tsp 1.7.7__py3-none-any.whl → 1.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tsp might be problematic. Click here for more details.

Files changed (92) hide show
  1. tsp/__init__.py +11 -11
  2. tsp/__meta__.py +1 -1
  3. tsp/concatenation.py +153 -0
  4. tsp/core.py +1108 -1035
  5. tsp/data/2023-01-06_755-test-Dataset_2031-Constant_Over_Interval-Hourly-Ground_Temperature-Thermistor_Automated.timeserie.csv +4 -4
  6. tsp/data/2023-01-06_755-test.metadata.txt +208 -208
  7. tsp/data/NTGS_example_csv.csv +6 -6
  8. tsp/data/NTGS_example_slash_dates.csv +6 -6
  9. tsp/data/example_geotop.csv +5240 -5240
  10. tsp/data/example_gtnp.csv +1298 -1298
  11. tsp/data/example_permos.csv +7 -7
  12. tsp/data/test_geotop_has_space.txt +5 -5
  13. tsp/dataloggers/AbstractReader.py +43 -43
  14. tsp/dataloggers/FG2.py +110 -110
  15. tsp/dataloggers/GP5W.py +114 -114
  16. tsp/dataloggers/Geoprecision.py +34 -34
  17. tsp/dataloggers/HOBO.py +914 -914
  18. tsp/dataloggers/RBRXL800.py +190 -190
  19. tsp/dataloggers/RBRXR420.py +308 -308
  20. tsp/dataloggers/__init__.py +15 -15
  21. tsp/dataloggers/logr.py +115 -115
  22. tsp/dataloggers/test_files/004448.DAT +2543 -2543
  23. tsp/dataloggers/test_files/004531.DAT +17106 -17106
  24. tsp/dataloggers/test_files/004531.HEX +3587 -3587
  25. tsp/dataloggers/test_files/004534.HEX +3587 -3587
  26. tsp/dataloggers/test_files/010252.dat +1731 -1731
  27. tsp/dataloggers/test_files/010252.hex +1739 -1739
  28. tsp/dataloggers/test_files/010274.hex +1291 -1291
  29. tsp/dataloggers/test_files/010278.hex +3544 -3544
  30. tsp/dataloggers/test_files/012064.dat +1286 -1286
  31. tsp/dataloggers/test_files/012064.hex +1294 -1294
  32. tsp/dataloggers/test_files/012081.hex +3532 -3532
  33. tsp/dataloggers/test_files/07B1592.DAT +1483 -1483
  34. tsp/dataloggers/test_files/07B1592.HEX +1806 -1806
  35. tsp/dataloggers/test_files/07B4450.DAT +2234 -2234
  36. tsp/dataloggers/test_files/07B4450.HEX +2559 -2559
  37. tsp/dataloggers/test_files/FG2_399.csv +9881 -9881
  38. tsp/dataloggers/test_files/GP5W.csv +1121 -1121
  39. tsp/dataloggers/test_files/GP5W_260.csv +1884 -1884
  40. tsp/dataloggers/test_files/GP5W_270.csv +2210 -2210
  41. tsp/dataloggers/test_files/H08-030-08_HOBOware.csv +998 -998
  42. tsp/dataloggers/test_files/RBR_01.dat +1046 -1046
  43. tsp/dataloggers/test_files/RBR_02.dat +2426 -2426
  44. tsp/dataloggers/test_files/RSTDT2055.csv +2152 -2152
  45. tsp/dataloggers/test_files/U23-001_HOBOware.csv +1001 -1001
  46. tsp/dataloggers/test_files/hobo-negative-2.txt +6396 -6396
  47. tsp/dataloggers/test_files/hobo-negative-3.txt +5593 -5593
  48. tsp/dataloggers/test_files/hobo-positive-number-1.txt +1000 -1000
  49. tsp/dataloggers/test_files/hobo-positive-number-2.csv +1003 -1003
  50. tsp/dataloggers/test_files/hobo-positive-number-3.csv +1133 -1133
  51. tsp/dataloggers/test_files/hobo-positive-number-4.csv +1209 -1209
  52. tsp/dataloggers/test_files/hobo2.csv +8702 -8702
  53. tsp/dataloggers/test_files/hobo_1_AB.csv +21732 -21732
  54. tsp/dataloggers/test_files/hobo_1_AB_Details.txt +133 -133
  55. tsp/dataloggers/test_files/hobo_1_AB_classic.csv +4373 -4373
  56. tsp/dataloggers/test_files/hobo_1_AB_defaults.csv +21732 -21732
  57. tsp/dataloggers/test_files/hobo_1_AB_minimal.txt +1358 -1358
  58. tsp/dataloggers/test_files/hobo_1_AB_var2.csv +3189 -3189
  59. tsp/dataloggers/test_files/hobo_1_AB_var3.csv +2458 -2458
  60. tsp/dataloggers/test_files/logR_ULogC16-32_1.csv +106 -106
  61. tsp/dataloggers/test_files/logR_ULogC16-32_2.csv +100 -100
  62. tsp/dataloggers/test_files/mon_3_Ta_2010-08-18_2013-02-08.txt +21724 -21724
  63. tsp/dataloggers/test_files/rbr_001.dat +1133 -1133
  64. tsp/dataloggers/test_files/rbr_001.hex +1139 -1139
  65. tsp/dataloggers/test_files/rbr_001_no_comment.dat +1132 -1132
  66. tsp/dataloggers/test_files/rbr_001_no_comment.hex +1138 -1138
  67. tsp/dataloggers/test_files/rbr_002.dat +1179 -1179
  68. tsp/dataloggers/test_files/rbr_002.hex +1185 -1185
  69. tsp/dataloggers/test_files/rbr_003.hex +1292 -1292
  70. tsp/dataloggers/test_files/rbr_003.xls +0 -0
  71. tsp/dataloggers/test_files/rbr_xl_001.DAT +1105 -1105
  72. tsp/dataloggers/test_files/rbr_xl_002.DAT +1126 -1126
  73. tsp/dataloggers/test_files/rbr_xl_003.DAT +4622 -4622
  74. tsp/dataloggers/test_files/rbr_xl_003.HEX +3587 -3587
  75. tsp/gtnp.py +148 -148
  76. tsp/labels.py +3 -3
  77. tsp/misc.py +90 -90
  78. tsp/physics.py +101 -101
  79. tsp/plots/static.py +373 -373
  80. tsp/readers.py +548 -548
  81. tsp/time.py +45 -45
  82. tsp/tspwarnings.py +14 -14
  83. tsp/utils.py +101 -101
  84. tsp/version.py +1 -1
  85. {tsp-1.7.7.dist-info → tsp-1.8.0.dist-info}/METADATA +30 -23
  86. tsp-1.8.0.dist-info/RECORD +94 -0
  87. {tsp-1.7.7.dist-info → tsp-1.8.0.dist-info}/WHEEL +5 -5
  88. {tsp-1.7.7.dist-info → tsp-1.8.0.dist-info/licenses}/LICENSE +674 -674
  89. tsp/dataloggers/test_files/CSc_CR1000_1.dat +0 -295
  90. tsp/scratch.py +0 -6
  91. tsp-1.7.7.dist-info/RECORD +0 -95
  92. {tsp-1.7.7.dist-info → tsp-1.8.0.dist-info}/top_level.txt +0 -0
tsp/gtnp.py CHANGED
@@ -1,148 +1,148 @@
1
- from datetime import timezone, timedelta, tzinfo
2
- from typing import Optional
3
- from collections import OrderedDict
4
-
5
- import re
6
- import warnings
7
-
8
- from tsp.time import get_utc_offset
9
-
10
-
11
- class GtnpMetadata:
12
- def __init__(self, filepath):
13
- """A class to read GTN-P metadata files
14
-
15
- Parameters
16
- ----------
17
- filepath : str
18
- Path to GTN-P *.metadata.txt file.
19
- """
20
- self.filepath = filepath
21
- self._dict = OrderedDict()
22
- self._read()
23
- self._parse()
24
-
25
- def _read(self):
26
- try:
27
- with open(self.filepath, 'r') as f:
28
- self._raw = f.readlines()
29
-
30
- except UnicodeDecodeError:
31
- warnings.warn("Couldn't read file with utf-8 encoding. Metadata might be corrupted.")
32
- with open(self.filepath, 'r', errors='ignore') as f:
33
- self._raw = f.readlines()
34
-
35
- @property
36
- def raw(self) -> 'list[str]':
37
- return self._raw
38
-
39
- @raw.setter
40
- def raw(self, value):
41
- raise ValueError("Cannot set")
42
-
43
- @property
44
- def parsed(self) -> dict:
45
- return self._dict
46
-
47
- def _parse(self):
48
- lines = [line for line in self._raw] # Make a copy in case we need to use fallback plan
49
-
50
- try:
51
- self._dict = OrderedDict()
52
- recursively_build_metadata(lines, self._dict)
53
-
54
- except Exception:
55
- print("Couldn't build nested dictionary. Fallback to simple dictionary.")
56
- self._dict = OrderedDict()
57
- self._parse_dict()
58
-
59
-
60
- def _parse_dict(self) -> None:
61
- pattern = re.compile(r"^([^:]+):\s*(.*)$")
62
-
63
- for line in self._raw:
64
- result = pattern.match(line)
65
- if result:
66
- key, value = result.groups()
67
-
68
- if value.strip() != "":
69
- self._dict[key] = value.strip()
70
-
71
- def get_timezone(self) -> Optional[tzinfo]:
72
- try:
73
- zone = self._dict['Timezone']
74
- except KeyError:
75
- return None
76
-
77
- if zone == 'UTC':
78
- return timezone.utc
79
- elif isinstance(zone, str):
80
- seconds = get_utc_offset(zone.strip())
81
- tz = timezone(timedelta(seconds=seconds))
82
- return tz
83
-
84
- def get_latitude(self) -> Optional[float]:
85
- try:
86
- return float(self._dict['Latitude'])
87
- except KeyError:
88
- return None
89
-
90
- def get_longitude(self) -> Optional[float]:
91
- try:
92
- return float(self._dict['Longitude'])
93
- except KeyError:
94
- return None
95
-
96
-
97
- def recursively_build_metadata(lines: list, odict: OrderedDict, depth:int=0) -> None:
98
- """ A recursive function to build an OrderedDict from a list of lines.
99
-
100
- The function expects lines to be in the format:
101
- Key: Value
102
- Key: Value
103
- Key:
104
- Subkey: Multi line Subvalue
105
- Multi line Subvalue
106
- Multi line Subvalue
107
- Subkey: Subvalue
108
- Subkey:
109
- Subsubkey: Subsubvalue
110
-
111
- Parameters
112
- ----------
113
- lines : list
114
- A list of lines from a metadata file.
115
- odict : OrderedDict
116
- An OrderedDict to build.
117
- depth : int, optional
118
- The depth of the OrderedDict, by default 0
119
-
120
- """
121
- pattern = re.compile(r"^(\t*)([^:]+):\s*(.*)$")
122
-
123
- while lines:
124
- line = lines.pop(0)
125
- result = pattern.match(line)
126
-
127
- if result:
128
- tabs, key, value = result.groups()
129
-
130
- if len(tabs) < depth: # Un-indent, return to previous level
131
- lines.insert(0, line)
132
- return
133
-
134
- if value.strip() != "": # Valid key:value pair
135
- odict[key] = value.strip()
136
-
137
- else: # Empty value, recurse
138
- odict[key] = OrderedDict()
139
- recursively_build_metadata(lines, odict[key], depth=depth+1)
140
-
141
- else: # Multi-line value
142
- try:
143
- odict[next(reversed(odict))] = odict[next(reversed(odict))] + line
144
- except StopIteration: # If no key:value pair has been added yet
145
- continue
146
- except TypeError: # If the value is not a string
147
- continue
148
- continue
1
+ from datetime import timezone, timedelta, tzinfo
2
+ from typing import Optional
3
+ from collections import OrderedDict
4
+
5
+ import re
6
+ import warnings
7
+
8
+ from tsp.time import get_utc_offset
9
+
10
+
11
+ class GtnpMetadata:
12
+ def __init__(self, filepath):
13
+ """A class to read GTN-P metadata files
14
+
15
+ Parameters
16
+ ----------
17
+ filepath : str
18
+ Path to GTN-P *.metadata.txt file.
19
+ """
20
+ self.filepath = filepath
21
+ self._dict = OrderedDict()
22
+ self._read()
23
+ self._parse()
24
+
25
+ def _read(self):
26
+ try:
27
+ with open(self.filepath, 'r') as f:
28
+ self._raw = f.readlines()
29
+
30
+ except UnicodeDecodeError:
31
+ warnings.warn("Couldn't read file with utf-8 encoding. Metadata might be corrupted.")
32
+ with open(self.filepath, 'r', errors='ignore') as f:
33
+ self._raw = f.readlines()
34
+
35
+ @property
36
+ def raw(self) -> 'list[str]':
37
+ return self._raw
38
+
39
+ @raw.setter
40
+ def raw(self, value):
41
+ raise ValueError("Cannot set")
42
+
43
+ @property
44
+ def parsed(self) -> dict:
45
+ return self._dict
46
+
47
+ def _parse(self):
48
+ lines = [line for line in self._raw] # Make a copy in case we need to use fallback plan
49
+
50
+ try:
51
+ self._dict = OrderedDict()
52
+ recursively_build_metadata(lines, self._dict)
53
+
54
+ except Exception:
55
+ print("Couldn't build nested dictionary. Fallback to simple dictionary.")
56
+ self._dict = OrderedDict()
57
+ self._parse_dict()
58
+
59
+
60
+ def _parse_dict(self) -> None:
61
+ pattern = re.compile(r"^([^:]+):\s*(.*)$")
62
+
63
+ for line in self._raw:
64
+ result = pattern.match(line)
65
+ if result:
66
+ key, value = result.groups()
67
+
68
+ if value.strip() != "":
69
+ self._dict[key] = value.strip()
70
+
71
+ def get_timezone(self) -> Optional[tzinfo]:
72
+ try:
73
+ zone = self._dict['Timezone']
74
+ except KeyError:
75
+ return None
76
+
77
+ if zone == 'UTC':
78
+ return timezone.utc
79
+ elif isinstance(zone, str):
80
+ seconds = get_utc_offset(zone.strip())
81
+ tz = timezone(timedelta(seconds=seconds))
82
+ return tz
83
+
84
+ def get_latitude(self) -> Optional[float]:
85
+ try:
86
+ return float(self._dict['Latitude'])
87
+ except KeyError:
88
+ return None
89
+
90
+ def get_longitude(self) -> Optional[float]:
91
+ try:
92
+ return float(self._dict['Longitude'])
93
+ except KeyError:
94
+ return None
95
+
96
+
97
+ def recursively_build_metadata(lines: list, odict: OrderedDict, depth:int=0) -> None:
98
+ """ A recursive function to build an OrderedDict from a list of lines.
99
+
100
+ The function expects lines to be in the format:
101
+ Key: Value
102
+ Key: Value
103
+ Key:
104
+ Subkey: Multi line Subvalue
105
+ Multi line Subvalue
106
+ Multi line Subvalue
107
+ Subkey: Subvalue
108
+ Subkey:
109
+ Subsubkey: Subsubvalue
110
+
111
+ Parameters
112
+ ----------
113
+ lines : list
114
+ A list of lines from a metadata file.
115
+ odict : OrderedDict
116
+ An OrderedDict to build.
117
+ depth : int, optional
118
+ The depth of the OrderedDict, by default 0
119
+
120
+ """
121
+ pattern = re.compile(r"^(\t*)([^:]+):\s*(.*)$")
122
+
123
+ while lines:
124
+ line = lines.pop(0)
125
+ result = pattern.match(line)
126
+
127
+ if result:
128
+ tabs, key, value = result.groups()
129
+
130
+ if len(tabs) < depth: # Un-indent, return to previous level
131
+ lines.insert(0, line)
132
+ return
133
+
134
+ if value.strip() != "": # Valid key:value pair
135
+ odict[key] = value.strip()
136
+
137
+ else: # Empty value, recurse
138
+ odict[key] = OrderedDict()
139
+ recursively_build_metadata(lines, odict[key], depth=depth+1)
140
+
141
+ else: # Multi-line value
142
+ try:
143
+ odict[next(reversed(odict))] = odict[next(reversed(odict))] + line
144
+ except StopIteration: # If no key:value pair has been added yet
145
+ continue
146
+ except TypeError: # If the value is not a string
147
+ continue
148
+ continue
tsp/labels.py CHANGED
@@ -1,4 +1,4 @@
1
- HOURLY = 60 * 60
2
- DAILY = HOURLY * 24
3
- MONTHLY = DAILY * 31
1
+ HOURLY = 60 * 60
2
+ DAILY = HOURLY * 24
3
+ MONTHLY = DAILY * 31
4
4
  YEARLY = DAILY * 365
tsp/misc.py CHANGED
@@ -1,90 +1,90 @@
1
- import numpy as np
2
- import pandas as pd
3
- import re
4
-
5
- import tsp.labels as lbl
6
-
7
-
8
- def _is_depth_column(col_name, pattern) -> bool:
9
- return bool(re.search(pattern, col_name))
10
-
11
-
12
- def completeness(df: pd.DataFrame, f1, f2) -> pd.DataFrame:
13
- """ Calculate completeness of an aggregated dataframe
14
- Parameters
15
- ----------
16
- df : pd.DataFrame
17
- Dataframe with temporal index and values equal to the number of observations
18
- in aggregation period
19
- f1 : str
20
- Aggregation period of data from which df is aggregated
21
- f2 : str
22
- Aggregation period of df
23
-
24
- Returns
25
- -------
26
- pd.DataFrame : Dataframe with completeness values as a decimal fraction [0,1]
27
- """
28
- # df must have temporal index
29
- C = None
30
- if f1 == lbl.HOURLY:
31
- if f2 == lbl.DAILY:
32
- C = df / 24
33
-
34
- elif f1 == lbl.DAILY:
35
- if f2 == lbl.MONTHLY:
36
- C = df / E_day_in_month(df)
37
- elif f2 == lbl.YEARLY:
38
- C = df / E_day_in_year(df)
39
-
40
- elif f1 == lbl.MONTHLY:
41
- if f2 == lbl.YEARLY:
42
- cnt = 12
43
-
44
- elif isinstance(f1, float) and isinstance(f1, float):
45
- R = f2 / f1
46
- C = df / R
47
-
48
- if C is None:
49
- raise ValueError(f"Unknown aggregation period {f1} or {f2}")
50
-
51
- return C
52
-
53
-
54
- def df_has_period(f, *args, **kwargs):
55
- df = args[0] if args[0] else kwargs.get('df')
56
- if not isinstance(df.index, pd.PeriodIndex):
57
- raise ValueError("Index must be a PeriodIndex")
58
- return f(*args, **kwargs)
59
-
60
-
61
- #@df_has_period
62
- def E_day_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
63
- """ Expected number of daily observations per year """
64
- leap = df.index.to_period().is_leap_year
65
- days = np.atleast_2d(np.where(leap, 366, 365)).transpose()
66
- result = pd.DataFrame(index=df.index,
67
- columns=df.columns,
68
- data=np.repeat(np.atleast_2d(days), df.shape[1], axis=1))
69
- return result
70
-
71
-
72
- #@df_has_period
73
- def E_month_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
74
- """ Expected number of monthly observations per year """
75
- result = pd.DataFrame(index=df.index,
76
- columns=df.columns,
77
- data=12)
78
- return result
79
-
80
-
81
- #@df_has_period
82
- def E_day_in_month(df: "pd.DataFrame") -> "pd.DataFrame":
83
- """ Expected number of daily observations per month """
84
- nday = df.index.to_period().days_in_month
85
- result = pd.DataFrame(index=df.index,
86
- columns=df.columns,
87
- data=np.repeat(np.atleast_2d(nday).transpose(), df.shape[1], axis=1))
88
- return result
89
-
90
-
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+
5
+ import tsp.labels as lbl
6
+
7
+
8
+ def _is_depth_column(col_name, pattern) -> bool:
9
+ return bool(re.search(pattern, col_name))
10
+
11
+
12
+ def completeness(df: pd.DataFrame, f1, f2) -> pd.DataFrame:
13
+ """ Calculate completeness of an aggregated dataframe
14
+ Parameters
15
+ ----------
16
+ df : pd.DataFrame
17
+ Dataframe with temporal index and values equal to the number of observations
18
+ in aggregation period
19
+ f1 : str
20
+ Aggregation period of data from which df is aggregated
21
+ f2 : str
22
+ Aggregation period of df
23
+
24
+ Returns
25
+ -------
26
+ pd.DataFrame : Dataframe with completeness values as a decimal fraction [0,1]
27
+ """
28
+ # df must have temporal index
29
+ C = None
30
+ if f1 == lbl.HOURLY:
31
+ if f2 == lbl.DAILY:
32
+ C = df / 24
33
+
34
+ elif f1 == lbl.DAILY:
35
+ if f2 == lbl.MONTHLY:
36
+ C = df / E_day_in_month(df)
37
+ elif f2 == lbl.YEARLY:
38
+ C = df / E_day_in_year(df)
39
+
40
+ elif f1 == lbl.MONTHLY:
41
+ if f2 == lbl.YEARLY:
42
+ cnt = 12
43
+
44
+ elif isinstance(f1, float) and isinstance(f1, float):
45
+ R = f2 / f1
46
+ C = df / R
47
+
48
+ if C is None:
49
+ raise ValueError(f"Unknown aggregation period {f1} or {f2}")
50
+
51
+ return C
52
+
53
+
54
+ def df_has_period(f, *args, **kwargs):
55
+ df = args[0] if args[0] else kwargs.get('df')
56
+ if not isinstance(df.index, pd.PeriodIndex):
57
+ raise ValueError("Index must be a PeriodIndex")
58
+ return f(*args, **kwargs)
59
+
60
+
61
+ #@df_has_period
62
+ def E_day_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
63
+ """ Expected number of daily observations per year """
64
+ leap = df.index.to_period().is_leap_year
65
+ days = np.atleast_2d(np.where(leap, 366, 365)).transpose()
66
+ result = pd.DataFrame(index=df.index,
67
+ columns=df.columns,
68
+ data=np.repeat(np.atleast_2d(days), df.shape[1], axis=1))
69
+ return result
70
+
71
+
72
+ #@df_has_period
73
+ def E_month_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
74
+ """ Expected number of monthly observations per year """
75
+ result = pd.DataFrame(index=df.index,
76
+ columns=df.columns,
77
+ data=12)
78
+ return result
79
+
80
+
81
+ #@df_has_period
82
+ def E_day_in_month(df: "pd.DataFrame") -> "pd.DataFrame":
83
+ """ Expected number of daily observations per month """
84
+ nday = df.index.to_period().days_in_month
85
+ result = pd.DataFrame(index=df.index,
86
+ columns=df.columns,
87
+ data=np.repeat(np.atleast_2d(nday).transpose(), df.shape[1], axis=1))
88
+ return result
89
+
90
+