tunned-geobr 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. tunned_geobr/read_amazon.py +2 -2
  2. tunned_geobr/read_atlantic_forest_ibas.py +1 -1
  3. tunned_geobr/read_biomes.py +2 -2
  4. tunned_geobr/read_census_tract.py +2 -2
  5. tunned_geobr/read_climate_aggressiveness.py +1 -1
  6. tunned_geobr/read_comparable_areas.py +2 -2
  7. tunned_geobr/read_conservation_units.py +2 -2
  8. tunned_geobr/read_country.py +2 -2
  9. tunned_geobr/read_disaster_risk_area.py +2 -2
  10. tunned_geobr/read_geology.py +1 -1
  11. tunned_geobr/read_geomorphology.py +1 -1
  12. tunned_geobr/read_health_facilities.py +2 -2
  13. tunned_geobr/read_health_region.py +2 -2
  14. tunned_geobr/read_immediate_region.py +2 -2
  15. tunned_geobr/read_indigenous_land.py +2 -2
  16. tunned_geobr/read_intermediate_region.py +2 -2
  17. tunned_geobr/read_meso_region.py +2 -2
  18. tunned_geobr/read_metro_area.py +2 -2
  19. tunned_geobr/read_micro_region.py +2 -2
  20. tunned_geobr/read_mining_processes.py +1 -1
  21. tunned_geobr/read_municipal_seat.py +2 -2
  22. tunned_geobr/read_municipality.py +2 -2
  23. tunned_geobr/read_neighborhood.py +2 -2
  24. tunned_geobr/read_pedology.py +1 -1
  25. tunned_geobr/read_pop_arrangements.py +2 -2
  26. tunned_geobr/read_region.py +4 -14
  27. tunned_geobr/read_schools.py +2 -2
  28. tunned_geobr/read_semiarid.py +2 -2
  29. tunned_geobr/read_settlements.py +1 -1
  30. tunned_geobr/read_state.py +2 -2
  31. tunned_geobr/read_statistical_grid.py +2 -2
  32. tunned_geobr/read_urban_area.py +2 -2
  33. tunned_geobr/read_urban_concentrations.py +2 -2
  34. tunned_geobr/read_weighting_area.py +2 -2
  35. tunned_geobr/utils.py +1 -1
  36. {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/METADATA +1 -1
  37. tunned_geobr-0.1.2.dist-info/RECORD +46 -0
  38. tunned_geobr-0.1.0.dist-info/RECORD +0 -46
  39. {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/WHEEL +0 -0
  40. {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/entry_points.txt +0 -0
  41. {tunned_geobr-0.1.0.dist-info → tunned_geobr-0.1.2.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_amazon(year=2012, simplified=True, verbose=False):
@@ -29,7 +29,7 @@ def read_amazon(year=2012, simplified=True, verbose=False):
29
29
 
30
30
  Example
31
31
  -------
32
- >>> from cursed_geobr import read_amazon
32
+ >>> from geobr import read_amazon
33
33
 
34
34
  # Read specific state at a given year
35
35
  >>> df = read_amazon(year=2012)
@@ -25,7 +25,7 @@ def read_atlantic_forest_ibas(simplified=False):
25
25
 
26
26
  Example
27
27
  -------
28
- >>> from cursed_geobr import read_atlantic_forest_ibas
28
+ >>> from geobr import read_atlantic_forest_ibas
29
29
 
30
30
  # Read Atlantic Forest IBAs data
31
31
  >>> ibas = read_atlantic_forest_ibas()
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_biomes(year=2019, simplified=True, verbose=False):
@@ -30,7 +30,7 @@ def read_biomes(year=2019, simplified=True, verbose=False):
30
30
 
31
31
  Example
32
32
  -------
33
- >>> from cursed_geobr import read_biomes
33
+ >>> from geobr import read_biomes
34
34
 
35
35
  # Read specific state at a given year
36
36
  >>> df = read_biomes(year=2019)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg, test_options
1
+ from geobr.utils import select_metadata, download_gpkg, test_options
2
2
 
3
3
 
4
4
  def read_census_tract(
@@ -34,7 +34,7 @@ def read_census_tract(
34
34
 
35
35
  Example
36
36
  -------
37
- >>> from cursed_geobr import read_census_tract
37
+ >>> from geobr import read_census_tract
38
38
 
39
39
  # Read rural census tracts for years before 2007
40
40
  >>> df = read_census_tract(code_tract=5201108, year=2000, zone='rural')
@@ -25,7 +25,7 @@ def read_climate_aggressiveness(simplified=False):
25
25
 
26
26
  Example
27
27
  -------
28
- >>> from cursed_geobr import read_climate_aggressiveness
28
+ >>> from geobr import read_climate_aggressiveness
29
29
 
30
30
  # Read climate aggressiveness data
31
31
  >>> climate = read_climate_aggressiveness()
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_comparable_areas(
@@ -38,7 +38,7 @@ def read_comparable_areas(
38
38
 
39
39
  Example
40
40
  -------
41
- >>> from cursed_geobr import read_comparable_areas
41
+ >>> from geobr import read_comparable_areas
42
42
 
43
43
  # Read specific state at a given year
44
44
  >>> df = read_comparable_areas(year=)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_conservation_units(date=201909, simplified=True, verbose=False):
@@ -30,7 +30,7 @@ def read_conservation_units(date=201909, simplified=True, verbose=False):
30
30
 
31
31
  Example
32
32
  -------
33
- >>> from cursed_geobr import read_conservation_units
33
+ >>> from geobr import read_conservation_units
34
34
 
35
35
  # Read specific state at a given year
36
36
  >>> df = read_conservation_units(date=201909)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_country(year=2010, simplified=True, verbose=False):
@@ -30,7 +30,7 @@ def read_country(year=2010, simplified=True, verbose=False):
30
30
 
31
31
  Example
32
32
  -------
33
- >>> from cursed_geobr import read_country
33
+ >>> from geobr import read_country
34
34
 
35
35
  # Read specific state at a given year
36
36
  >>> df = read_country(year=2010)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_disaster_risk_area(year=2010, simplified=True, verbose=False):
@@ -34,7 +34,7 @@ def read_disaster_risk_area(year=2010, simplified=True, verbose=False):
34
34
 
35
35
  Example
36
36
  -------
37
- >>> from cursed_geobr import read_disaster_risk_area
37
+ >>> from geobr import read_disaster_risk_area
38
38
 
39
39
  # Read specific state at a given year
40
40
  >>> df = read_disaster_risk_area(year=2010)
@@ -24,7 +24,7 @@ def read_geology(simplified=False):
24
24
 
25
25
  Example
26
26
  -------
27
- >>> from cursed_geobr import read_geology
27
+ >>> from geobr import read_geology
28
28
 
29
29
  # Read geology data
30
30
  >>> geology = read_geology()
@@ -24,7 +24,7 @@ def read_geomorphology(simplified=False):
24
24
 
25
25
  Example
26
26
  -------
27
- >>> from cursed_geobr import read_geomorphology
27
+ >>> from geobr import read_geomorphology
28
28
 
29
29
  # Read geomorphology data
30
30
  >>> geomorph = read_geomorphology()
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_health_facilities(date=202303, verbose=False):
@@ -36,7 +36,7 @@ def read_health_facilities(date=202303, verbose=False):
36
36
 
37
37
  Example
38
38
  -------
39
- >>> from cursed_geobr import read_health_facilities
39
+ >>> from geobr import read_health_facilities
40
40
 
41
41
  # Read specific state at a given year
42
42
  >>> df = read_health_facilities()
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_health_region(year=2013, macro=False, simplified=True, verbose=False):
@@ -34,7 +34,7 @@ def read_health_region(year=2013, macro=False, simplified=True, verbose=False):
34
34
 
35
35
  Example
36
36
  -------
37
- >>> from cursed_geobr import read_health_region
37
+ >>> from geobr import read_health_region
38
38
 
39
39
  # Read specific state at a given year
40
40
  >>> df = read_health_region(year=2013)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg, change_type_list, test_options
1
+ from geobr.utils import select_metadata, download_gpkg, change_type_list, test_options
2
2
 
3
3
 
4
4
  def read_immediate_region(
@@ -39,7 +39,7 @@ def read_immediate_region(
39
39
 
40
40
  Example
41
41
  -------
42
- >>> from cursed_geobr import read_immediate_region
42
+ >>> from geobr import read_immediate_region
43
43
 
44
44
  # Read specific state at a given year
45
45
  >>> df = read_immediate_region(year=2017)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_indigenous_land(date=201907, simplified=True, verbose=False):
@@ -31,7 +31,7 @@ def read_indigenous_land(date=201907, simplified=True, verbose=False):
31
31
 
32
32
  Example
33
33
  -------
34
- >>> from cursed_geobr import read_indigenous_land
34
+ >>> from geobr import read_indigenous_land
35
35
 
36
36
  # Read specific state at a given year
37
37
  >>> df = read_indigenous_land(date=201907)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_intermediate_region(
@@ -39,7 +39,7 @@ def read_intermediate_region(
39
39
 
40
40
  Example
41
41
  -------
42
- >>> from cursed_geobr import read_intermediate_region
42
+ >>> from geobr import read_intermediate_region
43
43
 
44
44
  # Read specific state at a given year
45
45
  >>> df = read_intermediate_region(year=2019)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_meso_region(code_meso="all", year=2010, simplified=True, verbose=False):
@@ -32,7 +32,7 @@ def read_meso_region(code_meso="all", year=2010, simplified=True, verbose=False)
32
32
 
33
33
  Example
34
34
  -------
35
- >>> from cursed_geobr import read_meso_region
35
+ >>> from geobr import read_meso_region
36
36
 
37
37
  # Read specific meso region at a given year
38
38
  >>> df = read_meso_region(code_meso=3301, year=2018)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_metro_area(year=2018, simplified=True, verbose=False):
@@ -31,7 +31,7 @@ def read_metro_area(year=2018, simplified=True, verbose=False):
31
31
 
32
32
  Example
33
33
  -------
34
- >>> from cursed_geobr import read_metro_area
34
+ >>> from geobr import read_metro_area
35
35
 
36
36
  # Read specific state at a given year
37
37
  >>> df = read_metro_area(year=2018)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_micro_region(code_micro="all", year=2010, simplified=True, verbose=False):
@@ -32,7 +32,7 @@ def read_micro_region(code_micro="all", year=2010, simplified=True, verbose=Fals
32
32
 
33
33
  Example
34
34
  -------
35
- >>> from cursed_geobr import read_micro_region
35
+ >>> from geobr import read_micro_region
36
36
 
37
37
  # Read specific meso region at a given year
38
38
  >>> df = read_micro_region(code_micro=11008, year=2018)
@@ -24,7 +24,7 @@ def read_mining_processes(simplified=False):
24
24
 
25
25
  Example
26
26
  -------
27
- >>> from cursed_geobr import read_mining_processes
27
+ >>> from geobr import read_mining_processes
28
28
 
29
29
  # Read mining processes data
30
30
  >>> mining = read_mining_processes()
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_municipal_seat(year=2010, verbose=False):
@@ -28,7 +28,7 @@ def read_municipal_seat(year=2010, verbose=False):
28
28
 
29
29
  Example
30
30
  -------
31
- >>> from cursed_geobr import read_municipal_seat
31
+ >>> from geobr import read_municipal_seat
32
32
 
33
33
  # Read specific state at a given year
34
34
  >>> df = read_municipal_seat(year=2010)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_municipality(code_muni="all", year=2010, simplified=True, verbose=False):
@@ -32,7 +32,7 @@ def read_municipality(code_muni="all", year=2010, simplified=True, verbose=False
32
32
 
33
33
  Example
34
34
  -------
35
- >>> from cursed_geobr import read_municipality
35
+ >>> from geobr import read_municipality
36
36
 
37
37
  # Read specific meso region at a given year
38
38
  >>> df = read_municipality(code_muni=1200179, year=2018)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_neighborhood(year=2010, simplified=True, verbose=False):
@@ -26,7 +26,7 @@ def read_neighborhood(year=2010, simplified=True, verbose=False):
26
26
 
27
27
  Example
28
28
  -------
29
- >>> from cursed_geobr import read_neighborhood
29
+ >>> from geobr import read_neighborhood
30
30
 
31
31
  # Read specific neighborhoods at a given year
32
32
  >>> df = read_neighborhood(year=2010)
@@ -24,7 +24,7 @@ def read_pedology(simplified=False):
24
24
 
25
25
  Example
26
26
  -------
27
- >>> from cursed_geobr import read_pedology
27
+ >>> from geobr import read_pedology
28
28
 
29
29
  # Read pedology data
30
30
  >>> pedology = read_pedology()
@@ -1,5 +1,5 @@
1
1
 
2
- from cursed_geobr.utils import select_metadata, download_gpkg
2
+ from geobr.utils import select_metadata, download_gpkg
3
3
 
4
4
 
5
5
  def read_pop_arrangements(year=2015, simplified=True, verbose=False):
@@ -32,7 +32,7 @@ def read_pop_arrangements(year=2015, simplified=True, verbose=False):
32
32
 
33
33
  Example
34
34
  -------
35
- >>> from cursed_geobr import read_pop_arrangements
35
+ >>> from geobr import read_pop_arrangements
36
36
 
37
37
  # Read specific state at a given year
38
38
  >>> df = read_pop_arrangements(year=2015)
@@ -1,10 +1,10 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr import read_region as _read_region
2
2
 
3
3
 
4
4
  def read_region(year=2010, simplified=True, verbose=False):
5
5
  """ Download shape file of Brazil Regions as sf objects.
6
6
 
7
- Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
7
+ Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
8
8
 
9
9
  Parameters
10
10
  ----------
@@ -21,21 +21,11 @@ def read_region(year=2010, simplified=True, verbose=False):
21
21
  gpd.GeoDataFrame
22
22
  Metadata and geopackage of selected states
23
23
 
24
- Raises
25
- ------
26
- Exception
27
- If parameters are not found or not well defined
28
-
29
24
  Example
30
25
  -------
31
- >>> from cursed_geobr import read_region
26
+ >>> from tunned_geobr import read_region
32
27
 
33
28
  # Read specific state at a given year
34
29
  >>> df = read_region(year=2010)
35
30
  """
36
-
37
- metadata = select_metadata("regions", year=year, simplified=simplified)
38
-
39
- gdf = download_gpkg(metadata)
40
-
41
- return gdf
31
+ return _read_region(year=year, simplified=simplified, verbose=verbose)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_schools(year=2020, verbose=False):
@@ -31,7 +31,7 @@ def read_schools(year=2020, verbose=False):
31
31
 
32
32
  Example
33
33
  -------
34
- >>> from cursed_geobr import read_schools
34
+ >>> from geobr import read_schools
35
35
 
36
36
  # Read specific state at a given year
37
37
  >>> df = read_schools(year=2020)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_semiarid(year=2017, simplified=True, verbose=False):
@@ -29,7 +29,7 @@ def read_semiarid(year=2017, simplified=True, verbose=False):
29
29
 
30
30
  Example
31
31
  -------
32
- >>> from cursed_geobr import read_semiarid
32
+ >>> from geobr import read_semiarid
33
33
 
34
34
  # Read specific state at a given year
35
35
  >>> df = read_semiarid(year=2017)
@@ -24,7 +24,7 @@ def read_settlements(simplified=False):
24
24
 
25
25
  Example
26
26
  -------
27
- >>> from cursed_geobr import read_settlements
27
+ >>> from geobr import read_settlements
28
28
 
29
29
  # Read settlements data
30
30
  >>> settlements = read_settlements()
@@ -1,6 +1,6 @@
1
1
  import geopandas as gpd
2
2
 
3
- from cursed_geobr.utils import select_metadata, download_gpkg
3
+ from geobr.utils import select_metadata, download_gpkg
4
4
 
5
5
 
6
6
  def read_state(code_state="all", year=2010, simplified=True, verbose=False):
@@ -33,7 +33,7 @@ def read_state(code_state="all", year=2010, simplified=True, verbose=False):
33
33
 
34
34
  Example
35
35
  -------
36
- >>> from cursed_geobr import read_state
36
+ >>> from geobr import read_state
37
37
 
38
38
  # Read specific state at a given year
39
39
  >>> uf = read_state(code_state=12, year=2017)
@@ -1,6 +1,6 @@
1
1
  import sys
2
2
  from geobr import __path__ as geobr_directory
3
- from cursed_geobr.utils import select_metadata, download_gpkg
3
+ from geobr.utils import select_metadata, download_gpkg
4
4
  from numpy import unique
5
5
  from pandas import read_csv
6
6
 
@@ -40,7 +40,7 @@ def read_statistical_grid(code_grid="all", year=2010, simplified=False, verbose=
40
40
 
41
41
  Example
42
42
  -------
43
- >>> from cursed_geobr import read_statistical_grid
43
+ >>> from geobr import read_statistical_grid
44
44
 
45
45
  # Read specific state at a given year
46
46
  >>> df = read_statistical_grid(year=2010)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_urban_area(year=2015, simplified=True, verbose=False):
@@ -31,7 +31,7 @@ def read_urban_area(year=2015, simplified=True, verbose=False):
31
31
 
32
32
  Example
33
33
  -------
34
- >>> from cursed_geobr import read_urban_area
34
+ >>> from geobr import read_urban_area
35
35
 
36
36
  # Read specific state at a given year
37
37
  >>> df = read_urban_area(year=2015)
@@ -1,5 +1,5 @@
1
1
 
2
- from cursed_geobr.utils import select_metadata, download_gpkg
2
+ from geobr.utils import select_metadata, download_gpkg
3
3
 
4
4
 
5
5
  def read_urban_concentrations(year=2015, simplified=True, verbose=False):
@@ -33,7 +33,7 @@ def read_urban_concentrations(year=2015, simplified=True, verbose=False):
33
33
 
34
34
  Example
35
35
  -------
36
- >>> from cursed_geobr import read_urban_concentrations
36
+ >>> from geobr import read_urban_concentrations
37
37
 
38
38
  # Read specific state at a given year
39
39
  >>> df = read_urban_concentrations(year=2015)
@@ -1,4 +1,4 @@
1
- from cursed_geobr.utils import select_metadata, download_gpkg
1
+ from geobr.utils import select_metadata, download_gpkg
2
2
 
3
3
 
4
4
  def read_weighting_area(
@@ -34,7 +34,7 @@ def read_weighting_area(
34
34
 
35
35
  Example
36
36
  -------
37
- >>> from cursed_geobr import read_weighting_area
37
+ >>> from geobr import read_weighting_area
38
38
 
39
39
  # Read specific state at a given year
40
40
  >>> df = read_weighting_area(year=2010)
tunned_geobr/utils.py CHANGED
@@ -9,7 +9,7 @@ import requests
9
9
  import unicodedata
10
10
  from io import StringIO
11
11
 
12
- from cursed_geobr.constants import DataTypes
12
+ from .constants import DataTypes
13
13
 
14
14
  MIRRORS = ["https://github.com/ipeaGIT/geobr/releases/download/v1.7.0/"]
15
15
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.1.0
3
+ Version: 0.1.2
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -0,0 +1,46 @@
1
+ tunned_geobr-0.1.2.dist-info/METADATA,sha256=euxhNxJq9oDNAksmW_dzvqEguhjmWKisuQ2TZk9Fo6A,3896
2
+ tunned_geobr-0.1.2.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.1.2.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.1.2.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
6
+ tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
7
+ tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
8
+ tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
9
+ tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
10
+ tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
+ tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
+ tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
13
+ tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
14
+ tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
15
+ tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
16
+ tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
17
+ tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
18
+ tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
19
+ tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
20
+ tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
21
+ tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
22
+ tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
23
+ tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
24
+ tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
25
+ tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
26
+ tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
27
+ tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
28
+ tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
29
+ tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
30
+ tunned_geobr/read_mining_processes.py,sha256=UmywViEDD9hx7qcDj9CMRHdPM69NQhsRB4870Y77QSs,2569
31
+ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juosCcVZI,1142
32
+ tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
33
+ tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
34
+ tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
35
+ tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
36
+ tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
37
+ tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
38
+ tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
39
+ tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
40
+ tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,2698
41
+ tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
42
+ tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
43
+ tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
44
+ tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
45
+ tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
46
+ tunned_geobr-0.1.2.dist-info/RECORD,,
@@ -1,46 +0,0 @@
1
- tunned_geobr-0.1.0.dist-info/METADATA,sha256=Rq_0FSHR6SbXupwxbHI_3poqz-sToBb_JurPUy9Z-9Y,3896
2
- tunned_geobr-0.1.0.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.1.0.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.1.0.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=zeKiOihNUT5yqeOzWo84E_rLZSZOwxgyEsrOuAdqT4M,1872
6
- tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
7
- tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
8
- tunned_geobr/list_geobr.py,sha256=uIH11FOltrcjIQOqFk6uHgHj2moCWH_0vWyxbMj-xtA,1252
9
- tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
10
- tunned_geobr/read_amazon.py,sha256=CpUDhNEeZPAXHEuCUl0fsKi6KyeVBFOvZrFAcLe8OEg,1299
11
- tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
- tunned_geobr/read_atlantic_forest_ibas.py,sha256=GjaNy8bKMOYRA4G5IR7gfmyAGm8EltojqdqBHZDOg7U,3577
13
- tunned_geobr/read_biomes.py,sha256=5W2toakngPWG0V7c9QP_xon__38gIkJr2xrKc2mYaN0,1351
14
- tunned_geobr/read_census_tract.py,sha256=lFIlgDqsz6zkiVWEBE97SlxgdmxuI6_fgqgWhaXcgYg,3272
15
- tunned_geobr/read_climate_aggressiveness.py,sha256=r7dNvFQ7mo0B5PUWEv28x4aYAD-jF6JiSV7Oydq6N-0,2811
16
- tunned_geobr/read_comparable_areas.py,sha256=NUyHfGaKoqNBfQUID2uZc-CrZLTxGN_5gJog-I7XZS0,2122
17
- tunned_geobr/read_conservation_units.py,sha256=-RYV3x06LZDqQKAtmiDLwEV07TxKxCbXI4mKENxJZbk,1393
18
- tunned_geobr/read_country.py,sha256=wDfG95wFz16iy0WpSxyrezO3hqr3v5xJRK94pDJAneM,1371
19
- tunned_geobr/read_disaster_risk_area.py,sha256=r6Ccf8yr-zr2IZSPc5jHNsECvesnlG0Yfek1Q5-S5Rw,1859
20
- tunned_geobr/read_geology.py,sha256=q6o3E8DQ5NBc2wJ9rJfGLN5qSI9_0vQG48xil-f7jzM,2773
21
- tunned_geobr/read_geomorphology.py,sha256=h2Si0OXHBBna1eMN9LzgiV5IttRyzcnCSe2tqx6frYk,2850
22
- tunned_geobr/read_health_facilities.py,sha256=ujfg6nbuoefUvhGV69sETKXgog90s6r3wwU8JQa-jUM,2026
23
- tunned_geobr/read_health_region.py,sha256=3j-Y4NTTrnUuTpFWhWfJDtsfmlRzJBRBv3n9QCvOEtU,1846
24
- tunned_geobr/read_immediate_region.py,sha256=nIDFssnaPzmvAPYrNuRhLIqczampQct4l8JaoWv90L0,2568
25
- tunned_geobr/read_indigenous_land.py,sha256=ByE_VUwHhVf1V-rOBzuyCmwKnHdpk2AcSWZBQ3UsWQo,1473
26
- tunned_geobr/read_intermediate_region.py,sha256=oo9lvrttInePaaSpHPZSrxDlx80u900HA5BvrVP1tTU,2199
27
- tunned_geobr/read_meso_region.py,sha256=LDW2lufe8yqToE79intlHBWmXWB5PS2j3C4Zh8ElOhg,2615
28
- tunned_geobr/read_metro_area.py,sha256=xvpdASJJamFN7qikPKjrytMKoNwIVRfRoR37lUsQo0g,1511
29
- tunned_geobr/read_micro_region.py,sha256=n0oAeIdyZGo2tkoSYzcP8OfvAkwTRTkH4rMOnfKzgI4,2523
30
- tunned_geobr/read_mining_processes.py,sha256=oVhCqhIQwLTXmaL6RRCmF-i81OLj-0Lb2k7SHiYgaf8,2576
31
- tunned_geobr/read_municipal_seat.py,sha256=jiDn6jbULbl5KQlmpowqZTLW2P0z1H9P8zIzMcPETKk,1156
32
- tunned_geobr/read_municipality.py,sha256=RrCg8MULpCgTwX3ngcIH0YpHcI0GR4CubF4AIgXdwqE,2607
33
- tunned_geobr/read_neighborhood.py,sha256=rk7U9ZamkkdKrYcd18TNu0Pjhr7OQN4RY8BUVfa9Xcw,1098
34
- tunned_geobr/read_pedology.py,sha256=yqzn6lEBS__6_SIUtneJzJVCc3l0XGs3vqO68ylDUSs,2790
35
- tunned_geobr/read_pop_arrangements.py,sha256=NN4zvU4P4G6_3PDshQFpmYgRlcCqwPqD8DdKyw6a714,1399
36
- tunned_geobr/read_region.py,sha256=osFZJI-DPndNABs3dqtZamcJGW5hNRx4CgQmU9Mo7cA,1118
37
- tunned_geobr/read_schools.py,sha256=RZbb_glUfppPF2RxJwKIMhHB7BAZzfY2tnVkyIE9HuQ,1378
38
- tunned_geobr/read_semiarid.py,sha256=9zNQepAnC1Sc89E-1YMd_QSFz5dH0Z-I7W7469-0jHo,1371
39
- tunned_geobr/read_settlements.py,sha256=jh7hbXX63NBnG-q1meO4ed0NvBfLzdY17_PT7p-lbDs,3067
40
- tunned_geobr/read_state.py,sha256=cM44s3hBOknwbOQxAP9J7SRWuSrA97YAW1GEw_G5bFE,2712
41
- tunned_geobr/read_statistical_grid.py,sha256=2ZoT-kbuvVkKEoTIfIiAc2jLM789cWWE3E8-HA_S-VA,4493
42
- tunned_geobr/read_urban_area.py,sha256=3n31dj-21glSA2qQI88ELz00-nRGcpNunBpPYb0h3RQ,1377
43
- tunned_geobr/read_urban_concentrations.py,sha256=mPEZIDyyGUxriqhtDwD_cGbVaJNYX11_11Vj42s-cls,1441
44
- tunned_geobr/read_weighting_area.py,sha256=ggXpUnNtXBGsXdBjhwuaCWgKReQjb1wNkFFtB2bkuNk,2338
45
- tunned_geobr/utils.py,sha256=by8mOgQlpY6uXX2dtstTLdEgjMcI0lnLzQ8deA3DYus,8182
46
- tunned_geobr-0.1.0.dist-info/RECORD,,