tsam 2.3.8__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tsam/__init__.py +79 -0
- tsam/api.py +602 -0
- tsam/config.py +852 -0
- tsam/exceptions.py +17 -0
- tsam/hyperparametertuning.py +289 -245
- tsam/periodAggregation.py +140 -141
- tsam/plot.py +513 -0
- tsam/py.typed +0 -0
- tsam/representations.py +177 -167
- tsam/result.py +397 -0
- tsam/timeseriesaggregation.py +1446 -1361
- tsam/tuning.py +1038 -0
- tsam/utils/durationRepresentation.py +229 -231
- tsam/utils/k_maxoids.py +138 -145
- tsam/utils/k_medoids_contiguity.py +139 -140
- tsam/utils/k_medoids_exact.py +232 -239
- tsam/utils/segmentation.py +232 -118
- {tsam-2.3.8.dist-info → tsam-3.0.0.dist-info}/METADATA +124 -81
- tsam-3.0.0.dist-info/RECORD +23 -0
- {tsam-2.3.8.dist-info → tsam-3.0.0.dist-info}/WHEEL +1 -1
- {tsam-2.3.8.dist-info → tsam-3.0.0.dist-info}/licenses/LICENSE.txt +21 -21
- tsam-2.3.8.dist-info/RECORD +0 -16
- {tsam-2.3.8.dist-info → tsam-3.0.0.dist-info}/top_level.txt +0 -0
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tsam
|
|
3
|
-
Version:
|
|
3
|
+
Version: 3.0.0
|
|
4
4
|
Summary: Time series aggregation module (tsam) to create typical periods
|
|
5
5
|
Author-email: Leander Kotzur <leander.kotzur@googlemail.com>, Maximilian Hoffmann <maximilian.hoffmann@julumni.fz-juelich.de>
|
|
6
6
|
Maintainer-email: Julian Belina <j.belina@fz-juelich.de>
|
|
7
7
|
License: MIT License
|
|
8
8
|
|
|
9
|
-
Copyright (c) 2017 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
|
|
9
|
+
Copyright (c) 2017-2025 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
|
|
10
10
|
|
|
11
11
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
12
12
|
of this software and associated documentation files (the "Software"), to deal
|
|
@@ -25,6 +25,7 @@ License: MIT License
|
|
|
25
25
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
26
26
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
27
27
|
SOFTWARE.
|
|
28
|
+
|
|
28
29
|
Keywords: clustering,optimization
|
|
29
30
|
Classifier: Development Status :: 4 - Beta
|
|
30
31
|
Classifier: Intended Audience :: End Users/Desktop
|
|
@@ -33,34 +34,52 @@ Classifier: License :: OSI Approved :: MIT License
|
|
|
33
34
|
Classifier: Natural Language :: English
|
|
34
35
|
Classifier: Operating System :: OS Independent
|
|
35
36
|
Classifier: Programming Language :: Python
|
|
36
|
-
Classifier: Programming Language :: Python :: 2
|
|
37
37
|
Classifier: Programming Language :: Python :: 3
|
|
38
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
39
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
40
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
41
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
38
42
|
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
|
39
43
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
40
|
-
Requires-Python: <3.
|
|
44
|
+
Requires-Python: <3.15,>=3.10
|
|
41
45
|
Description-Content-Type: text/markdown
|
|
42
46
|
License-File: LICENSE.txt
|
|
43
|
-
Requires-Dist: scikit-learn
|
|
44
|
-
Requires-Dist: pandas
|
|
45
|
-
Requires-Dist: numpy
|
|
46
|
-
Requires-Dist: pyomo
|
|
47
|
-
Requires-Dist: networkx
|
|
48
|
-
Requires-Dist: tqdm
|
|
49
|
-
Requires-Dist: highspy
|
|
50
|
-
Provides-Extra:
|
|
51
|
-
Requires-Dist:
|
|
52
|
-
|
|
53
|
-
Requires-Dist:
|
|
54
|
-
Requires-Dist:
|
|
55
|
-
Requires-Dist:
|
|
56
|
-
|
|
57
|
-
Requires-Dist:
|
|
47
|
+
Requires-Dist: scikit-learn<=1.8.0,>=1.3.0
|
|
48
|
+
Requires-Dist: pandas<=3.0.0,>=2.2.0
|
|
49
|
+
Requires-Dist: numpy<=2.4.1,>=1.22.4
|
|
50
|
+
Requires-Dist: pyomo<=6.95,>=6.4.8
|
|
51
|
+
Requires-Dist: networkx<=3.6.1,>=2.5
|
|
52
|
+
Requires-Dist: tqdm<=4.67.1,>=4.21.0
|
|
53
|
+
Requires-Dist: highspy<=1.12.0,>=1.7.2
|
|
54
|
+
Provides-Extra: plot
|
|
55
|
+
Requires-Dist: plotly>=5.0.0; extra == "plot"
|
|
56
|
+
Provides-Extra: notebooks
|
|
57
|
+
Requires-Dist: notebook>=7.5.0; extra == "notebooks"
|
|
58
|
+
Requires-Dist: plotly>=5.0.0; extra == "notebooks"
|
|
59
|
+
Requires-Dist: matplotlib; extra == "notebooks"
|
|
60
|
+
Provides-Extra: develop
|
|
61
|
+
Requires-Dist: pytest; extra == "develop"
|
|
62
|
+
Requires-Dist: pytest-cov; extra == "develop"
|
|
63
|
+
Requires-Dist: pytest-xdist; extra == "develop"
|
|
64
|
+
Requires-Dist: codecov; extra == "develop"
|
|
65
|
+
Requires-Dist: sphinx; extra == "develop"
|
|
66
|
+
Requires-Dist: sphinx-autobuild; extra == "develop"
|
|
67
|
+
Requires-Dist: sphinx_book_theme; extra == "develop"
|
|
68
|
+
Requires-Dist: twine; extra == "develop"
|
|
69
|
+
Requires-Dist: nbval; extra == "develop"
|
|
70
|
+
Requires-Dist: ruff; extra == "develop"
|
|
71
|
+
Requires-Dist: mypy; extra == "develop"
|
|
72
|
+
Requires-Dist: pandas-stubs; extra == "develop"
|
|
73
|
+
Requires-Dist: pre-commit; extra == "develop"
|
|
74
|
+
Requires-Dist: plotly>=5.0.0; extra == "develop"
|
|
75
|
+
Requires-Dist: notebook>=7.5.0; extra == "develop"
|
|
76
|
+
Requires-Dist: matplotlib; extra == "develop"
|
|
58
77
|
Dynamic: license-file
|
|
59
78
|
|
|
60
|
-
[](https://pypi.python.org/pypi/tsam) [](https://anaconda.org/conda-forge/tsam) [](https://tsam.readthedocs.io/en/latest/) []((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
|
|
61
80
|
[](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
|
|
62
81
|
|
|
63
|
-
<a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
|
|
82
|
+
<a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
|
|
64
83
|
|
|
65
84
|
# tsam - Time Series Aggregation Module
|
|
66
85
|
tsam is a python package which uses different machine learning algorithms for the aggregation of time series. The data aggregation can be performed in two freely combinable dimensions: By representing the time series by a user-defined number of typical periods or by decreasing the temporal resolution.
|
|
@@ -72,109 +91,135 @@ The documentation of the tsam code can be found [**here**](https://tsam.readthed
|
|
|
72
91
|
* flexible handling of multidimensional time-series via the pandas module
|
|
73
92
|
* different aggregation methods implemented (averaging, k-means, exact k-medoids, hierarchical, k-maxoids, k-medoids with contiguity), which are based on scikit-learn, or self-programmed with pyomo
|
|
74
93
|
* hypertuning of aggregation parameters to find the optimal combination of the number of segments inside a period and the number of typical periods
|
|
75
|
-
* novel representation methods, keeping statistical attributes, such as the distribution
|
|
94
|
+
* novel representation methods, keeping statistical attributes, such as the distribution
|
|
76
95
|
* flexible integration of extreme periods as own cluster centers
|
|
77
96
|
* weighting for the case of multidimensional time-series to represent their relevance
|
|
78
97
|
|
|
79
98
|
|
|
80
99
|
## Installation
|
|
81
|
-
It is recommended to install tsam within its own environment. If you are no familiar with python environments, plaese consider to read some [external documentation](https://realpython.com/python-virtual-environments-a-primer/). In the following we assume you have a [mamba](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html) or [conda](https://www.anaconda.com/) installation. All conda and mamba command are interchangeable.
|
|
82
|
-
|
|
83
|
-
### Direct Installations from Package Manager Repositories
|
|
84
|
-
|
|
85
|
-
If you want to prevent any possible dependency conflicts create a new environment using the following command:
|
|
86
|
-
|
|
87
|
-
mamba create -n tsam_env python pip
|
|
88
|
-
|
|
89
|
-
Activate an existing or the newly create environment afterward
|
|
90
100
|
|
|
91
|
-
|
|
101
|
+
To avoid dependency conflicts, it is recommended that you install Tsam in its own environment. You can use either [uv](https://docs.astral.sh/uv/) or [conda/mamba](https://conda-forge.org/download/) ) to manage environments and installations. Before proceeding, you must install either UV or Conda/Mamba, or both.
|
|
92
102
|
|
|
93
|
-
|
|
103
|
+
**Quick Install with uv**
|
|
94
104
|
|
|
95
|
-
|
|
105
|
+
```bash
|
|
106
|
+
uv venv tsam_env
|
|
107
|
+
uv pip install tsam
|
|
108
|
+
```
|
|
96
109
|
|
|
97
|
-
|
|
110
|
+
Or from conda-forge:
|
|
98
111
|
|
|
99
|
-
|
|
112
|
+
```bash
|
|
113
|
+
conda create -n tsam_env -c conda-forge tsam
|
|
114
|
+
```
|
|
100
115
|
|
|
101
|
-
|
|
102
|
-
Alternatively, clone a local copy of the repository to your computer
|
|
116
|
+
conda and mamba can be used interchangeably
|
|
103
117
|
|
|
104
|
-
|
|
118
|
+
### Development Installation
|
|
105
119
|
|
|
106
|
-
|
|
120
|
+
```bash
|
|
121
|
+
git clone https://github.com/FZJ-IEK3-VSA/tsam.git
|
|
122
|
+
cd tsam
|
|
123
|
+
```
|
|
107
124
|
|
|
108
|
-
|
|
125
|
+
# Using uv (recommended)
|
|
126
|
+
```bash
|
|
127
|
+
uv venv
|
|
128
|
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
|
129
|
+
uv pip install -e ".[develop]"
|
|
130
|
+
```
|
|
109
131
|
|
|
110
|
-
|
|
132
|
+
# Using conda-forge
|
|
111
133
|
|
|
112
|
-
|
|
134
|
+
```bash
|
|
135
|
+
conda env create -n tsam_env --file=environment.yml
|
|
136
|
+
conda activate tsam_env
|
|
137
|
+
pip install -e . --no-deps
|
|
138
|
+
```
|
|
113
139
|
|
|
114
|
-
|
|
140
|
+
# Set up pre-commit hooks
|
|
141
|
+
```bash
|
|
142
|
+
pre-commit install
|
|
143
|
+
```
|
|
115
144
|
|
|
116
|
-
|
|
145
|
+
See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed development guidelines.
|
|
117
146
|
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
pip install -e .[dev]
|
|
122
|
-
|
|
123
|
-
### Installation of MILP Solver for k-medoids
|
|
124
|
-
In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is installed and used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
|
|
147
|
+
### MILP Solver for k-medoids
|
|
125
148
|
|
|
126
|
-
|
|
149
|
+
[HiGHS](https://github.com/ERGO-Code/HiGHS) is installed by default. For better performance on large problems, commercial solvers (Gurobi, CPLEX) are recommended if you have a license
|
|
127
150
|
|
|
128
|
-
In order to setup a virtual environment in Linux, correct the python name in the Makefile and call
|
|
129
151
|
|
|
130
|
-
make setup_venv
|
|
131
|
-
|
|
132
|
-
|
|
133
152
|
## Examples
|
|
134
153
|
|
|
135
154
|
### Basic workflow
|
|
136
155
|
|
|
137
|
-
A small example how tsam can be used is
|
|
156
|
+
A small example how tsam can be used is described as follows:
|
|
138
157
|
```python
|
|
139
|
-
|
|
140
|
-
|
|
158
|
+
import pandas as pd
|
|
159
|
+
import tsam
|
|
141
160
|
```
|
|
142
161
|
|
|
143
162
|
|
|
144
163
|
Read in the time series data set with pandas
|
|
145
164
|
```python
|
|
146
|
-
|
|
165
|
+
raw = pd.read_csv('testdata.csv', index_col=0, parse_dates=True)
|
|
147
166
|
```
|
|
148
167
|
|
|
149
|
-
|
|
168
|
+
Run the aggregation - specify the number of typical periods and configure clustering/segmentation options:
|
|
150
169
|
```python
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
170
|
+
from tsam import aggregate, ClusterConfig, SegmentConfig
|
|
171
|
+
|
|
172
|
+
result = tsam.aggregate(
|
|
173
|
+
raw,
|
|
174
|
+
n_clusters=8,
|
|
175
|
+
period_duration='24h', # or 24, '1d'
|
|
176
|
+
cluster=ClusterConfig(
|
|
177
|
+
method='hierarchical',
|
|
178
|
+
representation='distribution_minmax',
|
|
179
|
+
),
|
|
180
|
+
segments=SegmentConfig(n_segments=8),
|
|
181
|
+
)
|
|
160
182
|
```
|
|
161
183
|
|
|
162
|
-
|
|
184
|
+
Access the results:
|
|
163
185
|
```python
|
|
164
|
-
|
|
186
|
+
# Get the typical periods DataFrame
|
|
187
|
+
cluster_representatives = result.cluster_representatives
|
|
188
|
+
|
|
189
|
+
# Check accuracy metrics
|
|
190
|
+
print(f"RMSE: {result.accuracy.rmse.mean():.4f}")
|
|
191
|
+
|
|
192
|
+
# Reconstruct the original time series from typical periods
|
|
193
|
+
reconstructed = result.reconstructed
|
|
194
|
+
|
|
195
|
+
# Save results
|
|
196
|
+
cluster_representatives.to_csv('cluster_representatives.csv')
|
|
165
197
|
```
|
|
166
198
|
|
|
167
|
-
|
|
168
|
-
|
|
199
|
+
### Legacy API
|
|
200
|
+
|
|
201
|
+
For backward compatibility, the class-based API of TSAM Version 2 is still available.
|
|
169
202
|
```python
|
|
170
|
-
|
|
203
|
+
import tsam.timeseriesaggregation as tsam_legacy
|
|
204
|
+
|
|
205
|
+
aggregation = tsam_legacy.TimeSeriesAggregation(
|
|
206
|
+
raw,
|
|
207
|
+
noTypicalPeriods=8,
|
|
208
|
+
hoursPerPeriod=24,
|
|
209
|
+
segmentation=True,
|
|
210
|
+
noSegments=8,
|
|
211
|
+
representationMethod="distributionAndMinMaxRepresentation",
|
|
212
|
+
clusterMethod='hierarchical'
|
|
213
|
+
)
|
|
214
|
+
cluster_representatives = aggregation.createTypicalPeriods()
|
|
171
215
|
```
|
|
172
216
|
|
|
173
217
|
### Detailed examples
|
|
218
|
+
Detailed examples can be found at:/docs/source/examples_notebooks/
|
|
174
219
|
|
|
175
|
-
A [**first example**](/
|
|
220
|
+
A [**first example**](/docs/source/examples_notebooks/aggregation_example.ipynb) shows the capabilites of tsam as jupyter notebook.
|
|
176
221
|
|
|
177
|
-
A [**second example**](/
|
|
222
|
+
A [**second example**](/docs/source/examples_notebooks/aggregation_optiinput.ipynb) shows in more detail how to access the relevant aggregation results required for paramtrizing e.g. an optimization.
|
|
178
223
|
|
|
179
224
|
The example time series are based on a department [publication](https://www.mdpi.com/1996-1073/10/3/361) and the [test reference years of the DWD](https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html).
|
|
180
225
|
|
|
@@ -182,7 +227,7 @@ The example time series are based on a department [publication](https://www.mdpi
|
|
|
182
227
|
|
|
183
228
|
MIT License
|
|
184
229
|
|
|
185
|
-
Copyright (C)
|
|
230
|
+
Copyright (C) 2017-2025 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
|
|
186
231
|
|
|
187
232
|
You should have received a copy of the MIT License along with this program.
|
|
188
233
|
If not, see https://opensource.org/licenses/MIT
|
|
@@ -222,5 +267,3 @@ The publications about time series aggregation for energy system optimization mo
|
|
|
222
267
|
This work is supported by the Helmholtz Association under the Joint Initiative ["Energy System 2050 A Contribution of the Research Field Energy"](https://www.helmholtz.de/en/research/energy/energy_system_2050/) and the program ["Energy System Design"](https://www.esd.kit.edu/index.php) and within the [BMWi/BMWk](https://www.bmwk.de/Navigation/DE/Home/home.html) funded project [**METIS**](http://www.metis-platform.net/).
|
|
223
268
|
|
|
224
269
|
<a href="https://www.helmholtz.de/en/"><img src="https://www.helmholtz.de/fileadmin/user_upload/05_aktuelles/Marke_Design/logos/HG_LOGO_S_ENG_RGB.jpg" alt="Helmholtz Logo" width="200px" style="float:right"></a>
|
|
225
|
-
|
|
226
|
-
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
tsam/__init__.py,sha256=l5PQB_p-OCSQK2daCTc2k4VP6ZtFwOXE_QSVUTCsbV0,2236
|
|
2
|
+
tsam/api.py,sha256=FvXzpFScwzypgHOAfCaZmaetWv_P6pqpTTcpRLxDU2E,22575
|
|
3
|
+
tsam/config.py,sha256=2povXN55P2VoVHK13MiN6M3bJZVgcY3jn-maCBOhBWY,33523
|
|
4
|
+
tsam/exceptions.py,sha256=arCs6OQ3r5MIcwO7aHRjB8Joy2rFHWN80vvEr_hKnqY,509
|
|
5
|
+
tsam/hyperparametertuning.py,sha256=S4tCjf4wgKXrX7MCtJGUJXnm26sHHB4qWA1UEmNlTM4,11225
|
|
6
|
+
tsam/periodAggregation.py,sha256=ppEEWpxBh0x5nQGJiywkPPHOvl0uAphdoroqxYfIJmQ,5306
|
|
7
|
+
tsam/plot.py,sha256=gBnMkiCp7EfVhBn9b4ywM_qOP2CFzTG9T-aQTKUa2qU,15701
|
|
8
|
+
tsam/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
|
+
tsam/representations.py,sha256=MKJJtClMkacOkItbRwreFo1d0Vr6gEAItq4-OwqTfAE,7053
|
|
10
|
+
tsam/result.py,sha256=0eckXhXZl3dqe24pNlhIDrG9c6CEnIoxExPSFCSH3tM,13707
|
|
11
|
+
tsam/timeseriesaggregation.py,sha256=8Xy65KmYxCV96N1t-zz8GMc4S4r8w-NZqUQQP0sP0b8,59351
|
|
12
|
+
tsam/tuning.py,sha256=7yhh6BgxYCdFOJELZU8artR-TuG1oZDRoPfIF9Q9p4Q,35822
|
|
13
|
+
tsam/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
|
+
tsam/utils/durationRepresentation.py,sha256=ESPXhSuHplRig9uOEJGgEOdbzaa0zo-1tPW7o_N0_yk,9791
|
|
15
|
+
tsam/utils/k_maxoids.py,sha256=hUnqkOgH-nTjzH8B6Ho7oF9iWfXaKiJeWa0aDOlshvI,4241
|
|
16
|
+
tsam/utils/k_medoids_contiguity.py,sha256=ZK09BkwWaub-JwtXbOuLx2OhE8mYkkNbCmmYO6ylb4A,5920
|
|
17
|
+
tsam/utils/k_medoids_exact.py,sha256=p3nd2madMrOGau6sWE7i3jADXVQkUGF66CPTV2QyYr0,6999
|
|
18
|
+
tsam/utils/segmentation.py,sha256=qY8jEVB8Rj6tZNwF-mz-mldmsSkaaPOrWoDM_hgEe8M,11094
|
|
19
|
+
tsam-3.0.0.dist-info/licenses/LICENSE.txt,sha256=YO7oiTI8iS0QbTaumTaIr8QkVgZPrgqiBKO-s4eiwik,1210
|
|
20
|
+
tsam-3.0.0.dist-info/METADATA,sha256=BLpBzrhvz3oJ5eModR0EMK9smnQrBzGAfvfe9Fzor0M,16097
|
|
21
|
+
tsam-3.0.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
22
|
+
tsam-3.0.0.dist-info/top_level.txt,sha256=MFI15PnPuMv8F1hTAOXbjGu41z-l6dJbnK69WlIQNcM,5
|
|
23
|
+
tsam-3.0.0.dist-info/RECORD,,
|
|
@@ -1,21 +1,21 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2017 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
-
SOFTWARE.
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2017-2025 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
tsam-2.3.8.dist-info/RECORD
DELETED
|
@@ -1,16 +0,0 @@
|
|
|
1
|
-
tsam/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
tsam/hyperparametertuning.py,sha256=eM7m7eY80uSlwnLRxmctnis2Jv66D15Z1QD9CCMzSXE,10349
|
|
3
|
-
tsam/periodAggregation.py,sha256=h9CC06jBLNyyaFTMRynGUMN87fOH3NdSEug6EcTsKGA,5471
|
|
4
|
-
tsam/representations.py,sha256=2NL1wanBhGreCeJ8jh0aNdIx05YXEyyMJmMAVFS5-T4,7133
|
|
5
|
-
tsam/timeseriesaggregation.py,sha256=UdsjsP8RAwmdBHq0wJwB2HfUai538NYRQkK31TR9dBM,57125
|
|
6
|
-
tsam/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
-
tsam/utils/durationRepresentation.py,sha256=_Pu4Zzq5MlQuNz4fnjf7uBpsWqmdkOlw73WJBhAJC9c,10052
|
|
8
|
-
tsam/utils/k_maxoids.py,sha256=0PyaHQMA8vtV_SuQOZ0qdcGFK46aUvOiMSQofjGkjBQ,4415
|
|
9
|
-
tsam/utils/k_medoids_contiguity.py,sha256=xSN9xT61oc2CPxYERhugR9hDkVCb2o8POvAiLLgrey8,5925
|
|
10
|
-
tsam/utils/k_medoids_exact.py,sha256=CW6BLQV2eTYtMxDmo97-6hY1HljxcvkPVrL4DQPN5IQ,7178
|
|
11
|
-
tsam/utils/segmentation.py,sha256=y8TPv1KEqf6ByOz7TRywm3WC9ZPhGiWvhwAcQbFibt4,6132
|
|
12
|
-
tsam-2.3.8.dist-info/licenses/LICENSE.txt,sha256=XEzEzumoCmdJzcp5gKT6UOtKrkH-SiGpxVbIfihkNK4,1224
|
|
13
|
-
tsam-2.3.8.dist-info/METADATA,sha256=Eyilk3PrVxLSS_6NMpfJO_ThQvIwusU4nmsJbRB87tk,15412
|
|
14
|
-
tsam-2.3.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
15
|
-
tsam-2.3.8.dist-info/top_level.txt,sha256=MFI15PnPuMv8F1hTAOXbjGu41z-l6dJbnK69WlIQNcM,5
|
|
16
|
-
tsam-2.3.8.dist-info/RECORD,,
|
|
File without changes
|