132
|
|
100
133
|
```
|
101
134
|
poetry version [patch|minor|major]
|
102
135
|
poetry publish --build
|
103
|
-
```
|
@@ -0,0 +1,82 @@
|
|
1
|
+
tunned_geobr-0.2.1.dist-info/METADATA,sha256=9q8qF3BSpGBDxdQFpb-Ki6YY2-hBrKqKEjZHqtFnNpg,4987
|
2
|
+
tunned_geobr-0.2.1.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.2.1.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.2.1.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
+
tunned_geobr/__init__.py,sha256=uxb92oXuVe5RRdfsRksj4rw0p0s0_H5k84t241qfu1g,3597
|
6
|
+
tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
|
7
|
+
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
8
|
+
tunned_geobr/list_geobr.py,sha256=D0fKjZQGkF4olk3A7FOi5sic_qAMj_r5kkwZEpvsB4A,9382
|
9
|
+
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
10
|
+
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
+
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
+
tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
|
13
|
+
tunned_geobr/read_apcb_caatinga.py,sha256=n1oQttcKkUyuU835VfbR709yGEydm8lnorp_uBlV-Ws,2846
|
14
|
+
tunned_geobr/read_apcb_cerrado_pantanal.py,sha256=6R6qmvWIBP5JvFhAWAUGgr_cvgkWUM-T5wMywLUfO40,2940
|
15
|
+
tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-XzxVLWLmKISI,2904
|
16
|
+
tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
|
17
|
+
tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
|
18
|
+
tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
|
19
|
+
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
20
|
+
tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
|
21
|
+
tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
|
22
|
+
tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
|
23
|
+
tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
|
24
|
+
tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
|
25
|
+
tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
|
26
|
+
tunned_geobr/read_census_tract_2022.py,sha256=JtoJJtZ2rFiC5gtuZ7V_5teYFkuq1-GkV4GalSkhorQ,4066
|
27
|
+
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
28
|
+
tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
|
29
|
+
tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
|
30
|
+
tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
|
31
|
+
tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
|
32
|
+
tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
|
33
|
+
tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
|
34
|
+
tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
|
35
|
+
tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
|
36
|
+
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
37
|
+
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
38
|
+
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
39
|
+
tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
|
40
|
+
tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
|
41
|
+
tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
|
42
|
+
tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
|
43
|
+
tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
|
44
|
+
tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
|
45
|
+
tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
|
46
|
+
tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
|
47
|
+
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
48
|
+
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
49
|
+
tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
|
50
|
+
tunned_geobr/read_municipality_direct.py,sha256=v2oRUyYlkOrJy_FTmxZMo3kug9rzAoescrkc293H1OY,5650
|
51
|
+
tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
|
52
|
+
tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
|
53
|
+
tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
|
54
|
+
tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
|
55
|
+
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
56
|
+
tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
|
57
|
+
tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
|
58
|
+
tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
|
59
|
+
tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
|
60
|
+
tunned_geobr/read_quilombola_areas.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
61
|
+
tunned_geobr/read_quilombola_areas_temp.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
|
62
|
+
tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
|
63
|
+
tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
|
64
|
+
tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
|
65
|
+
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
66
|
+
tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
|
67
|
+
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
68
|
+
tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
|
69
|
+
tunned_geobr/read_snci_properties.py,sha256=lKhRSBeayD3M_ffljSf5_Sn57VhYh0g3lwFnOgpYji0,3226
|
70
|
+
tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
|
71
|
+
tunned_geobr/read_state_direct.py,sha256=AA3a7XxO2NocRNBGd1FpYriTE2_l-f8sbxwOgRMf9Fw,3818
|
72
|
+
tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
|
73
|
+
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
74
|
+
tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
|
75
|
+
tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
|
76
|
+
tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
|
77
|
+
tunned_geobr/read_vegetation.py,sha256=yGxtO-bvmlZafakuRRhpZHtaHRFJR05yrSa7_IUoYx4,2997
|
78
|
+
tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJapaqWYjck,3237
|
79
|
+
tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
|
80
|
+
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
81
|
+
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
82
|
+
tunned_geobr-0.2.1.dist-info/RECORD,,
|
@@ -1,46 +0,0 @@
|
|
1
|
-
tunned_geobr-0.1.2.dist-info/METADATA,sha256=euxhNxJq9oDNAksmW_dzvqEguhjmWKisuQ2TZk9Fo6A,3896
|
2
|
-
tunned_geobr-0.1.2.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
-
tunned_geobr-0.1.2.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
-
tunned_geobr-0.1.2.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
-
tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
|
6
|
-
tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
|
7
|
-
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
8
|
-
tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
|
9
|
-
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
10
|
-
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
-
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
-
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
13
|
-
tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
|
14
|
-
tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
|
15
|
-
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
16
|
-
tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
|
17
|
-
tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
|
18
|
-
tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
|
19
|
-
tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
|
20
|
-
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
21
|
-
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
22
|
-
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
23
|
-
tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
|
24
|
-
tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
|
25
|
-
tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
|
26
|
-
tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
|
27
|
-
tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
|
28
|
-
tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
|
29
|
-
tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
|
30
|
-
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
31
|
-
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
32
|
-
tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
|
33
|
-
tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
|
34
|
-
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
35
|
-
tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
|
36
|
-
tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
|
37
|
-
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
38
|
-
tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
|
39
|
-
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
40
|
-
tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
|
41
|
-
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
42
|
-
tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
|
43
|
-
tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
|
44
|
-
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
45
|
-
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
46
|
-
tunned_geobr-0.1.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|