tsadmetrics 1.0.0__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/conf.py +67 -0
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.1.dist-info}/METADATA +15 -1
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.1.dist-info}/RECORD +8 -16
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.1.dist-info}/top_level.txt +0 -1
- tests/__init__.py +0 -0
- tests/test_dpm.py +0 -212
- tests/test_ptdm.py +0 -366
- tests/test_registry.py +0 -58
- tests/test_runner.py +0 -185
- tests/test_spm.py +0 -213
- tests/test_tmem.py +0 -198
- tests/test_tpdm.py +0 -369
- tests/test_tstm.py +0 -338
- /docs/{api_doc → add_docs/api_doc}/conf.py +0 -0
- /docs/{full_doc → add_docs/full_doc}/conf.py +0 -0
- /docs/{manual_doc → add_docs/manual_doc}/conf.py +0 -0
- {tsadmetrics-1.0.0.dist-info → tsadmetrics-1.0.1.dist-info}/WHEEL +0 -0
tests/test_ptdm.py
DELETED
@@ -1,366 +0,0 @@
|
|
1
|
-
import unittest
|
2
|
-
from tsadmetrics.metrics.tem.ptdm import *
|
3
|
-
|
4
|
-
import numpy as np
|
5
|
-
import random
|
6
|
-
|
7
|
-
class TestAverageDetectionCount(unittest.TestCase):
|
8
|
-
|
9
|
-
|
10
|
-
def setUp(self):
|
11
|
-
"""
|
12
|
-
Configuración inicial para las pruebas.
|
13
|
-
"""
|
14
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
15
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
16
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
17
|
-
|
18
|
-
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
19
|
-
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
20
|
-
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
21
|
-
|
22
|
-
self.y_pred3 = self.y_true1
|
23
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
def test(self):
|
28
|
-
metric = AverageDetectionCount()
|
29
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
30
|
-
expected_metric = 0.5
|
31
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
32
|
-
|
33
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
34
|
-
expected_metric = 0.12
|
35
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
36
|
-
|
37
|
-
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
38
|
-
expected_metric = 0.33
|
39
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
40
|
-
|
41
|
-
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
42
|
-
expected_metric = 0.67
|
43
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
44
|
-
|
45
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
46
|
-
expected_metric = 1.0
|
47
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
48
|
-
|
49
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
50
|
-
expected_metric = 0
|
51
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
52
|
-
|
53
|
-
|
54
|
-
def test_consistency(self):
|
55
|
-
metric = AverageDetectionCount()
|
56
|
-
try:
|
57
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
58
|
-
y_pred = np.zeros(100)
|
59
|
-
metric.compute(y_true, y_pred)
|
60
|
-
for _ in range(100):
|
61
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
62
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
63
|
-
|
64
|
-
score = metric.compute(y_true, y_pred)
|
65
|
-
except Exception as e:
|
66
|
-
self.fail(f"AverageDetectionCount raised an exception {e}")
|
67
|
-
|
68
|
-
|
69
|
-
class TestDetectionAccuracyInRange(unittest.TestCase):
|
70
|
-
|
71
|
-
def setUp(self):
|
72
|
-
"""
|
73
|
-
Configuración inicial para las pruebas.
|
74
|
-
"""
|
75
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
76
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
77
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
78
|
-
|
79
|
-
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
80
|
-
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
81
|
-
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
82
|
-
|
83
|
-
self.y_pred3 = self.y_true1
|
84
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
85
|
-
|
86
|
-
def test(self):
|
87
|
-
metric = DetectionAccuracyInRange(k=3)
|
88
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
89
|
-
expected_score = 1.0
|
90
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
91
|
-
|
92
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
93
|
-
expected_score = 1.0
|
94
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
95
|
-
|
96
|
-
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
97
|
-
expected_score = 1.0
|
98
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
99
|
-
|
100
|
-
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
101
|
-
expected_score = 1.0
|
102
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
103
|
-
|
104
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
105
|
-
expected_metric = 1.0
|
106
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
107
|
-
|
108
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
109
|
-
expected_metric = 0
|
110
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
def test_consistency(self):
|
116
|
-
metric = DetectionAccuracyInRange(k=4)
|
117
|
-
try:
|
118
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
119
|
-
y_pred = np.zeros(100)
|
120
|
-
|
121
|
-
for _ in range(100):
|
122
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
123
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
124
|
-
|
125
|
-
score = metric.compute(y_true, y_pred)
|
126
|
-
except Exception as e:
|
127
|
-
self.fail(f"DetectionAccuracyInRange raised an exception {e}")
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
class TestPointadjustedAtKFScore(unittest.TestCase):
|
135
|
-
|
136
|
-
def setUp(self):
|
137
|
-
"""
|
138
|
-
Configuración inicial para las pruebas.
|
139
|
-
"""
|
140
|
-
self.y_true = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
141
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
142
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
143
|
-
|
144
|
-
self.y_pred3 = self.y_true
|
145
|
-
self.y_pred4 = np.zeros(len(self.y_true))
|
146
|
-
|
147
|
-
|
148
|
-
def test(self):
|
149
|
-
metric = PointadjustedAtKFScore(k=0.2)
|
150
|
-
f_score = round(metric.compute(self.y_true, self.y_pred1),2)
|
151
|
-
expected_f_score = 0.67
|
152
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
153
|
-
|
154
|
-
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
155
|
-
expected_f_score = 0.22
|
156
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
157
|
-
|
158
|
-
score = round(metric.compute(self.y_true, self.y_pred3),2)
|
159
|
-
expected_metric = 1.0
|
160
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
161
|
-
|
162
|
-
score = round(metric.compute(self.y_true, self.y_pred4),2)
|
163
|
-
expected_metric = 0
|
164
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
165
|
-
|
166
|
-
def test_consistency(self):
|
167
|
-
metric = PointadjustedAtKFScore(k=0.3)
|
168
|
-
try:
|
169
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
170
|
-
y_pred = np.zeros(100)
|
171
|
-
metric.compute(y_true, y_pred)
|
172
|
-
for _ in range(1000):
|
173
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
174
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
175
|
-
f_score = metric.compute(y_true, y_pred)
|
176
|
-
except Exception as e:
|
177
|
-
self.fail(f"PointadjustedAtKFScore raised an exception {e}")
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
class TestTimeseriesAwareFScore(unittest.TestCase):
|
182
|
-
|
183
|
-
def setUp(self):
|
184
|
-
"""
|
185
|
-
Configuración inicial para las pruebas.
|
186
|
-
"""
|
187
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
188
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
189
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
190
|
-
|
191
|
-
self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
192
|
-
self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
193
|
-
self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
194
|
-
|
195
|
-
self.y_pred3 = self.y_true1
|
196
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
def test(self):
|
201
|
-
|
202
|
-
metric = TimeseriesAwareFScore(beta=1, alpha=0.5,delta=0, theta=0.5)
|
203
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
204
|
-
expected_f_score = 0.67
|
205
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
206
|
-
|
207
|
-
f_score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
208
|
-
expected_f_score = 0.12
|
209
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
210
|
-
|
211
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
212
|
-
expected_f_score = 0.77
|
213
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
214
|
-
|
215
|
-
f_score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
216
|
-
expected_f_score = 0.67
|
217
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
218
|
-
|
219
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
220
|
-
expected_metric = 1.0
|
221
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
222
|
-
|
223
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
224
|
-
expected_metric = 0
|
225
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
226
|
-
|
227
|
-
def test_consistency(self):
|
228
|
-
metric = TimeseriesAwareFScore(beta=1, alpha=0.5,delta=0, theta=0.5)
|
229
|
-
try:
|
230
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
231
|
-
y_pred = np.zeros(100)
|
232
|
-
metric.compute(y_true, y_pred)
|
233
|
-
for _ in range(100):
|
234
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
235
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
236
|
-
metric = TimeseriesAwareFScore(beta=1, alpha=random.random(),delta=0, theta=random.random())
|
237
|
-
f_score = metric.compute(y_true, y_pred)
|
238
|
-
except Exception as e:
|
239
|
-
self.fail(f"ts_aware_f_score raised an exception {e}")
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
class TestTotalDetectedInRange(unittest.TestCase):
|
245
|
-
|
246
|
-
def setUp(self):
|
247
|
-
"""
|
248
|
-
Configuración inicial para las pruebas.
|
249
|
-
"""
|
250
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
251
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
252
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
253
|
-
|
254
|
-
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
255
|
-
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
256
|
-
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
257
|
-
|
258
|
-
self.y_pred3 = self.y_true1
|
259
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
260
|
-
|
261
|
-
def test(self):
|
262
|
-
metric = TotalDetectedInRange(k=3)
|
263
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
264
|
-
expected_score = 0.5
|
265
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
266
|
-
|
267
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
268
|
-
expected_score = 0.5
|
269
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
270
|
-
|
271
|
-
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
272
|
-
expected_score = 0.56
|
273
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
274
|
-
|
275
|
-
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
276
|
-
expected_score = 0.44
|
277
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
278
|
-
|
279
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
280
|
-
expected_metric = 1.0
|
281
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
282
|
-
|
283
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
284
|
-
expected_metric = 0
|
285
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
def test_consistency(self):
|
291
|
-
metric = TotalDetectedInRange(k=4)
|
292
|
-
try:
|
293
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
294
|
-
y_pred = np.zeros(100)
|
295
|
-
metric.compute(y_true, y_pred)
|
296
|
-
for _ in range(100):
|
297
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
298
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
299
|
-
|
300
|
-
score = metric.compute(y_true, y_pred)
|
301
|
-
except Exception as e:
|
302
|
-
self.fail(f"TotalDetectedInRange raised an exception {e}")
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
class TestWeightedDetectionDifference(unittest.TestCase):
|
309
|
-
|
310
|
-
def setUp(self):
|
311
|
-
"""
|
312
|
-
Configuración inicial para las pruebas.
|
313
|
-
"""
|
314
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
315
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
316
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
317
|
-
|
318
|
-
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
319
|
-
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
320
|
-
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
321
|
-
|
322
|
-
self.y_pred3 = self.y_true1
|
323
|
-
self.y_pred4 = np.zeros(len(self.y_true1))
|
324
|
-
|
325
|
-
def test(self):
|
326
|
-
metric = WeightedDetectionDifference(k=3)
|
327
|
-
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
328
|
-
expected_score = 18.89
|
329
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
330
|
-
|
331
|
-
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
332
|
-
expected_score = 24.89
|
333
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
334
|
-
|
335
|
-
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
336
|
-
expected_score = 15.73
|
337
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
338
|
-
|
339
|
-
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
340
|
-
expected_score = 16.73
|
341
|
-
self.assertAlmostEqual(score, expected_score, places=4)
|
342
|
-
|
343
|
-
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
344
|
-
expected_metric = 10
|
345
|
-
self.assertGreater(score, expected_metric)
|
346
|
-
|
347
|
-
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
348
|
-
expected_metric = 0
|
349
|
-
self.assertAlmostEqual(score, expected_metric, places=4)
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
def test_consistency(self):
|
355
|
-
metric = WeightedDetectionDifference(k=4)
|
356
|
-
try:
|
357
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
358
|
-
y_pred = np.zeros(100)
|
359
|
-
metric.compute(y_true, y_pred)
|
360
|
-
for _ in range(100):
|
361
|
-
y_true = np.random.choice([0, 1], size=(100,))
|
362
|
-
y_pred = np.random.choice([0, 1], size=(100,))
|
363
|
-
|
364
|
-
score = metric.compute(y_true, y_pred)
|
365
|
-
except Exception as e:
|
366
|
-
self.fail(f"WeightedDetectionDifference raised an exception {e}")
|
tests/test_registry.py
DELETED
@@ -1,58 +0,0 @@
|
|
1
|
-
import unittest
|
2
|
-
from tsadmetrics.metrics.Registry import Registry
|
3
|
-
from sklearn.metrics import fbeta_score
|
4
|
-
import numpy as np
|
5
|
-
import random
|
6
|
-
class TestRegistry(unittest.TestCase):
|
7
|
-
def setUp(self):
|
8
|
-
"""
|
9
|
-
Configuración inicial para las pruebas.
|
10
|
-
"""
|
11
|
-
self.registry = Registry()
|
12
|
-
self.sample_metric = "pwf"
|
13
|
-
|
14
|
-
self.num_tests = 100
|
15
|
-
self.test_cases = []
|
16
|
-
for _ in range(self.num_tests):
|
17
|
-
y_true = np.random.choice([0, 1], size=(10000,))
|
18
|
-
y_pred = np.random.choice([0, 1], size=(10000,))
|
19
|
-
self.test_cases.append((y_true, y_pred))
|
20
|
-
|
21
|
-
y_true_perfect = np.random.choice([0, 1], size=(10000,))
|
22
|
-
y_pred_perfect = y_true_perfect.copy()
|
23
|
-
self.test_cases.append((y_true_perfect, y_pred_perfect))
|
24
|
-
|
25
|
-
y_true_all_zeros = np.random.choice([0, 1], size=(10000,))
|
26
|
-
y_pred_all_zeros = np.zeros(10000, dtype=int)
|
27
|
-
self.test_cases.append((y_true_all_zeros, y_pred_all_zeros))
|
28
|
-
|
29
|
-
def test(self):
|
30
|
-
|
31
|
-
for y_true, y_pred in self.test_cases:
|
32
|
-
|
33
|
-
with self.subTest(y_true=y_true, y_pred=y_pred):
|
34
|
-
beta = random.randint(0,1000000)
|
35
|
-
metric = self.registry.get_metric(self.sample_metric,beta=beta)
|
36
|
-
f_score = metric.compute(y_true, y_pred)
|
37
|
-
expected_f_score = fbeta_score(y_true, y_pred, beta=beta)
|
38
|
-
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
39
|
-
|
40
|
-
def test_load_metrics_from_file(self):
|
41
|
-
"""
|
42
|
-
Prueba que las métricas se pueden cargar desde un fichero.
|
43
|
-
"""
|
44
|
-
metrics_file = "tests/test_data/example_metrics_config.yaml"
|
45
|
-
|
46
|
-
|
47
|
-
loaded_metrics = self.registry.load_metrics_info_from_file(metrics_file)
|
48
|
-
|
49
|
-
expected_metrics = [
|
50
|
-
("adc", {}),
|
51
|
-
("dair", {}),
|
52
|
-
("pakf", {"k":0.2})
|
53
|
-
]
|
54
|
-
self.assertEqual(len(loaded_metrics), len(expected_metrics))
|
55
|
-
for (m1, p1), (m2, p2) in zip(loaded_metrics, expected_metrics):
|
56
|
-
self.assertEqual(m1, m2)
|
57
|
-
self.assertEqual(p1, p2)
|
58
|
-
|
tests/test_runner.py
DELETED
@@ -1,185 +0,0 @@
|
|
1
|
-
import unittest
|
2
|
-
|
3
|
-
from tsadmetrics.evaluation.Runner import Runner
|
4
|
-
import numpy as np
|
5
|
-
import os
|
6
|
-
|
7
|
-
class TestRunner(unittest.TestCase):
|
8
|
-
|
9
|
-
|
10
|
-
def setUp(self):
|
11
|
-
"""
|
12
|
-
Configuración inicial para las pruebas.
|
13
|
-
"""
|
14
|
-
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
15
|
-
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
16
|
-
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
def test_direct_data(self):
|
23
|
-
dataset_evaluations = [
|
24
|
-
("dataset1", self.y_true1, (self.y_pred1, self.y_pred1)),
|
25
|
-
("dataset2", self.y_true1, (self.y_pred2, self.y_pred2))
|
26
|
-
|
27
|
-
]
|
28
|
-
metrics = [
|
29
|
-
("adc",{}),
|
30
|
-
("dair",{}),
|
31
|
-
("pakf",{"k":0.2}),]
|
32
|
-
expected_score_d1 = {
|
33
|
-
"adc":0.5,
|
34
|
-
"dair":1.0,
|
35
|
-
"pakf":0.67
|
36
|
-
}
|
37
|
-
expected_score_d2 = {
|
38
|
-
"adc":0.12,
|
39
|
-
"dair":1.0,
|
40
|
-
"pakf":0.22
|
41
|
-
}
|
42
|
-
runnner = Runner(dataset_evaluations, metrics)
|
43
|
-
results = runnner.run()
|
44
|
-
for metric, expected in expected_score_d1.items():
|
45
|
-
params = {}
|
46
|
-
for p in metrics:
|
47
|
-
if p[0] == metric:
|
48
|
-
params = p[1]
|
49
|
-
print(metric)
|
50
|
-
self.assertAlmostEqual(round(results.loc["dataset1", f"{metric}"], 2), expected, places=4)
|
51
|
-
for metric, expected in expected_score_d2.items():
|
52
|
-
params = {}
|
53
|
-
for p in metrics:
|
54
|
-
if p[0] == metric:
|
55
|
-
params = p[1]
|
56
|
-
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
57
|
-
|
58
|
-
def test_file_reference(self):
|
59
|
-
dataset_evaluations = [
|
60
|
-
("dataset1", "tests/test_data/results1.csv"),
|
61
|
-
("dataset2", "tests/test_data/results2.csv")
|
62
|
-
|
63
|
-
]
|
64
|
-
metrics = [
|
65
|
-
("adc",{}),
|
66
|
-
("dair",{}),
|
67
|
-
("pakf",{"k":0.2})]
|
68
|
-
expected_score_d1 = {
|
69
|
-
"adc":0.5,
|
70
|
-
"dair":1.0,
|
71
|
-
"pakf":0.67
|
72
|
-
}
|
73
|
-
expected_score_d2 = {
|
74
|
-
"adc":0.12,
|
75
|
-
"dair":1.0,
|
76
|
-
"pakf":0.22
|
77
|
-
}
|
78
|
-
runnner = Runner(dataset_evaluations, metrics)
|
79
|
-
results = runnner.run()
|
80
|
-
for metric, expected in expected_score_d1.items():
|
81
|
-
params = {}
|
82
|
-
for p in metrics:
|
83
|
-
if p[0] == metric:
|
84
|
-
params = p[1]
|
85
|
-
self.assertAlmostEqual(round(results.loc["dataset1",f"{metric}"],2), expected, places=4)
|
86
|
-
for metric, expected in expected_score_d2.items():
|
87
|
-
params = {}
|
88
|
-
for p in metrics:
|
89
|
-
if p[0] == metric:
|
90
|
-
params = p[1]
|
91
|
-
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
92
|
-
|
93
|
-
def test_metrics_from_file(self):
|
94
|
-
dataset_evaluations = [
|
95
|
-
("dataset1", "tests/test_data/results1.csv"),
|
96
|
-
("dataset2", "tests/test_data/results2.csv")
|
97
|
-
|
98
|
-
]
|
99
|
-
metrics = [
|
100
|
-
("adc",{}),
|
101
|
-
("dair",{}),
|
102
|
-
("pakf",{"k":0.2})]
|
103
|
-
expected_score_d1 = {
|
104
|
-
"adc":0.5,
|
105
|
-
"dair":1.0,
|
106
|
-
"pakf":0.67
|
107
|
-
}
|
108
|
-
expected_score_d2 = {
|
109
|
-
"adc":0.12,
|
110
|
-
"dair":1.0,
|
111
|
-
"pakf":0.22
|
112
|
-
}
|
113
|
-
runnner = Runner(dataset_evaluations,"tests/test_data/example_metrics_config.yaml")
|
114
|
-
results = runnner.run()
|
115
|
-
for metric, expected in expected_score_d1.items():
|
116
|
-
params = {}
|
117
|
-
for p in metrics:
|
118
|
-
if p[0] == metric:
|
119
|
-
params = p[1]
|
120
|
-
self.assertAlmostEqual(round(results.loc["dataset1",f"{metric}"],2), expected, places=4)
|
121
|
-
for metric, expected in expected_score_d2.items():
|
122
|
-
params = {}
|
123
|
-
for p in metrics:
|
124
|
-
if p[0] == metric:
|
125
|
-
params = p[1]
|
126
|
-
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
127
|
-
|
128
|
-
def test_evaluation_from_file(self):
|
129
|
-
metrics = [
|
130
|
-
("adc",{}),
|
131
|
-
("dair",{}),
|
132
|
-
("pakf",{"k":0.2})]
|
133
|
-
expected_score_d1 = {
|
134
|
-
"adc":0.5,
|
135
|
-
"dair":1.0,
|
136
|
-
"pakf":0.67
|
137
|
-
}
|
138
|
-
expected_score_d2 = {
|
139
|
-
"adc":0.12,
|
140
|
-
"dair":1.0,
|
141
|
-
"pakf":0.22
|
142
|
-
}
|
143
|
-
runnner = Runner("tests/test_data/example_evaluation_config.yaml")
|
144
|
-
results = runnner.run()
|
145
|
-
print(results)
|
146
|
-
for metric, expected in expected_score_d1.items():
|
147
|
-
params = {}
|
148
|
-
for p in metrics:
|
149
|
-
if p[0] == metric:
|
150
|
-
params = p[1]
|
151
|
-
self.assertAlmostEqual(round(results.loc["dataset1", f"{metric}"],2), expected, places=4)
|
152
|
-
for metric, expected in expected_score_d2.items():
|
153
|
-
params = {}
|
154
|
-
for p in metrics:
|
155
|
-
if p[0] == metric:
|
156
|
-
params = p[1]
|
157
|
-
self.assertAlmostEqual(round(results.loc["dataset2",f"{metric}"],2), expected, places=4)
|
158
|
-
def test_report(self):
|
159
|
-
dataset_evaluations = [
|
160
|
-
("dataset1", "tests/test_data/results1.csv"),
|
161
|
-
("dataset2", "tests/test_data/results2.csv")
|
162
|
-
]
|
163
|
-
|
164
|
-
metrics = [
|
165
|
-
("adc",{}),
|
166
|
-
("dair",{}),
|
167
|
-
("pakf",{"k":0.2})]
|
168
|
-
expected_score_d1 = {
|
169
|
-
"adc":0.5,
|
170
|
-
"dair":1.0,
|
171
|
-
"pakf":0.67
|
172
|
-
}
|
173
|
-
expected_score_d2 = {
|
174
|
-
"adc":0.12,
|
175
|
-
"dair":1.0,
|
176
|
-
"pakf":0.22
|
177
|
-
}
|
178
|
-
runnner = Runner(dataset_evaluations, metrics)
|
179
|
-
results = runnner.run(generate_report=True, report_file="tests/evaluation_report.csv")
|
180
|
-
|
181
|
-
with open("tests/evaluation_report.csv", "r") as generated_file, open("tests/test_data/evaluation_report.csv", "r") as expected_file:
|
182
|
-
self.assertEqual(generated_file.read(), expected_file.read())
|
183
|
-
|
184
|
-
os.remove("tests/evaluation_report.csv")
|
185
|
-
|