tsadmetrics 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tsadmetrics/utils.py CHANGED
@@ -16,14 +16,15 @@ def compute_metrics(y_true: np.array,y_pred: np.array,metrics: list, metrics_par
16
16
  Returns:
17
17
  - metrics_df (DataFrame): DataFrame containing the computed metrics and their values.
18
18
  """
19
-
19
+ if not (np.array_equal(np.unique(y_true), [0, 1]) or np.array_equal(np.unique(y_true), [0]) or np.array_equal(np.unique(y_true), [1])):
20
+ raise ValueError("y_true must be binary labels (0 or 1).")
20
21
  if not is_anomaly_score:
21
22
  #Chech if y_true and y_pred are binary labels
22
- if not (np.array_equal(np.unique(y_true), [0, 1]) and np.array_equal(np.unique(y_pred), [0, 1])):
23
+ if not ( np.array_equal(np.unique(y_pred), [0, 1])):
23
24
  raise ValueError("y_true and y_pred must be binary labels (0 or 1) when is_anomaly_score is False. Which is the default.")
24
25
  else:
25
26
  # Check if y_true and y_pred are anomaly scores
26
- if not (np.array_equal(np.unique(y_true), [0, 1]) and np.all((y_pred >= 0) & (y_pred <= 1))):
27
+ if not (np.all((y_pred >= 0) & (y_pred <= 1))):
27
28
  raise ValueError("y_true must be binary labels (0 or 1), and y_pred must be anomaly scores in the range [0, 1] when is_anomaly_score is True.")
28
29
  results = {}
29
30
 
@@ -0,0 +1,23 @@
1
+ Metadata-Version: 2.1
2
+ Name: tsadmetrics
3
+ Version: 0.1.8
4
+ Summary: Librería para evaluación de detección de anomalías en series temporales
5
+ Home-page: https://github.com/pathsko/TSADmetrics
6
+ Author: Pedro Rafael Velasco Priego
7
+ Author-email: Pedro Rafael Velasco Priego <i12veprp@uco.es>
8
+ Requires-Python: >=3.8
9
+ Description-Content-Type: text/markdown
10
+ Requires-Dist: joblib==1.4.2
11
+ Requires-Dist: numpy==1.24.4
12
+ Requires-Dist: pandas==2.0.3
13
+ Requires-Dist: PATE==0.1.1
14
+ Requires-Dist: patsy==0.5.6
15
+ Requires-Dist: python-dateutil==2.9.0.post0
16
+ Requires-Dist: pytz==2024.1
17
+ Requires-Dist: scikit-learn==1.3.2
18
+ Requires-Dist: scipy==1.10.1
19
+ Requires-Dist: six==1.16.0
20
+ Requires-Dist: statsmodels==0.14.1
21
+ Requires-Dist: threadpoolctl==3.5.0
22
+ Requires-Dist: tzdata==2024.1
23
+
@@ -19,7 +19,7 @@ tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs
19
19
  tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
20
20
  tsadmetrics/non_binary_metrics.py,sha256=JIOvkigSjHBZLKbGJj7ESe0lPM7P1JPoIUnbiMZuuLg,2896
21
21
  tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- tsadmetrics/utils.py,sha256=NXn9kIy0DL84hWTOasLnbPPr4Ze4yeoWriMtEcL1dFQ,2243
22
+ tsadmetrics/utils.py,sha256=fV5sJE094C_GjBbqrI34Wpy-4hcZtXc9y207ffQB7Mc,2360
23
23
  tsadmetrics/_tsadeval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  tsadmetrics/_tsadeval/auc_roc_pr_plot.py,sha256=PHqJUXq2qI248XV9o04D8SsUJgowetaKq0Cu5bYrIAE,12689
25
25
  tsadmetrics/_tsadeval/discontinuity_graph.py,sha256=Ci65l_DPi6HTtb8NvQJe1najgGrRuEpOMWvSyi2AeR0,4088
@@ -52,7 +52,7 @@ tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py,sha256=pJz4iuPyVGNvwsaR
52
52
  tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py,sha256=jLkcMg7UNl25SHtZUBGkP-RV8HsvaZCtjakryl7PFWU,3204
53
53
  tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py,sha256=OhUJSm_I7VZ_gX_SSg8AYUq3_NW9rMIy7lAVsnOFw4Q,417
54
54
  tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py,sha256=LL-0pPer3ymovVRlktaHo5XDzpgiDhWOVfdPOzKR6og,3152
55
- tsadmetrics-0.1.7.dist-info/METADATA,sha256=z6uu2JPfVhvjumOGkJS1qMHIjTItp2hnZ1LxkabfstA,830
56
- tsadmetrics-0.1.7.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
57
- tsadmetrics-0.1.7.dist-info/top_level.txt,sha256=WHaYe-ubr_88yhxe-SaZC8HuAMvlSjXCo-wIdkTeKtA,26
58
- tsadmetrics-0.1.7.dist-info/RECORD,,
55
+ tsadmetrics-0.1.8.dist-info/METADATA,sha256=N9cg9KdoQNFQZX2hFK3sxNdEGoMtvjMBW9v11_7aefY,756
56
+ tsadmetrics-0.1.8.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
57
+ tsadmetrics-0.1.8.dist-info/top_level.txt,sha256=WHaYe-ubr_88yhxe-SaZC8HuAMvlSjXCo-wIdkTeKtA,26
58
+ tsadmetrics-0.1.8.dist-info/RECORD,,
@@ -1,23 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: tsadmetrics
3
- Version: 0.1.7
4
- Summary: =?unknown-8bit?q?Librer=C3=ADa_para_evaluaci=C3=B3n_de_detecci=C3=B3n_de_anomal=C3=ADas?= en series temporales
5
- Home-page: https://github.com/pathsko/TSADmetrics
6
- Author: Pedro Rafael Velasco Priego
7
- Author-email: Pedro Rafael Velasco Priego <i12veprp@uco.es>
8
- Requires-Python: >=3.8
9
- Description-Content-Type: text/markdown
10
- Requires-Dist: joblib (==1.4.2)
11
- Requires-Dist: numpy (==1.24.4)
12
- Requires-Dist: pandas (==2.0.3)
13
- Requires-Dist: PATE (==0.1.1)
14
- Requires-Dist: patsy (==0.5.6)
15
- Requires-Dist: python-dateutil (==2.9.0.post0)
16
- Requires-Dist: pytz (==2024.1)
17
- Requires-Dist: scikit-learn (==1.3.2)
18
- Requires-Dist: scipy (==1.10.1)
19
- Requires-Dist: six (==1.16.0)
20
- Requires-Dist: statsmodels (==0.14.1)
21
- Requires-Dist: threadpoolctl (==3.5.0)
22
- Requires-Dist: tzdata (==2024.1)
23
-