tsadmetrics 0.1.9__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_non_binary.py +2 -2
- tsadmetrics/non_binary_metrics.py +138 -14
- {tsadmetrics-0.1.9.dist-info → tsadmetrics-0.1.10.dist-info}/METADATA +1 -1
- {tsadmetrics-0.1.9.dist-info → tsadmetrics-0.1.10.dist-info}/RECORD +6 -6
- {tsadmetrics-0.1.9.dist-info → tsadmetrics-0.1.10.dist-info}/WHEEL +0 -0
- {tsadmetrics-0.1.9.dist-info → tsadmetrics-0.1.10.dist-info}/top_level.txt +0 -0
tests/test_non_binary.py
CHANGED
@@ -202,7 +202,7 @@ class TestAUCPRPA(unittest.TestCase):
|
|
202
202
|
self.assertAlmostEqual(score, expected_score, places=4)
|
203
203
|
|
204
204
|
score = round(auc_pr_pa(self.y_true1, self.y_pred3),2)
|
205
|
-
expected_score = 0.
|
205
|
+
expected_score = 0.75
|
206
206
|
self.assertAlmostEqual(score, expected_score, places=4)
|
207
207
|
|
208
208
|
if len(self.y_true2) == len(self.y_pred4):
|
@@ -252,7 +252,7 @@ class TestAUCPRSW(unittest.TestCase):
|
|
252
252
|
self.assertAlmostEqual(score, expected_score, places=4)
|
253
253
|
|
254
254
|
score = round(auc_pr_sw(self.y_true1, self.y_pred3),2)
|
255
|
-
expected_score =
|
255
|
+
expected_score = 1
|
256
256
|
self.assertAlmostEqual(score, expected_score, places=4)
|
257
257
|
|
258
258
|
|
@@ -26,19 +26,69 @@ def auc_pr_pw(y_true : np.array ,y_anomaly_scores: np.array):
|
|
26
26
|
|
27
27
|
|
28
28
|
def auc_pr_pa(y_true: np.array, y_anomaly_scores: np.array):
|
29
|
-
thresholds = np.unique(y_anomaly_scores)[::-1] # Descending order
|
30
29
|
precisions = [1]
|
31
30
|
recalls = [0]
|
32
|
-
|
31
|
+
tps,fps,fns = [],[],[]
|
33
32
|
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
33
|
+
p_adj = PointAdjust(len(y_true),y_true,(np.array(y_anomaly_scores) >= 0.5).astype(int))
|
34
|
+
segments= p_adj.get_gt_anomalies_segmentwise()
|
35
|
+
idx = np.argsort(y_anomaly_scores)[::-1].astype(int)
|
36
|
+
y_true_sorted = np.array(y_true)[idx]
|
37
|
+
y_anomaly_scores_sorted = np.array(y_anomaly_scores)[idx]
|
38
|
+
|
39
|
+
segment_mins = []
|
40
|
+
for start,end in segments:
|
41
|
+
anoms_scores = y_anomaly_scores[start:end+1]
|
42
|
+
segment_mins.append([np.max(anoms_scores),end-start+1])
|
43
|
+
|
44
|
+
for i_t in range(len(y_anomaly_scores_sorted)):
|
45
|
+
fp,tp,fn = 0,0,0
|
46
|
+
if i_t > 0 and y_anomaly_scores_sorted[i_t] == y_anomaly_scores_sorted[i_t-1] :
|
47
|
+
tp = tps[-1]
|
48
|
+
fp = fps[-1]
|
49
|
+
fn = fns[-1]
|
50
|
+
else:
|
51
|
+
if y_true_sorted[i_t] == 0:
|
52
|
+
#FP
|
53
|
+
if len(fps)==0:
|
54
|
+
aux_y_pred = (y_anomaly_scores >= y_anomaly_scores_sorted[i_t]).astype(int)
|
55
|
+
for i in range(len(aux_y_pred)):
|
56
|
+
if aux_y_pred[i] == 1 and y_true[i] == 0:
|
57
|
+
fp+=1
|
58
|
+
|
59
|
+
|
60
|
+
else:
|
61
|
+
fp=fps[i_t-1]+1
|
62
|
+
else:
|
63
|
+
if len(fps)==0:
|
64
|
+
aux_y_pred = (y_anomaly_scores >= y_anomaly_scores_sorted[i_t]).astype(int)
|
65
|
+
for i in range(len(aux_y_pred)):
|
66
|
+
if aux_y_pred[i] == 1 and y_true[i] == 0:
|
67
|
+
fp+=1
|
68
|
+
else:
|
69
|
+
fp=fps[i_t-1]
|
70
|
+
for score, length in segment_mins:
|
71
|
+
if score >= y_anomaly_scores_sorted[i_t]:
|
72
|
+
#TP
|
73
|
+
tp+= length
|
74
|
+
else:
|
75
|
+
#FN
|
76
|
+
fn+= length
|
77
|
+
tps.append(tp)
|
78
|
+
fns.append(fn)
|
79
|
+
fps.append(fp)
|
80
|
+
for tp,fp,fn in zip(tps,fps,fns):
|
81
|
+
if tp>0:
|
82
|
+
precisions.append(tp/(tp+fp))
|
83
|
+
recalls.append(tp/(tp+fn))
|
84
|
+
else:
|
85
|
+
precisions.append(0)
|
86
|
+
recalls.append(0)
|
87
|
+
|
39
88
|
|
40
89
|
recalls.append(1)
|
41
90
|
precisions.append(0)
|
91
|
+
|
42
92
|
auc_value = auc(recalls, precisions)
|
43
93
|
return auc_value
|
44
94
|
|
@@ -46,17 +96,91 @@ def auc_pr_pa(y_true: np.array, y_anomaly_scores: np.array):
|
|
46
96
|
|
47
97
|
|
48
98
|
def auc_pr_sw(y_true: np.array, y_anomaly_scores: np.array):
|
49
|
-
thresholds = np.unique(y_anomaly_scores)[::-1] # Descending order
|
50
99
|
precisions = [1]
|
51
100
|
recalls = [0]
|
101
|
+
tps,fps,fns = [],[],[]
|
102
|
+
|
103
|
+
|
104
|
+
segments = []
|
105
|
+
i=0
|
106
|
+
while i < len(y_true):
|
107
|
+
if y_true[i] == 1:
|
108
|
+
start = i
|
109
|
+
end = i
|
110
|
+
while i < len(y_true) and y_true[i] == 1:
|
111
|
+
end = i
|
112
|
+
i += 1
|
113
|
+
segments.append([start,end])
|
114
|
+
i+=1
|
115
|
+
idx = np.argsort(y_anomaly_scores)[::-1].astype(int)
|
116
|
+
y_anomaly_scores_sorted = np.array(y_anomaly_scores)[idx]
|
52
117
|
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
118
|
+
segment_mins = []
|
119
|
+
for start,end in segments:
|
120
|
+
anoms_scores = y_anomaly_scores[start:end+1]
|
121
|
+
segment_mins.append([np.max(anoms_scores),[start,end]])
|
122
|
+
|
123
|
+
for i_t in range(len(y_anomaly_scores_sorted)):
|
124
|
+
fp,tp,fn = 0,0,0
|
125
|
+
|
126
|
+
|
127
|
+
aux_y_pred = (y_anomaly_scores >= y_anomaly_scores_sorted[i_t]).astype(int)
|
128
|
+
for score,seg in segment_mins:
|
129
|
+
start,end = seg
|
130
|
+
if score >= y_anomaly_scores_sorted[i_t]:
|
131
|
+
#TP
|
132
|
+
tp+= 1
|
133
|
+
if aux_y_pred[start]== 1:
|
134
|
+
# Extender hacia la izquierda
|
135
|
+
i = start - 1
|
136
|
+
while i >= 0 and aux_y_pred[i] == 1:
|
137
|
+
aux_y_pred[i] = 0
|
138
|
+
i -= 1
|
139
|
+
|
140
|
+
if aux_y_pred[end] == 1:
|
141
|
+
# Extender hacia la derecha
|
142
|
+
i = end + 1
|
143
|
+
while i < len(aux_y_pred) and aux_y_pred[i] == 1:
|
144
|
+
aux_y_pred[i] = 0
|
145
|
+
i += 1
|
146
|
+
aux_y_pred[start:end+1] = 0
|
147
|
+
|
148
|
+
else:
|
149
|
+
#FN
|
150
|
+
fn+= 1
|
151
|
+
|
152
|
+
if np.sum(aux_y_pred)>0:
|
153
|
+
fpsegments = []
|
154
|
+
i=0
|
155
|
+
while i < len(aux_y_pred):
|
156
|
+
if aux_y_pred[i] == 1:
|
157
|
+
start = i
|
158
|
+
end = i
|
159
|
+
while i < len(aux_y_pred) and aux_y_pred[i] == 1:
|
160
|
+
end = i
|
161
|
+
i += 1
|
162
|
+
fpsegments.append([start,end])
|
163
|
+
i+=1
|
164
|
+
fp = len(fpsegments)
|
165
|
+
else:
|
166
|
+
fp = 0
|
167
|
+
|
168
|
+
|
169
|
+
tps.append(tp)
|
170
|
+
fns.append(fn)
|
171
|
+
fps.append(fp)
|
172
|
+
for tp,fp,fn in zip(tps,fps,fns):
|
173
|
+
if tp>0:
|
174
|
+
precisions.append(tp/(tp+fp))
|
175
|
+
recalls.append(tp/(tp+fn))
|
176
|
+
else:
|
177
|
+
precisions.append(0)
|
178
|
+
recalls.append(0)
|
179
|
+
|
180
|
+
|
181
|
+
|
59
182
|
auc_value = auc(recalls, precisions)
|
183
|
+
|
60
184
|
return auc_value
|
61
185
|
|
62
186
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tsadmetrics
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.10
|
4
4
|
Summary: =?unknown-8bit?q?Librer=C3=ADa_para_evaluaci=C3=B3n_de_detecci=C3=B3n_de_anomal=C3=ADas?= en series temporales
|
5
5
|
Home-page: https://github.com/pathsko/TSADmetrics
|
6
6
|
Author: Pedro Rafael Velasco Priego
|
@@ -13,11 +13,11 @@ entorno/bin/rst2xml.py,sha256=uoIfpn3prnir2tzqdycsAjOg-OWw663XOK47IeHCZdY,651
|
|
13
13
|
entorno/bin/rstpep2html.py,sha256=sthYQHEgYfj4JqwG45URwVbRAs-HYuwKget7SUwp9fc,719
|
14
14
|
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
15
15
|
tests/test_binary.py,sha256=3uLdXzdbQcqLRfXeKDmt2g2XQTU5lZOFQoiy-r9Olqo,29801
|
16
|
-
tests/test_non_binary.py,sha256=
|
16
|
+
tests/test_non_binary.py,sha256=syANlwm0DKsL6geGeq6nQI6ZVe6T_YXWTyk2-Hmck4s,11308
|
17
17
|
tsadmetrics/__init__.py,sha256=MTWOa43fgOdkMNo5NglCReRnB8hoF0ob2PIvDziCNHw,1575
|
18
18
|
tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs,37741
|
19
19
|
tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
|
20
|
-
tsadmetrics/non_binary_metrics.py,sha256=
|
20
|
+
tsadmetrics/non_binary_metrics.py,sha256=hmARpwaYNl_u36uOHcTZqO3nd0LkHpJjPBtbqT6yP_g,6739
|
21
21
|
tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
22
22
|
tsadmetrics/utils.py,sha256=fV5sJE094C_GjBbqrI34Wpy-4hcZtXc9y207ffQB7Mc,2360
|
23
23
|
tsadmetrics/_tsadeval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -52,7 +52,7 @@ tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py,sha256=pJz4iuPyVGNvwsaR
|
|
52
52
|
tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py,sha256=jLkcMg7UNl25SHtZUBGkP-RV8HsvaZCtjakryl7PFWU,3204
|
53
53
|
tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py,sha256=OhUJSm_I7VZ_gX_SSg8AYUq3_NW9rMIy7lAVsnOFw4Q,417
|
54
54
|
tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py,sha256=LL-0pPer3ymovVRlktaHo5XDzpgiDhWOVfdPOzKR6og,3152
|
55
|
-
tsadmetrics-0.1.
|
56
|
-
tsadmetrics-0.1.
|
57
|
-
tsadmetrics-0.1.
|
58
|
-
tsadmetrics-0.1.
|
55
|
+
tsadmetrics-0.1.10.dist-info/METADATA,sha256=qYloOTiFkW1RZqlJMvIAm6rjYg_atf4i11aF6lrCQXU,831
|
56
|
+
tsadmetrics-0.1.10.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
57
|
+
tsadmetrics-0.1.10.dist-info/top_level.txt,sha256=WHaYe-ubr_88yhxe-SaZC8HuAMvlSjXCo-wIdkTeKtA,26
|
58
|
+
tsadmetrics-0.1.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|