tt-perf-report 1.1.3__py3-none-any.whl → 1.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tt-perf-report might be problematic. Click here for more details.

@@ -581,7 +581,10 @@ def add_derived_columns(rows):
581
581
  for op_data in rows:
582
582
  device_time = op_data["Device Time"].raw_value if op_data["Device Time"].raw_value is not None else 0
583
583
  op_to_op_gap = op_data["Op-to-Op Gap"].raw_value if op_data["Op-to-Op Gap"].raw_value is not None else 0
584
- op_data["Total %"] = Cell(((device_time + op_to_op_gap) / total_duration) * 100, unit="%", decimals=1)
584
+ if total_duration != 0:
585
+ op_data["Total %"] = Cell(((device_time + op_to_op_gap) / total_duration) * 100, unit="%", decimals=1)
586
+ else:
587
+ op_data["Total %"] = Cell(None, unit="%", decimals=1)
585
588
  if op_data["Device Time"].raw_value is None and op_data["Op-to-Op Gap"].raw_value is None:
586
589
  op_data["Total %"].raw_value = None
587
590
 
@@ -888,6 +891,12 @@ def generate_stacked_report(rows, visible_headers, stack_by_input0_layout:bool =
888
891
 
889
892
  # Calculate the percentage of device time
890
893
  total_device_time = stacked_df["Device_Time_Sum_us"].sum()
894
+
895
+ if total_device_time != 0:
896
+ stacked_df["%"] = (stacked_df["Device_Time_Sum_us"] / total_device_time) * 100
897
+ else:
898
+ stacked_df["%"] = 0
899
+
891
900
  stacked_df["%"] = (stacked_df["Device_Time_Sum_us"] / total_device_time) * 100
892
901
  # Reorder columns to move Device_Time_Percentage to be the 3rd column
893
902
  cols = stacked_df.columns.tolist()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tt-perf-report
3
- Version: 1.1.3
3
+ Version: 1.1.5
4
4
  Summary: This tool analyzes performance traces from TT-Metal operations, providing insights into throughput, bottlenecks, and optimization opportunities.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -0,0 +1,9 @@
1
+ tt_perf_report/__init__.py,sha256=-j4iFYebIwgdS8uphk8-M6zasRqGBL3CQGnJH9keRuI,92
2
+ tt_perf_report/perf_report.py,sha256=Ziln0oeY7zQVUcVLaHwkh17taz6CGyR9r32Yd3PhKko,49951
3
+ tt_perf_report-1.1.5.dist-info/licenses/LICENSE,sha256=6dZGjPECz_ULS-sf40FLlt6OmQFcrRvmzG5mJRZCQ5I,11825
4
+ tt_perf_report-1.1.5.dist-info/licenses/LICENSE_understanding.txt,sha256=pymi-yb_RvYM9p2ZA4iSNsImcvhDBBxlGuJCY9dTq7M,233
5
+ tt_perf_report-1.1.5.dist-info/METADATA,sha256=iGf6JsPN_wjHpDlSLC99Pso9J9Ez2x7wZHGK0JY-yR0,18393
6
+ tt_perf_report-1.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
7
+ tt_perf_report-1.1.5.dist-info/entry_points.txt,sha256=ReAziglcjbAkPbklqheUISkfoEVI5ptlFrBAJTIk5dI,67
8
+ tt_perf_report-1.1.5.dist-info/top_level.txt,sha256=mEQ-BK3rRbmz9QyWitTCLy2xwmC5rmJno_TY_H9s9CE,15
9
+ tt_perf_report-1.1.5.dist-info/RECORD,,
@@ -1,9 +0,0 @@
1
- tt_perf_report/__init__.py,sha256=-j4iFYebIwgdS8uphk8-M6zasRqGBL3CQGnJH9keRuI,92
2
- tt_perf_report/perf_report.py,sha256=cTCiKsXK7M9NQN6-FygSUUqd-NMINRDLObB2LdSwa8Y,49669
3
- tt_perf_report-1.1.3.dist-info/licenses/LICENSE,sha256=6dZGjPECz_ULS-sf40FLlt6OmQFcrRvmzG5mJRZCQ5I,11825
4
- tt_perf_report-1.1.3.dist-info/licenses/LICENSE_understanding.txt,sha256=pymi-yb_RvYM9p2ZA4iSNsImcvhDBBxlGuJCY9dTq7M,233
5
- tt_perf_report-1.1.3.dist-info/METADATA,sha256=0yj5IjC220k9Ms4iww37d1zoi9uq6nIyZINtUuyCBQw,18393
6
- tt_perf_report-1.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
7
- tt_perf_report-1.1.3.dist-info/entry_points.txt,sha256=ReAziglcjbAkPbklqheUISkfoEVI5ptlFrBAJTIk5dI,67
8
- tt_perf_report-1.1.3.dist-info/top_level.txt,sha256=mEQ-BK3rRbmz9QyWitTCLy2xwmC5rmJno_TY_H9s9CE,15
9
- tt_perf_report-1.1.3.dist-info/RECORD,,