tsadmetrics 1.0.0__py3-none-any.whl → 1.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/conf.py +67 -0
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.2.dist-info}/METADATA +13 -11
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.2.dist-info}/RECORD +8 -16
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.2.dist-info}/top_level.txt +0 -1
- tests/__init__.py +0 -0
- tests/test_dpm.py +0 -212
- tests/test_ptdm.py +0 -366
- tests/test_registry.py +0 -58
- tests/test_runner.py +0 -185
- tests/test_spm.py +0 -213
- tests/test_tmem.py +0 -198
- tests/test_tpdm.py +0 -369
- tests/test_tstm.py +0 -338
- /docs/{api_doc → add_docs/api_doc}/conf.py +0 -0
- /docs/{full_doc → add_docs/full_doc}/conf.py +0 -0
- /docs/{manual_doc → add_docs/manual_doc}/conf.py +0 -0
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.2.dist-info}/WHEEL +0 -0
tests/test_tpdm.py
DELETED
@@ -1,369 +0,0 @@
|
|
1
|
-
import unittest
|
2
|
-
from tsadmetrics.metrics.tem.tpdm import *
|
3
|
-
|
4
|
-
import numpy as np
|
5
|
-
import random
|
6
|
-
|
7
|
-
class TestCompositeFScore(unittest.TestCase):
|
8
|
-
|
9
|
-
def setUp(self):
|
10
|
-
"""
|
11
|
-
Configuración inicial para las pruebas.
|
12
|
-
"""
|
13
|
-
self.y_true = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
14
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
15
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
16
|
-
self.y_pred3 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
17
|
-
self.y_pred4 = np.zeros(len(self.y_true))
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
def test(self):
|
23
|
-
|
24
|
-
metric = CompositeFScore()
|
25
|
-
f_score = round(metric.compute(self.y_true, self.y_pred1),2)
|
26
|
-
expected_f_score = 0.67
|
27
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
28
|
-
|
29
|
-
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
30
|
-
expected_f_score = 1
|
31
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
32
|
-
|
33
|
-
f_score = round(metric.compute(self.y_true, self.y_pred3),2)
|
34
|
-
expected_f_score = 1
|
35
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
36
|
-
|
37
|
-
f_score = round(metric.compute(self.y_true, self.y_pred4),2)
|
38
|
-
expected_f_score = 0
|
39
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
40
|
-
|
41
|
-
|
42
|
-
def test_consistency(self):
|
43
|
-
metric = CompositeFScore()
|
44
|
-
try:
|
45
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
46
|
-
y_pred = np.zeros(100)
|
47
|
-
metric.compute(y_true, y_pred)
|
48
|
-
for _ in range(1000):
|
49
|
-
y_true = np.random.choice([0, 1], size=(10,))
|
50
|
-
y_pred = np.random.choice([0, 1], size=(10,))
|
51
|
-
f_score = metric.compute(y_true, y_pred)
|
52
|
-
|
53
|
-
except Exception as e:
|
54
|
-
self.fail(f"CompositeFScore raised an exception {e}")
|
55
|
-
|
56
|
-
class TestPointadjustedFScore(unittest.TestCase):
|
57
|
-
|
58
|
-
def setUp(self):
|
59
|
-
|
60
|
-
self.y_true = np.array([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0])
|
61
|
-
self.y_pred = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0])
|
62
|
-
self.y_pred2 = np.array([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0])
|
63
|
-
self.y_pred3 = np.zeros(len(self.y_true))
|
64
|
-
|
65
|
-
|
66
|
-
def test(self):
|
67
|
-
metric = PointadjustedFScore()
|
68
|
-
f_score = round(metric.compute(self.y_true, self.y_pred),2)
|
69
|
-
expected_f_score = 0.93
|
70
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
71
|
-
|
72
|
-
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
73
|
-
expected_f_score = 1
|
74
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
75
|
-
|
76
|
-
f_score = round(metric.compute(self.y_true, self.y_pred3),2)
|
77
|
-
expected_f_score = 0
|
78
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
79
|
-
|
80
|
-
def test_consistency(self):
|
81
|
-
metric = PointadjustedFScore()
|
82
|
-
try:
|
83
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
84
|
-
y_pred = np.zeros(100)
|
85
|
-
metric.compute(y_true, y_pred)
|
86
|
-
for _ in range(1000):
|
87
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
88
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
89
|
-
f_score = metric.compute(y_true, y_pred)
|
90
|
-
except Exception as e:
|
91
|
-
self.fail(f"PointadjustedFScore raised an exception {e}")
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
class TestSegmentwiseFScore(unittest.TestCase):
|
97
|
-
|
98
|
-
def setUp(self):
|
99
|
-
|
100
|
-
self.y_true = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
101
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
102
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
103
|
-
self.y_pred3 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
104
|
-
self.y_pred4 = np.zeros(len(self.y_true))
|
105
|
-
|
106
|
-
|
107
|
-
def test(self):
|
108
|
-
metric = SegmentwiseFScore()
|
109
|
-
f_score = round(metric.compute(self.y_true, self.y_pred1),2)
|
110
|
-
expected_f_score = 0.67
|
111
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
112
|
-
|
113
|
-
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
114
|
-
expected_f_score = 1
|
115
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
116
|
-
|
117
|
-
f_score = round(metric.compute(self.y_true, self.y_pred3),2)
|
118
|
-
expected_f_score = 1
|
119
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
120
|
-
|
121
|
-
f_score = round(metric.compute(self.y_true, self.y_pred4),2)
|
122
|
-
expected_f_score = 0
|
123
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
def test_consistency(self):
|
128
|
-
metric = SegmentwiseFScore()
|
129
|
-
try:
|
130
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
131
|
-
y_pred = np.zeros(100)
|
132
|
-
metric.compute(y_true, y_pred)
|
133
|
-
for _ in range(1000):
|
134
|
-
y_true = np.random.choice([0, 1], size=(10,))
|
135
|
-
y_pred = np.random.choice([0, 1], size=(10,))
|
136
|
-
f_score = metric.compute(y_true, y_pred)
|
137
|
-
|
138
|
-
except Exception as e:
|
139
|
-
self.fail(f"SegmentwiseFScore raised an exception {e}")
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
class TestPointadjustedAucRoc(unittest.TestCase):
|
144
|
-
|
145
|
-
def setUp(self):
|
146
|
-
|
147
|
-
|
148
|
-
self.y_true1 = np.array([0,0,1,1])
|
149
|
-
|
150
|
-
|
151
|
-
self.y_pred1 = np.array([1, 3, 2, 4])
|
152
|
-
|
153
|
-
self.y_pred2 = np.array([1, 2, 3, 4])
|
154
|
-
|
155
|
-
self.y_pred3 = np.array([4, 4, 4, 4])
|
156
|
-
|
157
|
-
self.y_true2 = np.array([0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,1,0
|
158
|
-
,1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1
|
159
|
-
,1,1,1,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1])
|
160
|
-
|
161
|
-
|
162
|
-
self.y_pred4 = [0.1280475, 0.12059283 ,0.29936968 ,0.85866402 ,0.74071874 ,0.22310849
|
163
|
-
,0.11281839 ,0.26133246 ,0.33696106 ,0.01442675 ,0.51962876 ,0.07828833
|
164
|
-
,0.45337844 ,0.09444483 ,0.91216588 ,0.18847595 ,0.26828481 ,0.65248919
|
165
|
-
,0.46291981 ,0.43730757 ,0.78087553 ,0.45031043 ,0.88661033 ,0.56209352
|
166
|
-
,0.45029423 ,0.17638205 ,0.9261279 ,0.58830652 ,0.01602648 ,0.73903379
|
167
|
-
,0.61831379 ,0.74779903 ,0.42682106 ,0.82583519 ,0.19709012 ,0.44925962
|
168
|
-
,0.62752415 ,0.52458327 ,0.46291768 ,0.33937527 ,0.34868777 ,0.12293847
|
169
|
-
,0.84477504 ,0.10225254 ,0.37048167 ,0.04476031 ,0.36680499 ,0.11346155
|
170
|
-
,0.10583112 ,0.09493136 ,0.54878736 ,0.68514489 ,0.5940307 ,0.14526962
|
171
|
-
,0.69385728 ,0.38888727 ,0.61495304 ,0.06795402 ,0.02894603 ,0.08293609
|
172
|
-
,0.22865685 ,0.63531487 ,0.97966126 ,0.31418622 ,0.8943095 ,0.22974177
|
173
|
-
,0.94402929 ,0.13140625 ,0.80539267 ,0.40160344 ,0.38151339 ,0.65011626
|
174
|
-
,0.71657942 ,0.93297398 ,0.32043329 ,0.54667941 ,0.90645979 ,0.98730183
|
175
|
-
,0.82351336 ,0.10404812 ,0.6962921 ,0.72890752 ,0.49700666 ,0.47461103
|
176
|
-
,0.59696079 ,0.85876179 ,0.247344 ,0.38187879 ,0.23906861 ,0.5266315
|
177
|
-
,0.08171512 ,0.27903375 ,0.61112439 ,0.20784267 ,0.90652453 ,0.87575255
|
178
|
-
,0.26972245 ,0.78780138 ,0.37649185 ,0.08467683]
|
179
|
-
|
180
|
-
self.y_pred5 = self.y_true1
|
181
|
-
self.y_pred6 = np.zeros(len(self.y_true1))
|
182
|
-
|
183
|
-
|
184
|
-
def test(self):
|
185
|
-
metric = PointadjustedAucRoc()
|
186
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
187
|
-
expected_score = 1.0
|
188
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
189
|
-
|
190
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
191
|
-
expected_score = 1.0
|
192
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
193
|
-
|
194
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
195
|
-
expected_score = 0.5
|
196
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
197
|
-
|
198
|
-
|
199
|
-
score = round(metric.compute(self.y_true2, self.y_pred4),2)
|
200
|
-
expected_score = 0.75
|
201
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
202
|
-
|
203
|
-
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
204
|
-
expected_score = 1.0
|
205
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
206
|
-
|
207
|
-
score = round(metric.compute(self.y_true1, self.y_pred6),2)
|
208
|
-
expected_score = 0.5
|
209
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
def test_consistency(self):
|
215
|
-
y_true, y_pred = [],[]
|
216
|
-
metric = PointadjustedAucRoc()
|
217
|
-
try:
|
218
|
-
for _ in range(100):
|
219
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
220
|
-
y_pred = np.random.random( size=(100,))
|
221
|
-
score = metric.compute(y_true, y_pred)
|
222
|
-
except Exception as e:
|
223
|
-
self.fail(f"PointadjustedAucRoc raised an exception {e}")
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
class TestPointadjustedAucPr(unittest.TestCase):
|
228
|
-
|
229
|
-
def setUp(self):
|
230
|
-
"""
|
231
|
-
Configuración inicial para las pruebas.
|
232
|
-
"""
|
233
|
-
|
234
|
-
self.y_true1 = np.array([0,0,1,1])
|
235
|
-
|
236
|
-
|
237
|
-
self.y_pred1 = np.array([1, 3, 2, 4])
|
238
|
-
|
239
|
-
self.y_pred2 = np.array([1, 2, 3, 4])
|
240
|
-
|
241
|
-
self.y_pred3 = np.array([4, 4, 4, 4])
|
242
|
-
|
243
|
-
self.y_true2 = np.array([0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,1,0
|
244
|
-
,1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1
|
245
|
-
,1,1,1,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1])
|
246
|
-
|
247
|
-
|
248
|
-
self.y_pred4 = [0.1280475, 0.12059283 ,0.29936968 ,0.85866402 ,0.74071874 ,0.22310849
|
249
|
-
,0.11281839 ,0.26133246 ,0.33696106 ,0.01442675 ,0.51962876 ,0.07828833
|
250
|
-
,0.45337844 ,0.09444483 ,0.91216588 ,0.18847595 ,0.26828481 ,0.65248919
|
251
|
-
,0.46291981 ,0.43730757 ,0.78087553 ,0.45031043 ,0.88661033 ,0.56209352
|
252
|
-
,0.45029423 ,0.17638205 ,0.9261279 ,0.58830652 ,0.01602648 ,0.73903379
|
253
|
-
,0.61831379 ,0.74779903 ,0.42682106 ,0.82583519 ,0.19709012 ,0.44925962
|
254
|
-
,0.62752415 ,0.52458327 ,0.46291768 ,0.33937527 ,0.34868777 ,0.12293847
|
255
|
-
,0.84477504 ,0.10225254 ,0.37048167 ,0.04476031 ,0.36680499 ,0.11346155
|
256
|
-
,0.10583112 ,0.09493136 ,0.54878736 ,0.68514489 ,0.5940307 ,0.14526962
|
257
|
-
,0.69385728 ,0.38888727 ,0.61495304 ,0.06795402 ,0.02894603 ,0.08293609
|
258
|
-
,0.22865685 ,0.63531487 ,0.97966126 ,0.31418622 ,0.8943095 ,0.22974177
|
259
|
-
,0.94402929 ,0.13140625 ,0.80539267 ,0.40160344 ,0.38151339 ,0.65011626
|
260
|
-
,0.71657942 ,0.93297398 ,0.32043329 ,0.54667941 ,0.90645979 ,0.98730183
|
261
|
-
,0.82351336 ,0.10404812 ,0.6962921 ,0.72890752 ,0.49700666 ,0.47461103
|
262
|
-
,0.59696079 ,0.85876179 ,0.247344 ,0.38187879 ,0.23906861 ,0.5266315
|
263
|
-
,0.08171512 ,0.27903375 ,0.61112439 ,0.20784267 ,0.90652453 ,0.87575255
|
264
|
-
,0.26972245 ,0.78780138 ,0.37649185 ,0.08467683]
|
265
|
-
|
266
|
-
self.y_pred5 = self.y_true1
|
267
|
-
self.y_pred6 = np.zeros(len(self.y_true1))
|
268
|
-
|
269
|
-
def test(self):
|
270
|
-
metric = PointadjustedAucPr()
|
271
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
272
|
-
expected_score = 1.0
|
273
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
274
|
-
|
275
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
276
|
-
expected_score = 1.0
|
277
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
278
|
-
|
279
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
280
|
-
expected_score = 0.75
|
281
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
282
|
-
|
283
|
-
|
284
|
-
score = round(metric.compute(self.y_true2, self.y_pred4),2)
|
285
|
-
expected_score = 0.78
|
286
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
287
|
-
|
288
|
-
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
289
|
-
expected_score = 1
|
290
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
291
|
-
|
292
|
-
score = round(metric.compute(self.y_true1, self.y_pred6),2)
|
293
|
-
expected_score = 0.75
|
294
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
295
|
-
|
296
|
-
|
297
|
-
def test_consistency(self):
|
298
|
-
y_true, y_pred = [],[]
|
299
|
-
metric = PointadjustedAucPr()
|
300
|
-
try:
|
301
|
-
for _ in range(100):
|
302
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
303
|
-
y_pred = np.random.random( size=(100,))
|
304
|
-
score = metric.compute(y_true, y_pred)
|
305
|
-
except Exception as e:
|
306
|
-
self.fail(f"PointadjustedAucPr raised an exception {e}")
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
class TestRangebasedFScore(unittest.TestCase):
|
312
|
-
|
313
|
-
def setUp(self):
|
314
|
-
|
315
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
316
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
317
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
318
|
-
|
319
|
-
self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
320
|
-
self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
321
|
-
self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
322
|
-
|
323
|
-
self.y_pred3 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
324
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
325
|
-
|
326
|
-
|
327
|
-
def test(self):
|
328
|
-
metric = RangebasedFScore(beta=1,p_alpha=0.2,r_alpha=0.2,cardinality_mode='one',p_bias='flat',r_bias='flat')
|
329
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
330
|
-
expected_f_score = 0.67
|
331
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
332
|
-
|
333
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
334
|
-
expected_f_score = 0.46
|
335
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
336
|
-
|
337
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
338
|
-
expected_f_score = 0.71
|
339
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
340
|
-
|
341
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
342
|
-
expected_f_score = 0.67
|
343
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
344
|
-
|
345
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
346
|
-
expected_f_score = 1
|
347
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
348
|
-
|
349
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
350
|
-
expected_f_score = 0
|
351
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
352
|
-
|
353
|
-
def test_range_based_consistency(self):
|
354
|
-
|
355
|
-
try:
|
356
|
-
modes = ['flat','front','back'
|
357
|
-
,'middle']
|
358
|
-
modes_c = ['one','reciprocal']
|
359
|
-
metric = RangebasedFScore(beta=2,p_alpha=random.random(),r_alpha=random.random(),cardinality_mode=random.choice(modes_c),p_bias=random.choice(modes),r_bias=random.choice(modes))
|
360
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
361
|
-
y_pred = np.zeros(100)
|
362
|
-
metric.compute(y_true, y_pred)
|
363
|
-
for _ in range(100):
|
364
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
365
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
366
|
-
metric = RangebasedFScore(beta=2,p_alpha=random.random(),r_alpha=random.random(),cardinality_mode=random.choice(modes_c),p_bias=random.choice(modes),r_bias=random.choice(modes))
|
367
|
-
f_score = metric.compute(y_true, y_pred)
|
368
|
-
except Exception as e:
|
369
|
-
self.fail(f"RangeBasedFScore raised an exception {e}")
|
tests/test_tstm.py
DELETED
@@ -1,338 +0,0 @@
|
|
1
|
-
import unittest
|
2
|
-
|
3
|
-
import numpy as np
|
4
|
-
import random
|
5
|
-
|
6
|
-
import unittest
|
7
|
-
import numpy as np
|
8
|
-
from tsadmetrics.metrics.tem.tstm import *
|
9
|
-
|
10
|
-
class TestAffiliationbasedFScore(unittest.TestCase):
|
11
|
-
|
12
|
-
def setUp(self):
|
13
|
-
|
14
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
15
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
16
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
17
|
-
|
18
|
-
self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
19
|
-
self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
20
|
-
self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
21
|
-
|
22
|
-
self.y_pred3 = self.y_true1
|
23
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
24
|
-
|
25
|
-
|
26
|
-
def test(self):
|
27
|
-
metric = AffiliationbasedFScore(beta=1.0)
|
28
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
29
|
-
expected_f_score = 0.67
|
30
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
31
|
-
|
32
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
33
|
-
expected_f_score = 0.77
|
34
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
35
|
-
|
36
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
37
|
-
expected_f_score = 0.77
|
38
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
39
|
-
|
40
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
41
|
-
expected_f_score = 0.67
|
42
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
43
|
-
|
44
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
45
|
-
expected_metric = 1.0
|
46
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
47
|
-
|
48
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
49
|
-
expected_metric = 0
|
50
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
51
|
-
|
52
|
-
def test_consistency(self):
|
53
|
-
try:
|
54
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
55
|
-
y_pred = np.zeros(100)
|
56
|
-
metric = AffiliationbasedFScore(beta=1.0)
|
57
|
-
metric.compute(y_true, y_pred)
|
58
|
-
for _ in range(100):
|
59
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
60
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
61
|
-
|
62
|
-
f_score = metric.compute(y_true, y_pred)
|
63
|
-
except Exception as e:
|
64
|
-
self.fail(f"AffiliationbasedFScore raised an exception {e}")
|
65
|
-
|
66
|
-
|
67
|
-
class TestTimeTolerantFScore(unittest.TestCase):
|
68
|
-
|
69
|
-
def setUp(self):
|
70
|
-
|
71
|
-
self.y_true = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
72
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
73
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
74
|
-
|
75
|
-
self.y_pred3 = self.y_true
|
76
|
-
self.y_pred4 = np.zeros(len(self.y_true))
|
77
|
-
|
78
|
-
|
79
|
-
def test(self):
|
80
|
-
metric = TimeTolerantFScore(t=2)
|
81
|
-
f_score = round(metric.compute(self.y_true, self.y_pred1),2)
|
82
|
-
expected_f_score = 0.67
|
83
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
84
|
-
|
85
|
-
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
86
|
-
expected_f_score = 0.55
|
87
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
88
|
-
|
89
|
-
score = round(metric.compute(self.y_true, self.y_pred3),2)
|
90
|
-
expected_metric = 1.0
|
91
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
92
|
-
|
93
|
-
score = round(metric.compute(self.y_true, self.y_pred4),2)
|
94
|
-
expected_metric = 0
|
95
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
96
|
-
|
97
|
-
def test_consistency(self):
|
98
|
-
try:
|
99
|
-
for _ in range(1000):
|
100
|
-
|
101
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
102
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
103
|
-
t = random.randint(1,100)
|
104
|
-
metric = TimeTolerantFScore(t=t)
|
105
|
-
f_score = metric.compute(y_true, y_pred)
|
106
|
-
except Exception as e:
|
107
|
-
self.fail(f"TimeTolerantFScore raised an exception {e}")
|
108
|
-
|
109
|
-
|
110
|
-
class TestVusRoc(unittest.TestCase):
|
111
|
-
|
112
|
-
def setUp(self):
|
113
|
-
|
114
|
-
self.y_true1 = np.array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
|
115
|
-
self.y_true2 = np.array([0, 1, 0, 1, 0, 0, 0, 0, 0, 0])
|
116
|
-
|
117
|
-
self.y_pred1 = np.array( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
118
|
-
|
119
|
-
self.y_pred2 = np.array([8, 0, 9, 1, 7, 2, 3, 4, 5, 6])
|
120
|
-
|
121
|
-
self.y_pred3 = self.y_true1
|
122
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
def test(self):
|
128
|
-
metric = VusRoc(window=4)
|
129
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
130
|
-
self.assertTrue(score <= 0.1)
|
131
|
-
|
132
|
-
score = round(metric.compute(self.y_true2, self.y_pred2),2)
|
133
|
-
self.assertTrue(score > 0.4)
|
134
|
-
metric = VusRoc(window=0)
|
135
|
-
score = metric.compute(self.y_true2, self.y_pred2)
|
136
|
-
self.assertTrue(score < 0.4)
|
137
|
-
|
138
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
139
|
-
expected_metric = 1.0
|
140
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
141
|
-
|
142
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
143
|
-
expected_metric = 0.5
|
144
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
145
|
-
|
146
|
-
|
147
|
-
def test_consistency(self):
|
148
|
-
try:
|
149
|
-
metric = VusRoc(window=4)
|
150
|
-
for _ in range(10):
|
151
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
152
|
-
y_pred = np.random.random( size=(100,))
|
153
|
-
score = metric.compute(y_true, y_pred)
|
154
|
-
except Exception as e:
|
155
|
-
self.fail(f"VusRoc raised an exception {e}")
|
156
|
-
|
157
|
-
class TestVusPr(unittest.TestCase):
|
158
|
-
|
159
|
-
def setUp(self):
|
160
|
-
|
161
|
-
|
162
|
-
self.y_true1 = np.array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
|
163
|
-
self.y_true2 = np.array([0, 1, 0, 1, 0, 0, 0, 0, 0, 0])
|
164
|
-
|
165
|
-
self.y_pred1 = np.array( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
166
|
-
|
167
|
-
self.y_pred2 = np.array([8, 0, 9, 1, 7, 2, 3, 4, 5, 6])
|
168
|
-
|
169
|
-
self.y_pred3 = self.y_true1
|
170
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
def test(self):
|
176
|
-
metric = VusPr()
|
177
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
178
|
-
print(score)
|
179
|
-
self.assertTrue(score <= 0.2)
|
180
|
-
|
181
|
-
score = round(metric.compute(self.y_true2, self.y_pred2),2)
|
182
|
-
self.assertTrue(score > 0.5)
|
183
|
-
|
184
|
-
metric = VusPr(window=0)
|
185
|
-
score = metric.compute(self.y_true2, self.y_pred2)
|
186
|
-
|
187
|
-
self.assertTrue(score < 0.5)
|
188
|
-
|
189
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
190
|
-
expected_metric = 1.0
|
191
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
192
|
-
|
193
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
194
|
-
expected_metric = 0.2
|
195
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
196
|
-
|
197
|
-
|
198
|
-
def test_consistency(self):
|
199
|
-
try:
|
200
|
-
metric = VusPr(window=4)
|
201
|
-
for _ in range(10):
|
202
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
203
|
-
y_pred = np.random.random( size=(100,))
|
204
|
-
score = metric.compute(y_true, y_pred)
|
205
|
-
except Exception as e:
|
206
|
-
self.fail(f"VusPr raised an exception {e}")
|
207
|
-
|
208
|
-
|
209
|
-
class TestPateFScore(unittest.TestCase):
|
210
|
-
|
211
|
-
def setUp(self):
|
212
|
-
"""
|
213
|
-
Configuración inicial para las pruebas.
|
214
|
-
"""
|
215
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
216
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
217
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
218
|
-
|
219
|
-
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
220
|
-
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
221
|
-
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
222
|
-
|
223
|
-
self.y_pred3 = self.y_true1
|
224
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
225
|
-
|
226
|
-
def test(self):
|
227
|
-
metric = PateFScore(early=2, delay=2)
|
228
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
229
|
-
expected_score = 0.67
|
230
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
231
|
-
|
232
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
233
|
-
expected_score = 0.27
|
234
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
235
|
-
|
236
|
-
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
237
|
-
expected_score = 0.71
|
238
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
239
|
-
|
240
|
-
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
241
|
-
expected_score = 0.62
|
242
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
243
|
-
|
244
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
245
|
-
expected_metric = 1.0
|
246
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
247
|
-
|
248
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
249
|
-
expected_metric = 0
|
250
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
def test_consistency(self):
|
256
|
-
try:
|
257
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
258
|
-
y_pred = np.zeros(100)
|
259
|
-
metric = PateFScore(early=5, delay=5)
|
260
|
-
for _ in range(10):
|
261
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
262
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
263
|
-
|
264
|
-
score = metric.compute(y_true, y_pred)
|
265
|
-
except Exception as e:
|
266
|
-
self.fail(f"PateFScore raised an exception {e}")
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
class TestPate(unittest.TestCase):
|
271
|
-
|
272
|
-
def setUp(self):
|
273
|
-
|
274
|
-
self.y_true1 = np.array([0,0,1,1])
|
275
|
-
|
276
|
-
|
277
|
-
self.y_pred1 = np.array([1, 3, 2, 4])
|
278
|
-
|
279
|
-
self.y_pred2 = np.array([1, 2, 3, 4])
|
280
|
-
|
281
|
-
self.y_pred3 = np.array([4, 4, 4, 4])
|
282
|
-
|
283
|
-
self.y_true2 = np.array([0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,1,0
|
284
|
-
,1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1
|
285
|
-
,1,1,1,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1])
|
286
|
-
|
287
|
-
|
288
|
-
self.y_pred4 = [0.1280475, 0.12059283 ,0.29936968 ,0.85866402 ,0.74071874 ,0.22310849
|
289
|
-
,0.11281839 ,0.26133246 ,0.33696106 ,0.01442675 ,0.51962876 ,0.07828833
|
290
|
-
,0.45337844 ,0.09444483 ,0.91216588 ,0.18847595 ,0.26828481 ,0.65248919
|
291
|
-
,0.46291981 ,0.43730757 ,0.78087553 ,0.45031043 ,0.88661033 ,0.56209352
|
292
|
-
,0.45029423 ,0.17638205 ,0.9261279 ,0.58830652 ,0.01602648 ,0.73903379
|
293
|
-
,0.61831379 ,0.74779903 ,0.42682106 ,0.82583519 ,0.19709012 ,0.44925962
|
294
|
-
,0.62752415 ,0.52458327 ,0.46291768 ,0.33937527 ,0.34868777 ,0.12293847
|
295
|
-
,0.84477504 ,0.10225254 ,0.37048167 ,0.04476031 ,0.36680499 ,0.11346155
|
296
|
-
,0.10583112 ,0.09493136 ,0.54878736 ,0.68514489 ,0.5940307 ,0.14526962
|
297
|
-
,0.69385728 ,0.38888727 ,0.61495304 ,0.06795402 ,0.02894603 ,0.08293609
|
298
|
-
,0.22865685 ,0.63531487 ,0.97966126 ,0.31418622 ,0.8943095 ,0.22974177
|
299
|
-
,0.94402929 ,0.13140625 ,0.80539267 ,0.40160344 ,0.38151339 ,0.65011626
|
300
|
-
,0.71657942 ,0.93297398 ,0.32043329 ,0.54667941 ,0.90645979 ,0.98730183
|
301
|
-
,0.82351336 ,0.10404812 ,0.6962921 ,0.72890752 ,0.49700666 ,0.47461103
|
302
|
-
,0.59696079 ,0.85876179 ,0.247344 ,0.38187879 ,0.23906861 ,0.5266315
|
303
|
-
,0.08171512 ,0.27903375 ,0.61112439 ,0.20784267 ,0.90652453 ,0.87575255
|
304
|
-
,0.26972245 ,0.78780138 ,0.37649185 ,0.08467683]
|
305
|
-
|
306
|
-
self.y_pred5 = self.y_true1
|
307
|
-
self.y_pred6 = np.zeros(len(self.y_true1))
|
308
|
-
|
309
|
-
def test(self):
|
310
|
-
metric = Pate(early=1, delay=1)
|
311
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
312
|
-
expected_score = 0.79
|
313
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
314
|
-
|
315
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
316
|
-
expected_score = 1.0
|
317
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
318
|
-
|
319
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
320
|
-
expected_score = 0.75
|
321
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
322
|
-
|
323
|
-
metric = Pate(early=5, delay=5)
|
324
|
-
score = round(metric.compute(self.y_true2, self.y_pred4),2)
|
325
|
-
expected_score = 0.67
|
326
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
327
|
-
|
328
|
-
|
329
|
-
def test_consistency(self):
|
330
|
-
try:
|
331
|
-
metric = Pate(early=5, delay=5)
|
332
|
-
for _ in range(10):
|
333
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
334
|
-
y_pred = np.random.random( size=(100,))
|
335
|
-
|
336
|
-
score = metric.compute(y_true, y_pred)
|
337
|
-
except Exception as e:
|
338
|
-
self.fail(f"Pate raised an exception {e}")
|