tunned-geobr 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/read_amazon.py +2 -2
- tunned_geobr/read_atlantic_forest_ibas.py +1 -1
- tunned_geobr/read_biomes.py +2 -2
- tunned_geobr/read_census_tract.py +2 -2
- tunned_geobr/read_climate_aggressiveness.py +1 -1
- tunned_geobr/read_comparable_areas.py +2 -2
- tunned_geobr/read_conservation_units.py +2 -2
- tunned_geobr/read_country.py +2 -2
- tunned_geobr/read_disaster_risk_area.py +2 -2
- tunned_geobr/read_geology.py +1 -1
- tunned_geobr/read_geomorphology.py +1 -1
- tunned_geobr/read_health_facilities.py +2 -2
- tunned_geobr/read_health_region.py +2 -2
- tunned_geobr/read_immediate_region.py +2 -2
- tunned_geobr/read_indigenous_land.py +2 -2
- tunned_geobr/read_intermediate_region.py +2 -2
- tunned_geobr/read_meso_region.py +2 -2
- tunned_geobr/read_metro_area.py +2 -2
- tunned_geobr/read_micro_region.py +2 -2
- tunned_geobr/read_mining_processes.py +1 -1
- tunned_geobr/read_municipal_seat.py +2 -2
- tunned_geobr/read_municipality.py +2 -2
- tunned_geobr/read_neighborhood.py +2 -2
- tunned_geobr/read_pedology.py +1 -1
- tunned_geobr/read_pop_arrangements.py +2 -2
- tunned_geobr/read_region.py +4 -14
- tunned_geobr/read_schools.py +2 -2
- tunned_geobr/read_semiarid.py +2 -2
- tunned_geobr/read_settlements.py +1 -1
- tunned_geobr/read_state.py +2 -2
- tunned_geobr/read_statistical_grid.py +2 -2
- tunned_geobr/read_urban_area.py +2 -2
- tunned_geobr/read_urban_concentrations.py +2 -2
- tunned_geobr/read_weighting_area.py +2 -2
- tunned_geobr/utils.py +1 -1
- {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/METADATA +1 -1
- tunned_geobr-0.1.2.dist-info/RECORD +46 -0
- tunned_geobr-0.1.0.dist-info/RECORD +0 -46
- {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/licenses/LICENSE.txt +0 -0
tunned_geobr/read_amazon.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_amazon(year=2012, simplified=True, verbose=False):
|
@@ -29,7 +29,7 @@ def read_amazon(year=2012, simplified=True, verbose=False):
|
|
29
29
|
|
30
30
|
Example
|
31
31
|
-------
|
32
|
-
>>> from
|
32
|
+
>>> from geobr import read_amazon
|
33
33
|
|
34
34
|
# Read specific state at a given year
|
35
35
|
>>> df = read_amazon(year=2012)
|
@@ -25,7 +25,7 @@ def read_atlantic_forest_ibas(simplified=False):
|
|
25
25
|
|
26
26
|
Example
|
27
27
|
-------
|
28
|
-
>>> from
|
28
|
+
>>> from geobr import read_atlantic_forest_ibas
|
29
29
|
|
30
30
|
# Read Atlantic Forest IBAs data
|
31
31
|
>>> ibas = read_atlantic_forest_ibas()
|
tunned_geobr/read_biomes.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_biomes(year=2019, simplified=True, verbose=False):
|
@@ -30,7 +30,7 @@ def read_biomes(year=2019, simplified=True, verbose=False):
|
|
30
30
|
|
31
31
|
Example
|
32
32
|
-------
|
33
|
-
>>> from
|
33
|
+
>>> from geobr import read_biomes
|
34
34
|
|
35
35
|
# Read specific state at a given year
|
36
36
|
>>> df = read_biomes(year=2019)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg, test_options
|
2
2
|
|
3
3
|
|
4
4
|
def read_census_tract(
|
@@ -34,7 +34,7 @@ def read_census_tract(
|
|
34
34
|
|
35
35
|
Example
|
36
36
|
-------
|
37
|
-
>>> from
|
37
|
+
>>> from geobr import read_census_tract
|
38
38
|
|
39
39
|
# Read rural census tracts for years before 2007
|
40
40
|
>>> df = read_census_tract(code_tract=5201108, year=2000, zone='rural')
|
@@ -25,7 +25,7 @@ def read_climate_aggressiveness(simplified=False):
|
|
25
25
|
|
26
26
|
Example
|
27
27
|
-------
|
28
|
-
>>> from
|
28
|
+
>>> from geobr import read_climate_aggressiveness
|
29
29
|
|
30
30
|
# Read climate aggressiveness data
|
31
31
|
>>> climate = read_climate_aggressiveness()
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_comparable_areas(
|
@@ -38,7 +38,7 @@ def read_comparable_areas(
|
|
38
38
|
|
39
39
|
Example
|
40
40
|
-------
|
41
|
-
>>> from
|
41
|
+
>>> from geobr import read_comparable_areas
|
42
42
|
|
43
43
|
# Read specific state at a given year
|
44
44
|
>>> df = read_comparable_areas(year=)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_conservation_units(date=201909, simplified=True, verbose=False):
|
@@ -30,7 +30,7 @@ def read_conservation_units(date=201909, simplified=True, verbose=False):
|
|
30
30
|
|
31
31
|
Example
|
32
32
|
-------
|
33
|
-
>>> from
|
33
|
+
>>> from geobr import read_conservation_units
|
34
34
|
|
35
35
|
# Read specific state at a given year
|
36
36
|
>>> df = read_conservation_units(date=201909)
|
tunned_geobr/read_country.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_country(year=2010, simplified=True, verbose=False):
|
@@ -30,7 +30,7 @@ def read_country(year=2010, simplified=True, verbose=False):
|
|
30
30
|
|
31
31
|
Example
|
32
32
|
-------
|
33
|
-
>>> from
|
33
|
+
>>> from geobr import read_country
|
34
34
|
|
35
35
|
# Read specific state at a given year
|
36
36
|
>>> df = read_country(year=2010)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_disaster_risk_area(year=2010, simplified=True, verbose=False):
|
@@ -34,7 +34,7 @@ def read_disaster_risk_area(year=2010, simplified=True, verbose=False):
|
|
34
34
|
|
35
35
|
Example
|
36
36
|
-------
|
37
|
-
>>> from
|
37
|
+
>>> from geobr import read_disaster_risk_area
|
38
38
|
|
39
39
|
# Read specific state at a given year
|
40
40
|
>>> df = read_disaster_risk_area(year=2010)
|
tunned_geobr/read_geology.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_health_facilities(date=202303, verbose=False):
|
@@ -36,7 +36,7 @@ def read_health_facilities(date=202303, verbose=False):
|
|
36
36
|
|
37
37
|
Example
|
38
38
|
-------
|
39
|
-
>>> from
|
39
|
+
>>> from geobr import read_health_facilities
|
40
40
|
|
41
41
|
# Read specific state at a given year
|
42
42
|
>>> df = read_health_facilities()
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_health_region(year=2013, macro=False, simplified=True, verbose=False):
|
@@ -34,7 +34,7 @@ def read_health_region(year=2013, macro=False, simplified=True, verbose=False):
|
|
34
34
|
|
35
35
|
Example
|
36
36
|
-------
|
37
|
-
>>> from
|
37
|
+
>>> from geobr import read_health_region
|
38
38
|
|
39
39
|
# Read specific state at a given year
|
40
40
|
>>> df = read_health_region(year=2013)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg, change_type_list, test_options
|
2
2
|
|
3
3
|
|
4
4
|
def read_immediate_region(
|
@@ -39,7 +39,7 @@ def read_immediate_region(
|
|
39
39
|
|
40
40
|
Example
|
41
41
|
-------
|
42
|
-
>>> from
|
42
|
+
>>> from geobr import read_immediate_region
|
43
43
|
|
44
44
|
# Read specific state at a given year
|
45
45
|
>>> df = read_immediate_region(year=2017)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_indigenous_land(date=201907, simplified=True, verbose=False):
|
@@ -31,7 +31,7 @@ def read_indigenous_land(date=201907, simplified=True, verbose=False):
|
|
31
31
|
|
32
32
|
Example
|
33
33
|
-------
|
34
|
-
>>> from
|
34
|
+
>>> from geobr import read_indigenous_land
|
35
35
|
|
36
36
|
# Read specific state at a given year
|
37
37
|
>>> df = read_indigenous_land(date=201907)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_intermediate_region(
|
@@ -39,7 +39,7 @@ def read_intermediate_region(
|
|
39
39
|
|
40
40
|
Example
|
41
41
|
-------
|
42
|
-
>>> from
|
42
|
+
>>> from geobr import read_intermediate_region
|
43
43
|
|
44
44
|
# Read specific state at a given year
|
45
45
|
>>> df = read_intermediate_region(year=2019)
|
tunned_geobr/read_meso_region.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_meso_region(code_meso="all", year=2010, simplified=True, verbose=False):
|
@@ -32,7 +32,7 @@ def read_meso_region(code_meso="all", year=2010, simplified=True, verbose=False)
|
|
32
32
|
|
33
33
|
Example
|
34
34
|
-------
|
35
|
-
>>> from
|
35
|
+
>>> from geobr import read_meso_region
|
36
36
|
|
37
37
|
# Read specific meso region at a given year
|
38
38
|
>>> df = read_meso_region(code_meso=3301, year=2018)
|
tunned_geobr/read_metro_area.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_metro_area(year=2018, simplified=True, verbose=False):
|
@@ -31,7 +31,7 @@ def read_metro_area(year=2018, simplified=True, verbose=False):
|
|
31
31
|
|
32
32
|
Example
|
33
33
|
-------
|
34
|
-
>>> from
|
34
|
+
>>> from geobr import read_metro_area
|
35
35
|
|
36
36
|
# Read specific state at a given year
|
37
37
|
>>> df = read_metro_area(year=2018)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_micro_region(code_micro="all", year=2010, simplified=True, verbose=False):
|
@@ -32,7 +32,7 @@ def read_micro_region(code_micro="all", year=2010, simplified=True, verbose=Fals
|
|
32
32
|
|
33
33
|
Example
|
34
34
|
-------
|
35
|
-
>>> from
|
35
|
+
>>> from geobr import read_micro_region
|
36
36
|
|
37
37
|
# Read specific meso region at a given year
|
38
38
|
>>> df = read_micro_region(code_micro=11008, year=2018)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_municipal_seat(year=2010, verbose=False):
|
@@ -28,7 +28,7 @@ def read_municipal_seat(year=2010, verbose=False):
|
|
28
28
|
|
29
29
|
Example
|
30
30
|
-------
|
31
|
-
>>> from
|
31
|
+
>>> from geobr import read_municipal_seat
|
32
32
|
|
33
33
|
# Read specific state at a given year
|
34
34
|
>>> df = read_municipal_seat(year=2010)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_municipality(code_muni="all", year=2010, simplified=True, verbose=False):
|
@@ -32,7 +32,7 @@ def read_municipality(code_muni="all", year=2010, simplified=True, verbose=False
|
|
32
32
|
|
33
33
|
Example
|
34
34
|
-------
|
35
|
-
>>> from
|
35
|
+
>>> from geobr import read_municipality
|
36
36
|
|
37
37
|
# Read specific meso region at a given year
|
38
38
|
>>> df = read_municipality(code_muni=1200179, year=2018)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_neighborhood(year=2010, simplified=True, verbose=False):
|
@@ -26,7 +26,7 @@ def read_neighborhood(year=2010, simplified=True, verbose=False):
|
|
26
26
|
|
27
27
|
Example
|
28
28
|
-------
|
29
|
-
>>> from
|
29
|
+
>>> from geobr import read_neighborhood
|
30
30
|
|
31
31
|
# Read specific neighborhoods at a given year
|
32
32
|
>>> df = read_neighborhood(year=2010)
|
tunned_geobr/read_pedology.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1
1
|
|
2
|
-
from
|
2
|
+
from geobr.utils import select_metadata, download_gpkg
|
3
3
|
|
4
4
|
|
5
5
|
def read_pop_arrangements(year=2015, simplified=True, verbose=False):
|
@@ -32,7 +32,7 @@ def read_pop_arrangements(year=2015, simplified=True, verbose=False):
|
|
32
32
|
|
33
33
|
Example
|
34
34
|
-------
|
35
|
-
>>> from
|
35
|
+
>>> from geobr import read_pop_arrangements
|
36
36
|
|
37
37
|
# Read specific state at a given year
|
38
38
|
>>> df = read_pop_arrangements(year=2015)
|
tunned_geobr/read_region.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1
|
-
from
|
1
|
+
from geobr import read_region as _read_region
|
2
2
|
|
3
3
|
|
4
4
|
def read_region(year=2010, simplified=True, verbose=False):
|
5
5
|
""" Download shape file of Brazil Regions as sf objects.
|
6
6
|
|
7
|
-
|
7
|
+
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
|
8
8
|
|
9
9
|
Parameters
|
10
10
|
----------
|
@@ -21,21 +21,11 @@ def read_region(year=2010, simplified=True, verbose=False):
|
|
21
21
|
gpd.GeoDataFrame
|
22
22
|
Metadata and geopackage of selected states
|
23
23
|
|
24
|
-
Raises
|
25
|
-
------
|
26
|
-
Exception
|
27
|
-
If parameters are not found or not well defined
|
28
|
-
|
29
24
|
Example
|
30
25
|
-------
|
31
|
-
>>> from
|
26
|
+
>>> from tunned_geobr import read_region
|
32
27
|
|
33
28
|
# Read specific state at a given year
|
34
29
|
>>> df = read_region(year=2010)
|
35
30
|
"""
|
36
|
-
|
37
|
-
metadata = select_metadata("regions", year=year, simplified=simplified)
|
38
|
-
|
39
|
-
gdf = download_gpkg(metadata)
|
40
|
-
|
41
|
-
return gdf
|
31
|
+
return _read_region(year=year, simplified=simplified, verbose=verbose)
|
tunned_geobr/read_schools.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_schools(year=2020, verbose=False):
|
@@ -31,7 +31,7 @@ def read_schools(year=2020, verbose=False):
|
|
31
31
|
|
32
32
|
Example
|
33
33
|
-------
|
34
|
-
>>> from
|
34
|
+
>>> from geobr import read_schools
|
35
35
|
|
36
36
|
# Read specific state at a given year
|
37
37
|
>>> df = read_schools(year=2020)
|
tunned_geobr/read_semiarid.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_semiarid(year=2017, simplified=True, verbose=False):
|
@@ -29,7 +29,7 @@ def read_semiarid(year=2017, simplified=True, verbose=False):
|
|
29
29
|
|
30
30
|
Example
|
31
31
|
-------
|
32
|
-
>>> from
|
32
|
+
>>> from geobr import read_semiarid
|
33
33
|
|
34
34
|
# Read specific state at a given year
|
35
35
|
>>> df = read_semiarid(year=2017)
|
tunned_geobr/read_settlements.py
CHANGED
tunned_geobr/read_state.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
import geopandas as gpd
|
2
2
|
|
3
|
-
from
|
3
|
+
from geobr.utils import select_metadata, download_gpkg
|
4
4
|
|
5
5
|
|
6
6
|
def read_state(code_state="all", year=2010, simplified=True, verbose=False):
|
@@ -33,7 +33,7 @@ def read_state(code_state="all", year=2010, simplified=True, verbose=False):
|
|
33
33
|
|
34
34
|
Example
|
35
35
|
-------
|
36
|
-
>>> from
|
36
|
+
>>> from geobr import read_state
|
37
37
|
|
38
38
|
# Read specific state at a given year
|
39
39
|
>>> uf = read_state(code_state=12, year=2017)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
import sys
|
2
2
|
from geobr import __path__ as geobr_directory
|
3
|
-
from
|
3
|
+
from geobr.utils import select_metadata, download_gpkg
|
4
4
|
from numpy import unique
|
5
5
|
from pandas import read_csv
|
6
6
|
|
@@ -40,7 +40,7 @@ def read_statistical_grid(code_grid="all", year=2010, simplified=False, verbose=
|
|
40
40
|
|
41
41
|
Example
|
42
42
|
-------
|
43
|
-
>>> from
|
43
|
+
>>> from geobr import read_statistical_grid
|
44
44
|
|
45
45
|
# Read specific state at a given year
|
46
46
|
>>> df = read_statistical_grid(year=2010)
|
tunned_geobr/read_urban_area.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_urban_area(year=2015, simplified=True, verbose=False):
|
@@ -31,7 +31,7 @@ def read_urban_area(year=2015, simplified=True, verbose=False):
|
|
31
31
|
|
32
32
|
Example
|
33
33
|
-------
|
34
|
-
>>> from
|
34
|
+
>>> from geobr import read_urban_area
|
35
35
|
|
36
36
|
# Read specific state at a given year
|
37
37
|
>>> df = read_urban_area(year=2015)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
|
2
|
-
from
|
2
|
+
from geobr.utils import select_metadata, download_gpkg
|
3
3
|
|
4
4
|
|
5
5
|
def read_urban_concentrations(year=2015, simplified=True, verbose=False):
|
@@ -33,7 +33,7 @@ def read_urban_concentrations(year=2015, simplified=True, verbose=False):
|
|
33
33
|
|
34
34
|
Example
|
35
35
|
-------
|
36
|
-
>>> from
|
36
|
+
>>> from geobr import read_urban_concentrations
|
37
37
|
|
38
38
|
# Read specific state at a given year
|
39
39
|
>>> df = read_urban_concentrations(year=2015)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from
|
1
|
+
from geobr.utils import select_metadata, download_gpkg
|
2
2
|
|
3
3
|
|
4
4
|
def read_weighting_area(
|
@@ -34,7 +34,7 @@ def read_weighting_area(
|
|
34
34
|
|
35
35
|
Example
|
36
36
|
-------
|
37
|
-
>>> from
|
37
|
+
>>> from geobr import read_weighting_area
|
38
38
|
|
39
39
|
# Read specific state at a given year
|
40
40
|
>>> df = read_weighting_area(year=2010)
|
tunned_geobr/utils.py
CHANGED
@@ -0,0 +1,46 @@
|
|
1
|
+
tunned_geobr-0.1.2.dist-info/METADATA,sha256=euxhNxJq9oDNAksmW_dzvqEguhjmWKisuQ2TZk9Fo6A,3896
|
2
|
+
tunned_geobr-0.1.2.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
tunned_geobr-0.1.2.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
+
tunned_geobr-0.1.2.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
+
tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
|
6
|
+
tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
|
7
|
+
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
8
|
+
tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
|
9
|
+
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
10
|
+
tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
|
11
|
+
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
+
tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
|
13
|
+
tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
|
14
|
+
tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
|
15
|
+
tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
|
16
|
+
tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
|
17
|
+
tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
|
18
|
+
tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
|
19
|
+
tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
|
20
|
+
tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
|
21
|
+
tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
|
22
|
+
tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
|
23
|
+
tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
|
24
|
+
tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
|
25
|
+
tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
|
26
|
+
tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
|
27
|
+
tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
|
28
|
+
tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
|
29
|
+
tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
|
30
|
+
tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
|
31
|
+
tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
|
32
|
+
tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
|
33
|
+
tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
|
34
|
+
tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
|
35
|
+
tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
|
36
|
+
tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
|
37
|
+
tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
|
38
|
+
tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
|
39
|
+
tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
|
40
|
+
tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
|
41
|
+
tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
|
42
|
+
tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
|
43
|
+
tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
|
44
|
+
tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
|
45
|
+
tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
|
46
|
+
tunned_geobr-0.1.2.dist-info/RECORD,,
|
@@ -1,46 +0,0 @@
|
|
1
|
-
tunned_geobr-0.1.0.dist-info/METADATA,sha256=Rq_0FSHR6SbXupwxbHI_3poqz-sToBb_JurPUy9Z-9Y,3896
|
2
|
-
tunned_geobr-0.1.0.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
-
tunned_geobr-0.1.0.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
|
-
tunned_geobr-0.1.0.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
|
5
|
-
tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
|
6
|
-
tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
|
7
|
-
tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
|
8
|
-
tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
|
9
|
-
tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
|
10
|
-
tunned_geobr/read_amazon.py,sha256=CpUDhNEeZPAXHEuCUl0fsKi6KyeVBFOvZrFAcLe8OEg,1299
|
11
|
-
tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
|
12
|
-
tunned_geobr/read_atlantic_forest_ibas.py,sha256=GjaNy8bKMOYRA4G5IR7gfmyAGm8EltojqdqBHZDOg7U,3577
|
13
|
-
tunned_geobr/read_biomes.py,sha256=5W2toakngPWG0V7c9QP_xon__38gIkJr2xrKc2mYaN0,1351
|
14
|
-
tunned_geobr/read_census_tract.py,sha256=lFIlgDqsz6zkiVWEBE97SlxgdmxuI6_fgqgWhaXcgYg,3272
|
15
|
-
tunned_geobr/read_climate_aggressiveness.py,sha256=r7dNvFQ7mo0B5PUWEv28x4aYAD-jF6JiSV7Oydq6N-0,2811
|
16
|
-
tunned_geobr/read_comparable_areas.py,sha256=NUyHfGaKoqNBfQUID2uZc-CrZLTxGN_5gJog-I7XZS0,2122
|
17
|
-
tunned_geobr/read_conservation_units.py,sha256=-RYV3x06LZDqQKAtmiDLwEV07TxKxCbXI4mKENxJZbk,1393
|
18
|
-
tunned_geobr/read_country.py,sha256=wDfG95wFz16iy0WpSxyrezO3hqr3v5xJRK94pDJAneM,1371
|
19
|
-
tunned_geobr/read_disaster_risk_area.py,sha256=r6Ccf8yr-zr2IZSPc5jHNsECvesnlG0Yfek1Q5-S5Rw,1859
|
20
|
-
tunned_geobr/read_geology.py,sha256=q6o3E8DQ5NBc2wJ9rJfGLN5qSI9_0vQG48xil-f7jzM,2773
|
21
|
-
tunned_geobr/read_geomorphology.py,sha256=h2Si0OXHBBna1eMN9LzgiV5IttRyzcnCSe2tqx6frYk,2850
|
22
|
-
tunned_geobr/read_health_facilities.py,sha256=ujfg6nbuoefUvhGV69sETKXgog90s6r3wwU8JQa-jUM,2026
|
23
|
-
tunned_geobr/read_health_region.py,sha256=3j-Y4NTTrnUuTpFWhWfJDtsfmlRzJBRBv3n9QCvOEtU,1846
|
24
|
-
tunned_geobr/read_immediate_region.py,sha256=nIDFssnaPzmvAPYrNuRhLIqczampQct4l8JaoWv90L0,2568
|
25
|
-
tunned_geobr/read_indigenous_land.py,sha256=ByE_VUwHhVf1V-rOBzuyCmwKnHdpk2AcSWZBQ3UsWQo,1473
|
26
|
-
tunned_geobr/read_intermediate_region.py,sha256=oo9lvrttInePaaSpHPZSrxDlx80u900HA5BvrVP1tTU,2199
|
27
|
-
tunned_geobr/read_meso_region.py,sha256=LDW2lufe8yqToE79intlHBWmXWB5PS2j3C4Zh8ElOhg,2615
|
28
|
-
tunned_geobr/read_metro_area.py,sha256=xvpdASJJamFN7qikPKjrytMKoNwIVRfRoR37lUsQo0g,1511
|
29
|
-
tunned_geobr/read_micro_region.py,sha256=n0oAeIdyZGo2tkoSYzcP8OfvAkwTRTkH4rMOnfKzgI4,2523
|
30
|
-
tunned_geobr/read_mining_processes.py,sha256=oVhCqhIQwLTXmaL6RRCmF-i81OLj-0Lb2k7SHiYgaf8,2576
|
31
|
-
tunned_geobr/read_municipal_seat.py,sha256=jiDn6jbULbl5KQlmpowqZTLW2P0z1H9P8zIzMcPETKk,1156
|
32
|
-
tunned_geobr/read_municipality.py,sha256=RrCg8MULpCgTwX3ngcIH0YpHcI0GR4CubF4AIgXdwqE,2607
|
33
|
-
tunned_geobr/read_neighborhood.py,sha256=rk7U9ZamkkdKrYcd18TNu0Pjhr7OQN4RY8BUVfa9Xcw,1098
|
34
|
-
tunned_geobr/read_pedology.py,sha256=yqzn6lEBS__6_SIUtneJzJVCc3l0XGs3vqO68ylDUSs,2790
|
35
|
-
tunned_geobr/read_pop_arrangements.py,sha256=NN4zvU4P4G6_3PDshQFpmYgRlcCqwPqD8DdKyw6a714,1399
|
36
|
-
tunned_geobr/read_region.py,sha256=osFZJI-DPndNABs3dqtZamcJGW5hNRx4CgQmU9Mo7cA,1118
|
37
|
-
tunned_geobr/read_schools.py,sha256=RZbb_glUfppPF2RxJwKIMhHB7BAZzfY2tnVkyIE9HuQ,1378
|
38
|
-
tunned_geobr/read_semiarid.py,sha256=9zNQepAnC1Sc89E-1YMd_QSFz5dH0Z-I7W7469-0jHo,1371
|
39
|
-
tunned_geobr/read_settlements.py,sha256=jh7hbXX63NBnG-q1meO4ed0NvBfLzdY17_PT7p-lbDs,3067
|
40
|
-
tunned_geobr/read_state.py,sha256=cM44s3hBOknwbOQxAP9J7SRWuSrA97YAW1GEw_G5bFE,2712
|
41
|
-
tunned_geobr/read_statistical_grid.py,sha256=2ZoT-kbuvVkKEoTIfIiAc2jLM789cWWE3E8-HA_S-VA,4493
|
42
|
-
tunned_geobr/read_urban_area.py,sha256=3n31dj-21glSA2qQI88ELz00-nRGcpNunBpPYb0h3RQ,1377
|
43
|
-
tunned_geobr/read_urban_concentrations.py,sha256=mPEZIDyyGUxriqhtDwD_cGbVaJNYX11_11Vj42s-cls,1441
|
44
|
-
tunned_geobr/read_weighting_area.py,sha256=ggXpUnNtXBGsXdBjhwuaCWgKReQjb1wNkFFtB2bkuNk,2338
|
45
|
-
tunned_geobr/utils.py,sha256=by8mOgQlpY6uXX2dtstTLdEgjMcI0lnLzQ8deA3DYus,8182
|
46
|
-
tunned_geobr-0.1.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|