tsam 2.3.2__py3-none-any.whl → 2.3.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tsam/__init__.py CHANGED
@@ -1,11 +0,0 @@
1
- import sys
2
-
3
- if not sys.warnoptions:
4
- import warnings
5
-
6
- warnings.filterwarnings(
7
- action="ignore",
8
- category=FutureWarning,
9
- append=True,
10
- message=r".*The previous implementation of stack is deprecated and will be removed in a future version of pandas.*",
11
- )
@@ -8,7 +8,6 @@ import pandas as pd
8
8
  import numpy as np
9
9
 
10
10
  from sklearn.metrics import mean_squared_error, mean_absolute_error
11
- from sklearn.metrics.pairwise import euclidean_distances
12
11
  from sklearn import preprocessing
13
12
 
14
13
  from tsam.periodAggregation import aggregatePeriods
@@ -27,6 +26,9 @@ TOLERANCE = 1e-6
27
26
  MIN_WEIGHT = 1e-6
28
27
 
29
28
 
29
+
30
+
31
+
30
32
  def unstackToPeriods(timeSeries, timeStepsPerPeriod):
31
33
  """
32
34
  Extend the timeseries to an integer multiple of the period length and
@@ -134,6 +136,7 @@ class TimeSeriesAggregation(object):
134
136
  predefClusterOrder=None,
135
137
  predefClusterCenterIndices=None,
136
138
  solver="highs",
139
+ numericalTolerance=1e-13,
137
140
  roundOutput=None,
138
141
  addPeakMin=None,
139
142
  addPeakMax=None,
@@ -252,6 +255,10 @@ class TimeSeriesAggregation(object):
252
255
  :param solver: Solver that is used for k_medoids clustering. optional (default: 'cbc' )
253
256
  :type solver: string
254
257
 
258
+ :param numericalTolerance: Tolerance for numerical issues. Silences the warning for exceeding upper or lower bounds
259
+ of the time series. optional (default: 1e-13 )
260
+ :type numericalTolerance: float
261
+
255
262
  :param roundOutput: Decimals to what the output time series get round. optional (default: None )
256
263
  :type roundOutput: integer
257
264
 
@@ -319,6 +326,8 @@ class TimeSeriesAggregation(object):
319
326
 
320
327
  self.solver = solver
321
328
 
329
+ self.numericalTolerance = numericalTolerance
330
+
322
331
  self.segmentation = segmentation
323
332
 
324
333
  self.roundOutput = roundOutput
@@ -388,21 +397,21 @@ class TimeSeriesAggregation(object):
388
397
  try:
389
398
  timedelta = self.timeSeries.index[1] - self.timeSeries.index[0]
390
399
  self.resolution = float(timedelta.total_seconds()) / 3600
391
- except AttributeError:
400
+ except AttributeError as exc:
392
401
  raise ValueError(
393
402
  "'resolution' argument has to be nonnegative float or int"
394
403
  + " or the given timeseries needs a datetime index"
395
- )
404
+ ) from exc
396
405
  except TypeError:
397
406
  try:
398
407
  self.timeSeries.index = pd.to_datetime(self.timeSeries.index)
399
408
  timedelta = self.timeSeries.index[1] - self.timeSeries.index[0]
400
409
  self.resolution = float(timedelta.total_seconds()) / 3600
401
- except:
410
+ except Exception as exc:
402
411
  raise ValueError(
403
412
  "'resolution' argument has to be nonnegative float or int"
404
413
  + " or the given timeseries needs a datetime index"
405
- )
414
+ ) from exc
406
415
 
407
416
  if not (isinstance(self.resolution, int) or isinstance(self.resolution, float)):
408
417
  raise ValueError("resolution has to be nonnegative float or int")
@@ -870,9 +879,9 @@ class TimeSeriesAggregation(object):
870
879
  )
871
880
 
872
881
  # reset values higher than the upper sacle or less than zero
873
- typicalPeriods[column].clip(lower=0, upper=scale_ub, inplace=True)
882
+ typicalPeriods[column] = typicalPeriods[column].clip(lower=0, upper=scale_ub)
874
883
 
875
- typicalPeriods[column].fillna(0.0, inplace=True)
884
+ typicalPeriods[column] = typicalPeriods[column].fillna(0.0)
876
885
 
877
886
  # calc new sum and new diff to orig data
878
887
  sum_clu_wo_peak = np.sum(
@@ -967,7 +976,7 @@ class TimeSeriesAggregation(object):
967
976
  # check for additional cluster parameters
968
977
  if self.evalSumPeriods:
969
978
  evaluationValues = (
970
- self.normalizedPeriodlyProfiles.stack(level=0)
979
+ self.normalizedPeriodlyProfiles.stack(future_stack=True,level=0)
971
980
  .sum(axis=1)
972
981
  .unstack(level=1)
973
982
  )
@@ -1095,23 +1104,29 @@ class TimeSeriesAggregation(object):
1095
1104
  if np.array(
1096
1105
  self.typicalPeriods.max(axis=0) > self.timeSeries.max(axis=0)
1097
1106
  ).any():
1098
- warning_list = self.typicalPeriods.max(axis=0) < self.timeSeries.max(axis=0)
1099
- warnings.warn(
1100
- "Something went wrong... At least one maximal value of the " +
1101
- "aggregated time series exceeds the maximal value " +
1102
- "the input time series for: " +
1103
- "{}".format(list(warning_list[warning_list>0].index))
1104
- )
1107
+ warning_list = self.typicalPeriods.max(axis=0) > self.timeSeries.max(axis=0)
1108
+ diff = self.typicalPeriods.max(axis=0) - self.timeSeries.max(axis=0)
1109
+ if abs(diff).max() > self.numericalTolerance:
1110
+ warnings.warn(
1111
+ "At least one maximal value of the " +
1112
+ "aggregated time series exceeds the maximal value " +
1113
+ "the input time series for: " +
1114
+ "{}".format(diff[warning_list[warning_list>0].index].to_dict()) +
1115
+ ". To silence the warning set the 'numericalTolerance' to a higher value."
1116
+ )
1105
1117
  if np.array(
1106
1118
  self.typicalPeriods.min(axis=0) < self.timeSeries.min(axis=0)
1107
1119
  ).any():
1108
1120
  warning_list = self.typicalPeriods.min(axis=0) < self.timeSeries.min(axis=0)
1109
- warnings.warn(
1110
- "Something went wrong... At least one minimal value of the " +
1111
- "aggregated time series exceeds the minimal value " +
1112
- "the input time series for: " +
1113
- "{}".format(list(warning_list[warning_list>0].index))
1114
- )
1121
+ diff = self.typicalPeriods.min(axis=0) - self.timeSeries.min(axis=0)
1122
+ if abs(diff).max() > self.numericalTolerance:
1123
+ warnings.warn(
1124
+ "Something went wrong... At least one minimal value of the " +
1125
+ "aggregated time series exceeds the minimal value " +
1126
+ "the input time series for: " +
1127
+ "{}".format(diff[warning_list[warning_list>0].index].to_dict()) +
1128
+ ". To silence the warning set the 'numericalTolerance' to a higher value."
1129
+ )
1115
1130
  return self.typicalPeriods
1116
1131
 
1117
1132
  def prepareEnersysInput(self):
@@ -1237,7 +1252,7 @@ class TimeSeriesAggregation(object):
1237
1252
  columns=self.normalizedPeriodlyProfiles.columns,
1238
1253
  index=self.normalizedPeriodlyProfiles.index,
1239
1254
  )
1240
- clustered_data_df = clustered_data_df.stack(level="TimeStep")
1255
+ clustered_data_df = clustered_data_df.stack(future_stack=True,level="TimeStep")
1241
1256
 
1242
1257
  # back in form
1243
1258
  self.normalizedPredictedData = pd.DataFrame(
@@ -57,7 +57,7 @@ def durationRepresentation(
57
57
  # get all the values of a certain attribute and cluster
58
58
  candidateValues = candidates.loc[indice[0], a]
59
59
  # sort all values
60
- sortedAttr = candidateValues.stack().sort_values()
60
+ sortedAttr = candidateValues.stack(future_stack=True,).sort_values()
61
61
  # reindex and arrange such that every sorted segment gets represented by its mean
62
62
  sortedAttr.index = pd.MultiIndex.from_tuples(clean_index)
63
63
  representationValues = sortedAttr.unstack(level=0).mean(axis=1)
@@ -97,8 +97,8 @@ def durationRepresentation(
97
97
  # concat centroid values and cluster weights for all clusters
98
98
  meansAndWeights = pd.concat(
99
99
  [
100
- pd.DataFrame(np.array(meanVals)).stack(),
101
- pd.DataFrame(np.array(clusterLengths)).stack(),
100
+ pd.DataFrame(np.array(meanVals)).stack(future_stack=True,),
101
+ pd.DataFrame(np.array(clusterLengths)).stack(future_stack=True,),
102
102
  ],
103
103
  axis=1,
104
104
  )
@@ -107,7 +107,7 @@ def durationRepresentation(
107
107
  # save order of the sorted centroid values across all clusters
108
108
  order = meansAndWeightsSorted.index
109
109
  # sort all values of the original time series
110
- sortedAttr = candidates.loc[:, a].stack().sort_values().values
110
+ sortedAttr = candidates.loc[:, a].stack(future_stack=True,).sort_values().values
111
111
  # take mean of sections of the original duration curve according to the cluster and its weight the
112
112
  # respective section is assigned to
113
113
  representationValues = []
@@ -1,7 +1,14 @@
1
1
  # -*- coding: utf-8 -*-
2
2
 
3
3
  import numpy as np
4
+
5
+
4
6
  import time
7
+
8
+ # switch to numpy 2.0
9
+ np.float_ = np.float64
10
+ np.complex_=np.complex128
11
+
5
12
  import pyomo.environ as pyomo
6
13
  import pyomo.opt as opt
7
14
  import networkx as nx
@@ -5,6 +5,11 @@ import numpy as np
5
5
  from sklearn.base import BaseEstimator, ClusterMixin, TransformerMixin
6
6
  from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
7
7
  from sklearn.utils import check_array
8
+
9
+ # switch to numpy 2.0
10
+ np.float_ = np.float64
11
+ np.complex_=np.complex128
12
+
8
13
  import pyomo.environ as pyomo
9
14
  import pyomo.opt as opt
10
15
  from pyomo.contrib import appsi
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tsam
3
- Version: 2.3.2
3
+ Version: 2.3.4
4
4
  Summary: Time series aggregation module (tsam) to create typical periods
5
5
  Home-page: https://github.com/FZJ-IEK3-VSA/tsam
6
6
  Author: Leander Kotzur, Maximilian Hoffmann
@@ -14,24 +14,21 @@ Classifier: Natural Language :: English
14
14
  Classifier: Operating System :: OS Independent
15
15
  Classifier: Programming Language :: Python
16
16
  Classifier: Programming Language :: Python :: 2
17
- Classifier: Programming Language :: Python :: 2.7
18
17
  Classifier: Programming Language :: Python :: 3
19
- Classifier: Programming Language :: Python :: 3.4
20
- Classifier: Programming Language :: Python :: 3.5
21
- Classifier: Programming Language :: Python :: 3.6
22
18
  Classifier: Topic :: Scientific/Engineering :: Mathematics
23
19
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
20
+ Requires-Python: >=3.9
24
21
  Description-Content-Type: text/markdown
25
22
  License-File: LICENSE.txt
26
23
  Requires-Dist: scikit-learn >=0.0
27
- Requires-Dist: pandas <3.0,>=0.18.1
28
- Requires-Dist: numpy <2.0,>=1.11.0
24
+ Requires-Dist: pandas >=2.0.3
25
+ Requires-Dist: numpy >=1.20.0
29
26
  Requires-Dist: pyomo >=6.4.3
30
27
  Requires-Dist: networkx
31
28
  Requires-Dist: tqdm
32
29
  Requires-Dist: highspy
33
30
 
34
- [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
31
+ [![daily pytest](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/daily_tests.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/tsam.svg)](https://anaconda.org/conda-forge/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
35
32
  [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
36
33
 
37
34
  <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
@@ -52,10 +49,14 @@ The documentation of the tsam code can be found [**here**](https://tsam.readthed
52
49
 
53
50
 
54
51
  ## Installation
55
- Directly install via pip as follows:
52
+ Directly install via pip from pypi as follows:
56
53
 
57
54
  pip install tsam
58
55
 
56
+ of install from conda forge with the following command:
57
+
58
+ conda install tsam -c conda-forge
59
+
59
60
  Alternatively, clone a local copy of the repository to your computer
60
61
 
61
62
  git clone https://github.com/FZJ-IEK3-VSA/tsam.git
@@ -70,6 +71,12 @@ Or install directly via python as
70
71
  python setup.py install
71
72
 
72
73
  In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
74
+
75
+ ### Developer installation
76
+
77
+ In order to setup a virtual environment in Linux, correct the python name in the Makefile and call
78
+
79
+ make setup_venv
73
80
 
74
81
 
75
82
  ## Examples
@@ -0,0 +1,16 @@
1
+ tsam/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ tsam/hyperparametertuning.py,sha256=eM7m7eY80uSlwnLRxmctnis2Jv66D15Z1QD9CCMzSXE,10349
3
+ tsam/periodAggregation.py,sha256=h9CC06jBLNyyaFTMRynGUMN87fOH3NdSEug6EcTsKGA,5471
4
+ tsam/representations.py,sha256=2NL1wanBhGreCeJ8jh0aNdIx05YXEyyMJmMAVFS5-T4,7133
5
+ tsam/timeseriesaggregation.py,sha256=xLkdSmjbJnSxC0GBzF9Vc-6VMK7Y1OPOmQhdHJgymug,56963
6
+ tsam/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ tsam/utils/durationRepresentation.py,sha256=A-RjELO-58jBXbEHxxJ6TPZc2zPC560_SW7kNzw2ZPA,9463
8
+ tsam/utils/k_maxoids.py,sha256=0PyaHQMA8vtV_SuQOZ0qdcGFK46aUvOiMSQofjGkjBQ,4415
9
+ tsam/utils/k_medoids_contiguity.py,sha256=xSN9xT61oc2CPxYERhugR9hDkVCb2o8POvAiLLgrey8,5925
10
+ tsam/utils/k_medoids_exact.py,sha256=CW6BLQV2eTYtMxDmo97-6hY1HljxcvkPVrL4DQPN5IQ,7178
11
+ tsam/utils/segmentation.py,sha256=y8TPv1KEqf6ByOz7TRywm3WC9ZPhGiWvhwAcQbFibt4,6132
12
+ tsam-2.3.4.dist-info/LICENSE.txt,sha256=XEzEzumoCmdJzcp5gKT6UOtKrkH-SiGpxVbIfihkNK4,1224
13
+ tsam-2.3.4.dist-info/METADATA,sha256=d3aPs_IF8L1S92kkCuFpTmQ4I5PTUl_Q7Z8T6uJmO4A,12581
14
+ tsam-2.3.4.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
15
+ tsam-2.3.4.dist-info/top_level.txt,sha256=MFI15PnPuMv8F1hTAOXbjGu41z-l6dJbnK69WlIQNcM,5
16
+ tsam-2.3.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (72.1.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,16 +0,0 @@
1
- tsam/__init__.py,sha256=E6QTHxEAgUQUWz5m6udpRN8FdG7bivjaG0sau60TgBA,304
2
- tsam/hyperparametertuning.py,sha256=eM7m7eY80uSlwnLRxmctnis2Jv66D15Z1QD9CCMzSXE,10349
3
- tsam/periodAggregation.py,sha256=h9CC06jBLNyyaFTMRynGUMN87fOH3NdSEug6EcTsKGA,5471
4
- tsam/representations.py,sha256=2NL1wanBhGreCeJ8jh0aNdIx05YXEyyMJmMAVFS5-T4,7133
5
- tsam/timeseriesaggregation.py,sha256=NpHsu507m6TUGIiccU3dkDKjp2SKJkJp_8IQiTkjXSs,56066
6
- tsam/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- tsam/utils/durationRepresentation.py,sha256=k5pu5m8cRLkU2T9pepZ3wUOgf6I9mn6YmoIHBnVR1yo,9391
8
- tsam/utils/k_maxoids.py,sha256=0PyaHQMA8vtV_SuQOZ0qdcGFK46aUvOiMSQofjGkjBQ,4415
9
- tsam/utils/k_medoids_contiguity.py,sha256=IeTucR7OI0iBfbTJs1nVXas5bZ44rVPS2bkb-EewXxc,5843
10
- tsam/utils/k_medoids_exact.py,sha256=5F2vHZA3GxXkR-mt7XOtecsJSE8WjGAIhJLsjV9nWRI,7100
11
- tsam/utils/segmentation.py,sha256=y8TPv1KEqf6ByOz7TRywm3WC9ZPhGiWvhwAcQbFibt4,6132
12
- tsam-2.3.2.dist-info/LICENSE.txt,sha256=XEzEzumoCmdJzcp5gKT6UOtKrkH-SiGpxVbIfihkNK4,1224
13
- tsam-2.3.2.dist-info/METADATA,sha256=jyD9NgubM4lzgeECguLdiGDF0_fKUgygjlYbVDBMCdQ,12404
14
- tsam-2.3.2.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
15
- tsam-2.3.2.dist-info/top_level.txt,sha256=MFI15PnPuMv8F1hTAOXbjGu41z-l6dJbnK69WlIQNcM,5
16
- tsam-2.3.2.dist-info/RECORD,,