tsp 1.7.3__py3-none-any.whl → 1.7.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tsp might be problematic. Click here for more details.

Files changed (91) hide show
  1. tsp/__init__.py +11 -11
  2. tsp/__meta__.py +1 -1
  3. tsp/core.py +1035 -1010
  4. tsp/data/2023-01-06_755-test-Dataset_2031-Constant_Over_Interval-Hourly-Ground_Temperature-Thermistor_Automated.timeserie.csv +4 -4
  5. tsp/data/2023-01-06_755-test.metadata.txt +208 -208
  6. tsp/data/NTGS_example_csv.csv +6 -0
  7. tsp/data/NTGS_example_slash_dates.csv +6 -0
  8. tsp/data/example_geotop.csv +5240 -5240
  9. tsp/data/example_gtnp.csv +1298 -1298
  10. tsp/data/example_permos.csv +8 -0
  11. tsp/data/test_geotop_has_space.txt +5 -5
  12. tsp/dataloggers/AbstractReader.py +43 -43
  13. tsp/dataloggers/FG2.py +110 -110
  14. tsp/dataloggers/GP5W.py +114 -114
  15. tsp/dataloggers/Geoprecision.py +34 -34
  16. tsp/dataloggers/HOBO.py +914 -914
  17. tsp/dataloggers/RBRXL800.py +190 -190
  18. tsp/dataloggers/RBRXR420.py +308 -308
  19. tsp/dataloggers/__init__.py +15 -15
  20. tsp/dataloggers/logr.py +115 -115
  21. tsp/dataloggers/test_files/004448.DAT +2543 -2543
  22. tsp/dataloggers/test_files/004531.DAT +17106 -17106
  23. tsp/dataloggers/test_files/004531.HEX +3587 -3587
  24. tsp/dataloggers/test_files/004534.HEX +3587 -3587
  25. tsp/dataloggers/test_files/010252.dat +1731 -1731
  26. tsp/dataloggers/test_files/010252.hex +1739 -1739
  27. tsp/dataloggers/test_files/010274.hex +1291 -1291
  28. tsp/dataloggers/test_files/010278.hex +3544 -3544
  29. tsp/dataloggers/test_files/012064.dat +1286 -1286
  30. tsp/dataloggers/test_files/012064.hex +1294 -1294
  31. tsp/dataloggers/test_files/012081.hex +3532 -3532
  32. tsp/dataloggers/test_files/07B1592.DAT +1483 -1483
  33. tsp/dataloggers/test_files/07B1592.HEX +1806 -1806
  34. tsp/dataloggers/test_files/07B4450.DAT +2234 -2234
  35. tsp/dataloggers/test_files/07B4450.HEX +2559 -2559
  36. tsp/dataloggers/test_files/CSc_CR1000_1.dat +295 -0
  37. tsp/dataloggers/test_files/FG2_399.csv +9881 -9881
  38. tsp/dataloggers/test_files/GP5W.csv +1121 -1121
  39. tsp/dataloggers/test_files/GP5W_260.csv +1884 -1884
  40. tsp/dataloggers/test_files/GP5W_270.csv +2210 -2210
  41. tsp/dataloggers/test_files/H08-030-08_HOBOware.csv +998 -998
  42. tsp/dataloggers/test_files/RBR_01.dat +1046 -1046
  43. tsp/dataloggers/test_files/RBR_02.dat +2426 -2426
  44. tsp/dataloggers/test_files/RSTDT2055.csv +2152 -2152
  45. tsp/dataloggers/test_files/U23-001_HOBOware.csv +1001 -1001
  46. tsp/dataloggers/test_files/hobo-negative-2.txt +6396 -6396
  47. tsp/dataloggers/test_files/hobo-negative-3.txt +5593 -5593
  48. tsp/dataloggers/test_files/hobo-positive-number-1.txt +1000 -1000
  49. tsp/dataloggers/test_files/hobo-positive-number-2.csv +1003 -1003
  50. tsp/dataloggers/test_files/hobo-positive-number-3.csv +1133 -1133
  51. tsp/dataloggers/test_files/hobo-positive-number-4.csv +1209 -1209
  52. tsp/dataloggers/test_files/hobo2.csv +8702 -8702
  53. tsp/dataloggers/test_files/hobo_1_AB.csv +21732 -21732
  54. tsp/dataloggers/test_files/hobo_1_AB_Details.txt +133 -133
  55. tsp/dataloggers/test_files/hobo_1_AB_classic.csv +4373 -4373
  56. tsp/dataloggers/test_files/hobo_1_AB_defaults.csv +21732 -21732
  57. tsp/dataloggers/test_files/hobo_1_AB_minimal.txt +1358 -1358
  58. tsp/dataloggers/test_files/hobo_1_AB_var2.csv +3189 -3189
  59. tsp/dataloggers/test_files/hobo_1_AB_var3.csv +2458 -2458
  60. tsp/dataloggers/test_files/logR_ULogC16-32_1.csv +106 -106
  61. tsp/dataloggers/test_files/logR_ULogC16-32_2.csv +100 -100
  62. tsp/dataloggers/test_files/mon_3_Ta_2010-08-18_2013-02-08.txt +21724 -21724
  63. tsp/dataloggers/test_files/rbr_001.dat +1133 -1133
  64. tsp/dataloggers/test_files/rbr_001.hex +1139 -1139
  65. tsp/dataloggers/test_files/rbr_001_no_comment.dat +1132 -1132
  66. tsp/dataloggers/test_files/rbr_001_no_comment.hex +1138 -1138
  67. tsp/dataloggers/test_files/rbr_002.dat +1179 -1179
  68. tsp/dataloggers/test_files/rbr_002.hex +1185 -1185
  69. tsp/dataloggers/test_files/rbr_003.hex +1292 -1292
  70. tsp/dataloggers/test_files/rbr_003.xls +0 -0
  71. tsp/dataloggers/test_files/rbr_xl_001.DAT +1105 -1105
  72. tsp/dataloggers/test_files/rbr_xl_002.DAT +1126 -1126
  73. tsp/dataloggers/test_files/rbr_xl_003.DAT +4622 -4622
  74. tsp/dataloggers/test_files/rbr_xl_003.HEX +3587 -3587
  75. tsp/gtnp.py +148 -141
  76. tsp/labels.py +3 -3
  77. tsp/misc.py +90 -90
  78. tsp/physics.py +101 -101
  79. tsp/plots/static.py +374 -305
  80. tsp/readers.py +548 -536
  81. tsp/scratch.py +6 -0
  82. tsp/time.py +45 -45
  83. tsp/tspwarnings.py +15 -0
  84. tsp/utils.py +101 -101
  85. tsp/version.py +1 -1
  86. {tsp-1.7.3.dist-info → tsp-1.7.7.dist-info}/LICENSE +674 -674
  87. {tsp-1.7.3.dist-info → tsp-1.7.7.dist-info}/METADATA +9 -5
  88. tsp-1.7.7.dist-info/RECORD +95 -0
  89. {tsp-1.7.3.dist-info → tsp-1.7.7.dist-info}/WHEEL +5 -5
  90. tsp-1.7.3.dist-info/RECORD +0 -89
  91. {tsp-1.7.3.dist-info → tsp-1.7.7.dist-info}/top_level.txt +0 -0
tsp/gtnp.py CHANGED
@@ -1,141 +1,148 @@
1
- from datetime import timezone, timedelta, tzinfo
2
- from typing import Optional
3
- from collections import OrderedDict
4
-
5
- import re
6
-
7
- from tsp.time import get_utc_offset
8
-
9
-
10
- class GtnpMetadata:
11
- def __init__(self, filepath):
12
- """A class to read GTN-P metadata files
13
-
14
- Parameters
15
- ----------
16
- filepath : str
17
- Path to GTN-P *.metadata.txt file.
18
- """
19
- self.filepath = filepath
20
- self._dict = OrderedDict()
21
- self._read()
22
- self._parse()
23
-
24
- def _read(self):
25
- with open(self.filepath, 'r') as f:
26
- self._raw = f.readlines()
27
-
28
- @property
29
- def raw(self) -> 'list[str]':
30
- return self._raw
31
-
32
- @raw.setter
33
- def raw(self, value):
34
- raise ValueError("Cannot set")
35
-
36
- @property
37
- def parsed(self) -> dict:
38
- return self._dict
39
-
40
- def _parse(self):
41
- lines = [line for line in self._raw] # Make a copy in case we need to use fallback plan
42
-
43
- try:
44
- self._dict = OrderedDict()
45
- recursively_build_metadata(lines, self._dict)
46
-
47
- except Exception:
48
- print("Couldn't build nested dictionary. Fallback to simple dictionary.")
49
- self._dict = OrderedDict()
50
- self._parse_dict()
51
-
52
-
53
- def _parse_dict(self) -> None:
54
- pattern = re.compile(r"^([^:]+):\s*(.*)$")
55
-
56
- for line in self._raw:
57
- result = pattern.match(line)
58
- if result:
59
- key, value = result.groups()
60
-
61
- if value.strip() != "":
62
- self._dict[key] = value.strip()
63
-
64
- def get_timezone(self) -> Optional[tzinfo]:
65
- try:
66
- zone = self._dict['Timezone']
67
- except KeyError:
68
- return None
69
-
70
- if zone == 'UTC':
71
- return timezone.utc
72
- elif isinstance(zone, str):
73
- seconds = get_utc_offset(zone.strip())
74
- tz = timezone(timedelta(seconds=seconds))
75
- return tz
76
-
77
- def get_latitude(self) -> Optional[float]:
78
- try:
79
- return float(self._dict['Latitude'])
80
- except KeyError:
81
- return None
82
-
83
- def get_longitude(self) -> Optional[float]:
84
- try:
85
- return float(self._dict['Longitude'])
86
- except KeyError:
87
- return None
88
-
89
-
90
- def recursively_build_metadata(lines: list, odict: OrderedDict, depth:int=0) -> None:
91
- """ A recursive function to build an OrderedDict from a list of lines.
92
-
93
- The function expects lines to be in the format:
94
- Key: Value
95
- Key: Value
96
- Key:
97
- Subkey: Multi line Subvalue
98
- Multi line Subvalue
99
- Multi line Subvalue
100
- Subkey: Subvalue
101
- Subkey:
102
- Subsubkey: Subsubvalue
103
-
104
- Parameters
105
- ----------
106
- lines : list
107
- A list of lines from a metadata file.
108
- odict : OrderedDict
109
- An OrderedDict to build.
110
- depth : int, optional
111
- The depth of the OrderedDict, by default 0
112
-
113
- """
114
- pattern = re.compile(r"^(\t*)([^:]+):\s*(.*)$")
115
-
116
- while lines:
117
- line = lines.pop(0)
118
- result = pattern.match(line)
119
-
120
- if result:
121
- tabs, key, value = result.groups()
122
-
123
- if len(tabs) < depth: # Un-indent, return to previous level
124
- lines.insert(0, line)
125
- return
126
-
127
- if value.strip() != "": # Valid key:value pair
128
- odict[key] = value.strip()
129
-
130
- else: # Empty value, recurse
131
- odict[key] = OrderedDict()
132
- recursively_build_metadata(lines, odict[key], depth=depth+1)
133
-
134
- else: # Multi-line value
135
- try:
136
- odict[next(reversed(odict))] = odict[next(reversed(odict))] + line
137
- except StopIteration: # If no key:value pair has been added yet
138
- continue
139
- except TypeError: # If the value is not a string
140
- continue
141
- continue
1
+ from datetime import timezone, timedelta, tzinfo
2
+ from typing import Optional
3
+ from collections import OrderedDict
4
+
5
+ import re
6
+ import warnings
7
+
8
+ from tsp.time import get_utc_offset
9
+
10
+
11
+ class GtnpMetadata:
12
+ def __init__(self, filepath):
13
+ """A class to read GTN-P metadata files
14
+
15
+ Parameters
16
+ ----------
17
+ filepath : str
18
+ Path to GTN-P *.metadata.txt file.
19
+ """
20
+ self.filepath = filepath
21
+ self._dict = OrderedDict()
22
+ self._read()
23
+ self._parse()
24
+
25
+ def _read(self):
26
+ try:
27
+ with open(self.filepath, 'r') as f:
28
+ self._raw = f.readlines()
29
+
30
+ except UnicodeDecodeError:
31
+ warnings.warn("Couldn't read file with utf-8 encoding. Metadata might be corrupted.")
32
+ with open(self.filepath, 'r', errors='ignore') as f:
33
+ self._raw = f.readlines()
34
+
35
+ @property
36
+ def raw(self) -> 'list[str]':
37
+ return self._raw
38
+
39
+ @raw.setter
40
+ def raw(self, value):
41
+ raise ValueError("Cannot set")
42
+
43
+ @property
44
+ def parsed(self) -> dict:
45
+ return self._dict
46
+
47
+ def _parse(self):
48
+ lines = [line for line in self._raw] # Make a copy in case we need to use fallback plan
49
+
50
+ try:
51
+ self._dict = OrderedDict()
52
+ recursively_build_metadata(lines, self._dict)
53
+
54
+ except Exception:
55
+ print("Couldn't build nested dictionary. Fallback to simple dictionary.")
56
+ self._dict = OrderedDict()
57
+ self._parse_dict()
58
+
59
+
60
+ def _parse_dict(self) -> None:
61
+ pattern = re.compile(r"^([^:]+):\s*(.*)$")
62
+
63
+ for line in self._raw:
64
+ result = pattern.match(line)
65
+ if result:
66
+ key, value = result.groups()
67
+
68
+ if value.strip() != "":
69
+ self._dict[key] = value.strip()
70
+
71
+ def get_timezone(self) -> Optional[tzinfo]:
72
+ try:
73
+ zone = self._dict['Timezone']
74
+ except KeyError:
75
+ return None
76
+
77
+ if zone == 'UTC':
78
+ return timezone.utc
79
+ elif isinstance(zone, str):
80
+ seconds = get_utc_offset(zone.strip())
81
+ tz = timezone(timedelta(seconds=seconds))
82
+ return tz
83
+
84
+ def get_latitude(self) -> Optional[float]:
85
+ try:
86
+ return float(self._dict['Latitude'])
87
+ except KeyError:
88
+ return None
89
+
90
+ def get_longitude(self) -> Optional[float]:
91
+ try:
92
+ return float(self._dict['Longitude'])
93
+ except KeyError:
94
+ return None
95
+
96
+
97
+ def recursively_build_metadata(lines: list, odict: OrderedDict, depth:int=0) -> None:
98
+ """ A recursive function to build an OrderedDict from a list of lines.
99
+
100
+ The function expects lines to be in the format:
101
+ Key: Value
102
+ Key: Value
103
+ Key:
104
+ Subkey: Multi line Subvalue
105
+ Multi line Subvalue
106
+ Multi line Subvalue
107
+ Subkey: Subvalue
108
+ Subkey:
109
+ Subsubkey: Subsubvalue
110
+
111
+ Parameters
112
+ ----------
113
+ lines : list
114
+ A list of lines from a metadata file.
115
+ odict : OrderedDict
116
+ An OrderedDict to build.
117
+ depth : int, optional
118
+ The depth of the OrderedDict, by default 0
119
+
120
+ """
121
+ pattern = re.compile(r"^(\t*)([^:]+):\s*(.*)$")
122
+
123
+ while lines:
124
+ line = lines.pop(0)
125
+ result = pattern.match(line)
126
+
127
+ if result:
128
+ tabs, key, value = result.groups()
129
+
130
+ if len(tabs) < depth: # Un-indent, return to previous level
131
+ lines.insert(0, line)
132
+ return
133
+
134
+ if value.strip() != "": # Valid key:value pair
135
+ odict[key] = value.strip()
136
+
137
+ else: # Empty value, recurse
138
+ odict[key] = OrderedDict()
139
+ recursively_build_metadata(lines, odict[key], depth=depth+1)
140
+
141
+ else: # Multi-line value
142
+ try:
143
+ odict[next(reversed(odict))] = odict[next(reversed(odict))] + line
144
+ except StopIteration: # If no key:value pair has been added yet
145
+ continue
146
+ except TypeError: # If the value is not a string
147
+ continue
148
+ continue
tsp/labels.py CHANGED
@@ -1,4 +1,4 @@
1
- HOURLY = 60 * 60
2
- DAILY = HOURLY * 24
3
- MONTHLY = DAILY * 31
1
+ HOURLY = 60 * 60
2
+ DAILY = HOURLY * 24
3
+ MONTHLY = DAILY * 31
4
4
  YEARLY = DAILY * 365
tsp/misc.py CHANGED
@@ -1,90 +1,90 @@
1
- import numpy as np
2
- import pandas as pd
3
- import re
4
-
5
- import tsp.labels as lbl
6
-
7
-
8
- def _is_depth_column(col_name, pattern) -> bool:
9
- return bool(re.search(pattern, col_name))
10
-
11
-
12
- def completeness(df: pd.DataFrame, f1, f2) -> pd.DataFrame:
13
- """ Calculate completeness of an aggregated dataframe
14
- Parameters
15
- ----------
16
- df : pd.DataFrame
17
- Dataframe with temporal index and values equal to the number of observations
18
- in aggregation period
19
- f1 : str
20
- Aggregation period of data from which df is aggregated
21
- f2 : str
22
- Aggregation period of df
23
-
24
- Returns
25
- -------
26
- pd.DataFrame : Dataframe with completeness values as a decimal fraction [0,1]
27
- """
28
- # df must have temporal index
29
- C = None
30
- if f1 == lbl.HOURLY:
31
- if f2 == lbl.DAILY:
32
- C = df / 24
33
-
34
- elif f1 == lbl.DAILY:
35
- if f2 == lbl.MONTHLY:
36
- C = df / E_day_in_month(df)
37
- elif f2 == lbl.YEARLY:
38
- C = df / E_day_in_year(df)
39
-
40
- elif f1 == lbl.MONTHLY:
41
- if f2 == lbl.YEARLY:
42
- cnt = 12
43
-
44
- elif isinstance(f1, float) and isinstance(f1, float):
45
- R = f2 / f1
46
- C = df / R
47
-
48
- if C is None:
49
- raise ValueError(f"Unknown aggregation period {f1} or {f2}")
50
-
51
- return C
52
-
53
-
54
- def df_has_period(f, *args, **kwargs):
55
- df = args[0] if args[0] else kwargs.get('df')
56
- if not isinstance(df.index, pd.PeriodIndex):
57
- raise ValueError("Index must be a PeriodIndex")
58
- return f(*args, **kwargs)
59
-
60
-
61
- #@df_has_period
62
- def E_day_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
63
- """ Expected number of daily observations per year """
64
- leap = df.index.to_period().is_leap_year
65
- days = np.atleast_2d(np.where(leap, 366, 365)).transpose()
66
- result = pd.DataFrame(index=df.index,
67
- columns=df.columns,
68
- data=np.repeat(np.atleast_2d(days), df.shape[1], axis=1))
69
- return result
70
-
71
-
72
- #@df_has_period
73
- def E_month_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
74
- """ Expected number of monthly observations per year """
75
- result = pd.DataFrame(index=df.index,
76
- columns=df.columns,
77
- data=12)
78
- return result
79
-
80
-
81
- #@df_has_period
82
- def E_day_in_month(df: "pd.DataFrame") -> "pd.DataFrame":
83
- """ Expected number of daily observations per month """
84
- nday = df.index.to_period().days_in_month
85
- result = pd.DataFrame(index=df.index,
86
- columns=df.columns,
87
- data=np.repeat(np.atleast_2d(nday).transpose(), df.shape[1], axis=1))
88
- return result
89
-
90
-
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+
5
+ import tsp.labels as lbl
6
+
7
+
8
+ def _is_depth_column(col_name, pattern) -> bool:
9
+ return bool(re.search(pattern, col_name))
10
+
11
+
12
+ def completeness(df: pd.DataFrame, f1, f2) -> pd.DataFrame:
13
+ """ Calculate completeness of an aggregated dataframe
14
+ Parameters
15
+ ----------
16
+ df : pd.DataFrame
17
+ Dataframe with temporal index and values equal to the number of observations
18
+ in aggregation period
19
+ f1 : str
20
+ Aggregation period of data from which df is aggregated
21
+ f2 : str
22
+ Aggregation period of df
23
+
24
+ Returns
25
+ -------
26
+ pd.DataFrame : Dataframe with completeness values as a decimal fraction [0,1]
27
+ """
28
+ # df must have temporal index
29
+ C = None
30
+ if f1 == lbl.HOURLY:
31
+ if f2 == lbl.DAILY:
32
+ C = df / 24
33
+
34
+ elif f1 == lbl.DAILY:
35
+ if f2 == lbl.MONTHLY:
36
+ C = df / E_day_in_month(df)
37
+ elif f2 == lbl.YEARLY:
38
+ C = df / E_day_in_year(df)
39
+
40
+ elif f1 == lbl.MONTHLY:
41
+ if f2 == lbl.YEARLY:
42
+ cnt = 12
43
+
44
+ elif isinstance(f1, float) and isinstance(f1, float):
45
+ R = f2 / f1
46
+ C = df / R
47
+
48
+ if C is None:
49
+ raise ValueError(f"Unknown aggregation period {f1} or {f2}")
50
+
51
+ return C
52
+
53
+
54
+ def df_has_period(f, *args, **kwargs):
55
+ df = args[0] if args[0] else kwargs.get('df')
56
+ if not isinstance(df.index, pd.PeriodIndex):
57
+ raise ValueError("Index must be a PeriodIndex")
58
+ return f(*args, **kwargs)
59
+
60
+
61
+ #@df_has_period
62
+ def E_day_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
63
+ """ Expected number of daily observations per year """
64
+ leap = df.index.to_period().is_leap_year
65
+ days = np.atleast_2d(np.where(leap, 366, 365)).transpose()
66
+ result = pd.DataFrame(index=df.index,
67
+ columns=df.columns,
68
+ data=np.repeat(np.atleast_2d(days), df.shape[1], axis=1))
69
+ return result
70
+
71
+
72
+ #@df_has_period
73
+ def E_month_in_year(df: "pd.DataFrame") -> "pd.DataFrame":
74
+ """ Expected number of monthly observations per year """
75
+ result = pd.DataFrame(index=df.index,
76
+ columns=df.columns,
77
+ data=12)
78
+ return result
79
+
80
+
81
+ #@df_has_period
82
+ def E_day_in_month(df: "pd.DataFrame") -> "pd.DataFrame":
83
+ """ Expected number of daily observations per month """
84
+ nday = df.index.to_period().days_in_month
85
+ result = pd.DataFrame(index=df.index,
86
+ columns=df.columns,
87
+ data=np.repeat(np.atleast_2d(nday).transpose(), df.shape[1], axis=1))
88
+ return result
89
+
90
+