tsadmetrics 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- entorno/bin/activate_this.py +32 -0
 - entorno/bin/rst2html.py +23 -0
 - entorno/bin/rst2html4.py +26 -0
 - entorno/bin/rst2html5.py +33 -0
 - entorno/bin/rst2latex.py +26 -0
 - entorno/bin/rst2man.py +27 -0
 - entorno/bin/rst2odt.py +28 -0
 - entorno/bin/rst2odt_prepstyles.py +20 -0
 - entorno/bin/rst2pseudoxml.py +23 -0
 - entorno/bin/rst2s5.py +24 -0
 - entorno/bin/rst2xetex.py +27 -0
 - entorno/bin/rst2xml.py +23 -0
 - entorno/bin/rstpep2html.py +25 -0
 - tests/__init__.py +0 -0
 - tests/test_binary.py +759 -0
 - tests/test_non_binary.py +371 -0
 - tsadmetrics/_tsadeval/affiliation/__init__.py +0 -0
 - tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +86 -0
 - tsadmetrics/_tsadeval/affiliation/_integral_interval.py +464 -0
 - tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +68 -0
 - tsadmetrics/_tsadeval/affiliation/generics.py +135 -0
 - tsadmetrics/_tsadeval/affiliation/metrics.py +114 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +175 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +50 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +184 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/__init__.py +0 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +386 -0
 - tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +362 -0
 - tsadmetrics/_tsadeval/prts/__init__.py +0 -0
 - tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
 - tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +165 -0
 - tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +121 -0
 - tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
 - tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +61 -0
 - tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +86 -0
 - tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +21 -0
 - tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +85 -0
 - tsadmetrics/utils.py +10 -4
 - {tsadmetrics-0.1.4.dist-info → tsadmetrics-0.1.6.dist-info}/METADATA +1 -1
 - tsadmetrics-0.1.6.dist-info/RECORD +58 -0
 - tsadmetrics-0.1.6.dist-info/top_level.txt +3 -0
 - tsadmetrics-0.1.4.dist-info/RECORD +0 -20
 - tsadmetrics-0.1.4.dist-info/top_level.txt +0 -1
 - {tsadmetrics-0.1.4.dist-info → tsadmetrics-0.1.6.dist-info}/WHEEL +0 -0
 
    
        tests/test_binary.py
    ADDED
    
    | 
         @@ -0,0 +1,759 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import unittest
         
     | 
| 
      
 2 
     | 
    
         
            +
            from tsadmetrics import *
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            from sklearn.metrics import recall_score, precision_score, fbeta_score
         
     | 
| 
      
 5 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 6 
     | 
    
         
            +
            import random
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            class TestPointWiseMetrics(unittest.TestCase):
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 11 
     | 
    
         
            +
                    """
         
     | 
| 
      
 12 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 13 
     | 
    
         
            +
                    """
         
     | 
| 
      
 14 
     | 
    
         
            +
                    self.num_tests = 100  # Número de conjuntos de datos aleatorios a generar para las pruebas
         
     | 
| 
      
 15 
     | 
    
         
            +
                    self.test_cases = []
         
     | 
| 
      
 16 
     | 
    
         
            +
                    for _ in range(self.num_tests):
         
     | 
| 
      
 17 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(10000,))
         
     | 
| 
      
 18 
     | 
    
         
            +
                        y_pred = np.random.choice([0, 1], size=(10000,))
         
     | 
| 
      
 19 
     | 
    
         
            +
                        self.test_cases.append((y_true, y_pred))
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
                def test_point_wise_recall(self):
         
     | 
| 
      
 22 
     | 
    
         
            +
                    """
         
     | 
| 
      
 23 
     | 
    
         
            +
                    Prueba para la función point_wise_recall.
         
     | 
| 
      
 24 
     | 
    
         
            +
                    """
         
     | 
| 
      
 25 
     | 
    
         
            +
                    for y_true, y_pred in self.test_cases:
         
     | 
| 
      
 26 
     | 
    
         
            +
                        with self.subTest(y_true=y_true, y_pred=y_pred):
         
     | 
| 
      
 27 
     | 
    
         
            +
                            recall = point_wise_recall(y_true, y_pred)
         
     | 
| 
      
 28 
     | 
    
         
            +
                            expected_recall = recall_score(y_true, y_pred)
         
     | 
| 
      
 29 
     | 
    
         
            +
                            self.assertAlmostEqual(recall, expected_recall, places=4)
         
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
                def test_point_wise_precision(self):
         
     | 
| 
      
 32 
     | 
    
         
            +
                    """
         
     | 
| 
      
 33 
     | 
    
         
            +
                    Prueba para la función point_wise_precision.
         
     | 
| 
      
 34 
     | 
    
         
            +
                    """
         
     | 
| 
      
 35 
     | 
    
         
            +
                    for y_true, y_pred in self.test_cases:
         
     | 
| 
      
 36 
     | 
    
         
            +
                        with self.subTest(y_true=y_true, y_pred=y_pred):
         
     | 
| 
      
 37 
     | 
    
         
            +
                            precision = point_wise_precision(y_true, y_pred)
         
     | 
| 
      
 38 
     | 
    
         
            +
                            expected_precision = precision_score(y_true, y_pred)
         
     | 
| 
      
 39 
     | 
    
         
            +
                            self.assertAlmostEqual(precision, expected_precision, places=4)
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
                def test_point_wise_f_score(self):
         
     | 
| 
      
 42 
     | 
    
         
            +
                    """
         
     | 
| 
      
 43 
     | 
    
         
            +
                    Prueba para la función point_wise_f_score.
         
     | 
| 
      
 44 
     | 
    
         
            +
                    """
         
     | 
| 
      
 45 
     | 
    
         
            +
                    for y_true, y_pred in self.test_cases:
         
     | 
| 
      
 46 
     | 
    
         
            +
                        with self.subTest(y_true=y_true, y_pred=y_pred):
         
     | 
| 
      
 47 
     | 
    
         
            +
                            beta = random.randint(0,1000000)
         
     | 
| 
      
 48 
     | 
    
         
            +
                            f_score = point_wise_f_score(y_true, y_pred, beta=1)
         
     | 
| 
      
 49 
     | 
    
         
            +
                            expected_f_score = fbeta_score(y_true, y_pred, beta=1)
         
     | 
| 
      
 50 
     | 
    
         
            +
                            self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
            class TestPointAdjustedMetrics(unittest.TestCase):
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 55 
     | 
    
         
            +
                    """
         
     | 
| 
      
 56 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 57 
     | 
    
         
            +
                    """
         
     | 
| 
      
 58 
     | 
    
         
            +
                    self.y_true = np.array([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self.y_pred = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0])
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                def test_point_adjusted_recall(self):
         
     | 
| 
      
 62 
     | 
    
         
            +
                    """
         
     | 
| 
      
 63 
     | 
    
         
            +
                    Prueba para la función point_wise_recall.
         
     | 
| 
      
 64 
     | 
    
         
            +
                    """
         
     | 
| 
      
 65 
     | 
    
         
            +
                    recall = point_adjusted_recall(self.y_true, self.y_pred)
         
     | 
| 
      
 66 
     | 
    
         
            +
                    expected_recall = 1
         
     | 
| 
      
 67 
     | 
    
         
            +
                    self.assertAlmostEqual(recall, expected_recall, places=4)
         
     | 
| 
      
 68 
     | 
    
         
            +
                def test_point_adjusted_precision(self):
         
     | 
| 
      
 69 
     | 
    
         
            +
                    """
         
     | 
| 
      
 70 
     | 
    
         
            +
                    Prueba para la función point_adjusted_precision.
         
     | 
| 
      
 71 
     | 
    
         
            +
                    """
         
     | 
| 
      
 72 
     | 
    
         
            +
                    precision = round(point_adjusted_precision(self.y_true, self.y_pred),2)
         
     | 
| 
      
 73 
     | 
    
         
            +
                    expected_precision = 0.87
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self.assertAlmostEqual(precision, expected_precision, places=4)
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                def test_point_adjusted_f_score(self):
         
     | 
| 
      
 77 
     | 
    
         
            +
                    """
         
     | 
| 
      
 78 
     | 
    
         
            +
                    Prueba para la función point_adjusted_f_score.
         
     | 
| 
      
 79 
     | 
    
         
            +
                    """
         
     | 
| 
      
 80 
     | 
    
         
            +
                    f_score = round(point_adjusted_f_score(self.y_true, self.y_pred),2)
         
     | 
| 
      
 81 
     | 
    
         
            +
                    expected_f_score = 0.93
         
     | 
| 
      
 82 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 83 
     | 
    
         
            +
                    
         
     | 
| 
      
 84 
     | 
    
         
            +
                def test_point_adjusted_consistency(self):
         
     | 
| 
      
 85 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 86 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 87 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 88 
     | 
    
         
            +
                        point_adjusted_f_score(y_true, y_pred)
         
     | 
| 
      
 89 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 90 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 91 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 92 
     | 
    
         
            +
                            f_score = point_adjusted_f_score(y_true, y_pred)
         
     | 
| 
      
 93 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 94 
     | 
    
         
            +
                        self.fail(f"point_adjusted_f_score raised an exception {e}")
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
            class TestDelayThPointAdjustedMetrics(unittest.TestCase):
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 99 
     | 
    
         
            +
                    """
         
     | 
| 
      
 100 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 101 
     | 
    
         
            +
                    """
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self.y_true  = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 103 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 104 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
                
         
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
                def test_delay_th_point_adjusted_f_score(self):
         
     | 
| 
      
 109 
     | 
    
         
            +
                    """
         
     | 
| 
      
 110 
     | 
    
         
            +
                    Prueba para la función delay_th_point_adjusted_f_score.
         
     | 
| 
      
 111 
     | 
    
         
            +
                    """
         
     | 
| 
      
 112 
     | 
    
         
            +
                    f_score = round(delay_th_point_adjusted_f_score(self.y_true, self.y_pred1, 2),2)
         
     | 
| 
      
 113 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 114 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 115 
     | 
    
         
            +
                    
         
     | 
| 
      
 116 
     | 
    
         
            +
                    f_score = round(delay_th_point_adjusted_f_score(self.y_true, self.y_pred2, 2),2)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    expected_f_score = 1
         
     | 
| 
      
 118 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
                def test_delay_th_point_adjusted_consistency(self):
         
     | 
| 
      
 121 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 122 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 123 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 124 
     | 
    
         
            +
                        delay_th_point_adjusted_f_score(y_true, y_pred,7)
         
     | 
| 
      
 125 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 126 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 127 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 128 
     | 
    
         
            +
                            f_score = delay_th_point_adjusted_f_score(y_true, y_pred, 7)
         
     | 
| 
      
 129 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 130 
     | 
    
         
            +
                        self.fail(f"delay_th_point_adjusted_f_score raised an exception {e}")
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
            class TestPointAdjustedMetricsAtK(unittest.TestCase):
         
     | 
| 
      
 133 
     | 
    
         
            +
             
     | 
| 
      
 134 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 135 
     | 
    
         
            +
                    """
         
     | 
| 
      
 136 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 137 
     | 
    
         
            +
                    """
         
     | 
| 
      
 138 
     | 
    
         
            +
                    self.y_true  = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 139 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 140 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                def test_point_adjusted_at_k_f_score(self):
         
     | 
| 
      
 144 
     | 
    
         
            +
                    """
         
     | 
| 
      
 145 
     | 
    
         
            +
                    Prueba para la función point_adjusted_at_k_f_score.
         
     | 
| 
      
 146 
     | 
    
         
            +
                    """
         
     | 
| 
      
 147 
     | 
    
         
            +
                    f_score = round(point_adjusted_at_k_f_score(self.y_true, self.y_pred1,0.2),2)
         
     | 
| 
      
 148 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 149 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                    f_score = round(point_adjusted_at_k_f_score(self.y_true, self.y_pred2,0.2),2)
         
     | 
| 
      
 152 
     | 
    
         
            +
                    expected_f_score = 0.22
         
     | 
| 
      
 153 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 154 
     | 
    
         
            +
                    
         
     | 
| 
      
 155 
     | 
    
         
            +
                def test_point_adjusted_at_k_consistency(self):
         
     | 
| 
      
 156 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 157 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 158 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 159 
     | 
    
         
            +
                        point_adjusted_at_k_f_score(y_true, y_pred,0.3)
         
     | 
| 
      
 160 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 161 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 162 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 163 
     | 
    
         
            +
                            f_score = point_adjusted_at_k_f_score(y_true, y_pred,0.3)
         
     | 
| 
      
 164 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 165 
     | 
    
         
            +
                        self.fail(f"point_adjusted_at_k_f_score raised an exception {e}")
         
     | 
| 
      
 166 
     | 
    
         
            +
             
     | 
| 
      
 167 
     | 
    
         
            +
            class TestLatencySparsityAwareMetrics(unittest.TestCase):
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 170 
     | 
    
         
            +
                    """
         
     | 
| 
      
 171 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 172 
     | 
    
         
            +
                    """
         
     | 
| 
      
 173 
     | 
    
         
            +
                    self.y_true  = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 174 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 175 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
                def test_latency_sparsity_aw_f_score(self):
         
     | 
| 
      
 178 
     | 
    
         
            +
                    """
         
     | 
| 
      
 179 
     | 
    
         
            +
                    Prueba para la función latency_sparsity_aw_f_score.
         
     | 
| 
      
 180 
     | 
    
         
            +
                    """
         
     | 
| 
      
 181 
     | 
    
         
            +
                    f_score = round(latency_sparsity_aw_f_score(self.y_true, self.y_pred1,2),2)
         
     | 
| 
      
 182 
     | 
    
         
            +
                    expected_f_score = 0.71
         
     | 
| 
      
 183 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 184 
     | 
    
         
            +
             
     | 
| 
      
 185 
     | 
    
         
            +
                    f_score = round(latency_sparsity_aw_f_score(self.y_true, self.y_pred2,2),2)
         
     | 
| 
      
 186 
     | 
    
         
            +
                    expected_f_score = 1
         
     | 
| 
      
 187 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 188 
     | 
    
         
            +
                    
         
     | 
| 
      
 189 
     | 
    
         
            +
                def test_latency_sparsity_aw_consistency(self):
         
     | 
| 
      
 190 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 191 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 192 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 193 
     | 
    
         
            +
                        latency_sparsity_aw_f_score(y_true, y_pred,3)
         
     | 
| 
      
 194 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 195 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 196 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 197 
     | 
    
         
            +
                            f_score = latency_sparsity_aw_f_score(y_true, y_pred,3)
         
     | 
| 
      
 198 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 199 
     | 
    
         
            +
                        self.fail(f"latency_sparsity_aw_f_score raised an exception {e}")
         
     | 
| 
      
 200 
     | 
    
         
            +
             
     | 
| 
      
 201 
     | 
    
         
            +
            class TestSegmentWiseMetrics(unittest.TestCase):
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 204 
     | 
    
         
            +
                    """
         
     | 
| 
      
 205 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 206 
     | 
    
         
            +
                    """
         
     | 
| 
      
 207 
     | 
    
         
            +
                    self.y_true  = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 208 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 209 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
             
     | 
| 
      
 212 
     | 
    
         
            +
                def test_segment_wise_f_score(self):
         
     | 
| 
      
 213 
     | 
    
         
            +
                    """
         
     | 
| 
      
 214 
     | 
    
         
            +
                    Prueba para la función segment_wise_f_score.
         
     | 
| 
      
 215 
     | 
    
         
            +
                    """
         
     | 
| 
      
 216 
     | 
    
         
            +
                    f_score = round(segment_wise_f_score(self.y_true, self.y_pred1),2)
         
     | 
| 
      
 217 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 218 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                    f_score = round(segment_wise_f_score(self.y_true, self.y_pred2),2)
         
     | 
| 
      
 221 
     | 
    
         
            +
                    expected_f_score = 1
         
     | 
| 
      
 222 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
                
         
     | 
| 
      
 225 
     | 
    
         
            +
                    
         
     | 
| 
      
 226 
     | 
    
         
            +
                def test_segment_wise_consistency(self):
         
     | 
| 
      
 227 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 228 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 229 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 230 
     | 
    
         
            +
                        segment_wise_f_score(y_true, y_pred,7)
         
     | 
| 
      
 231 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 232 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(10,))
         
     | 
| 
      
 233 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(10,))
         
     | 
| 
      
 234 
     | 
    
         
            +
                            f_score = segment_wise_f_score(y_true, y_pred)
         
     | 
| 
      
 235 
     | 
    
         
            +
                            
         
     | 
| 
      
 236 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 237 
     | 
    
         
            +
                        self.fail(f"segment_wise_f_score raised an exception {e}")
         
     | 
| 
      
 238 
     | 
    
         
            +
             
     | 
| 
      
 239 
     | 
    
         
            +
            class TestCompositeMetrics(unittest.TestCase):
         
     | 
| 
      
 240 
     | 
    
         
            +
             
     | 
| 
      
 241 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 242 
     | 
    
         
            +
                    """
         
     | 
| 
      
 243 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 244 
     | 
    
         
            +
                    """
         
     | 
| 
      
 245 
     | 
    
         
            +
                    self.y_true  = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 246 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 247 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 248 
     | 
    
         
            +
             
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
             
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
                def test_composite_f_score(self):
         
     | 
| 
      
 253 
     | 
    
         
            +
                    """
         
     | 
| 
      
 254 
     | 
    
         
            +
                    Prueba para la función composite_f_score.
         
     | 
| 
      
 255 
     | 
    
         
            +
                    """
         
     | 
| 
      
 256 
     | 
    
         
            +
                    f_score = round(composite_f_score(self.y_true, self.y_pred1),2)
         
     | 
| 
      
 257 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 258 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 259 
     | 
    
         
            +
             
     | 
| 
      
 260 
     | 
    
         
            +
                    f_score = round(composite_f_score(self.y_true, self.y_pred2),2)
         
     | 
| 
      
 261 
     | 
    
         
            +
                    expected_f_score = 1
         
     | 
| 
      
 262 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 263 
     | 
    
         
            +
             
     | 
| 
      
 264 
     | 
    
         
            +
                    
         
     | 
| 
      
 265 
     | 
    
         
            +
                def test_composite_consistency(self):
         
     | 
| 
      
 266 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 267 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 268 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 269 
     | 
    
         
            +
                        composite_f_score(y_true, y_pred,7)
         
     | 
| 
      
 270 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 271 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(10,))
         
     | 
| 
      
 272 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(10,))
         
     | 
| 
      
 273 
     | 
    
         
            +
                            f_score = composite_f_score(y_true, y_pred)
         
     | 
| 
      
 274 
     | 
    
         
            +
                            
         
     | 
| 
      
 275 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 276 
     | 
    
         
            +
                        self.fail(f"composite_f_score raised an exception {e}")
         
     | 
| 
      
 277 
     | 
    
         
            +
             
     | 
| 
      
 278 
     | 
    
         
            +
            class TestTimeTolerantMetrics(unittest.TestCase):
         
     | 
| 
      
 279 
     | 
    
         
            +
             
     | 
| 
      
 280 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 281 
     | 
    
         
            +
                    """
         
     | 
| 
      
 282 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 283 
     | 
    
         
            +
                    """
         
     | 
| 
      
 284 
     | 
    
         
            +
                    self.y_true =   np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 285 
     | 
    
         
            +
                    self.y_pred1 =  np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 286 
     | 
    
         
            +
                    self.y_pred2 =  np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 287 
     | 
    
         
            +
             
     | 
| 
      
 288 
     | 
    
         
            +
                def test_time_tolerant_recall(self):
         
     | 
| 
      
 289 
     | 
    
         
            +
                    """
         
     | 
| 
      
 290 
     | 
    
         
            +
                    Prueba para la función time_tolerant_recall.
         
     | 
| 
      
 291 
     | 
    
         
            +
                    """
         
     | 
| 
      
 292 
     | 
    
         
            +
                    recall = round(time_tolerant_recall(self.y_true, self.y_pred1,2),2)
         
     | 
| 
      
 293 
     | 
    
         
            +
                    expected_recall = 0.5
         
     | 
| 
      
 294 
     | 
    
         
            +
                    self.assertAlmostEqual(recall, expected_recall, places=4)
         
     | 
| 
      
 295 
     | 
    
         
            +
             
     | 
| 
      
 296 
     | 
    
         
            +
                    recall = round(time_tolerant_recall(self.y_true, self.y_pred2,2),3)
         
     | 
| 
      
 297 
     | 
    
         
            +
                    expected_recall = 0.375
         
     | 
| 
      
 298 
     | 
    
         
            +
                    self.assertAlmostEqual(recall, expected_recall, places=4)
         
     | 
| 
      
 299 
     | 
    
         
            +
             
     | 
| 
      
 300 
     | 
    
         
            +
                def test_time_tolerant_precision(self):
         
     | 
| 
      
 301 
     | 
    
         
            +
                    """
         
     | 
| 
      
 302 
     | 
    
         
            +
                    Prueba para la función time_tolerant_precision.
         
     | 
| 
      
 303 
     | 
    
         
            +
                    """
         
     | 
| 
      
 304 
     | 
    
         
            +
                    precision = round(time_tolerant_precision(self.y_true, self.y_pred1,2),2)
         
     | 
| 
      
 305 
     | 
    
         
            +
                    expected_precision = 1
         
     | 
| 
      
 306 
     | 
    
         
            +
                    self.assertAlmostEqual(precision, expected_precision, places=4)
         
     | 
| 
      
 307 
     | 
    
         
            +
             
     | 
| 
      
 308 
     | 
    
         
            +
                    precision = round(time_tolerant_precision(self.y_true, self.y_pred2,2),2)
         
     | 
| 
      
 309 
     | 
    
         
            +
                    expected_precision = 1
         
     | 
| 
      
 310 
     | 
    
         
            +
                    self.assertAlmostEqual(precision, expected_precision, places=4)
         
     | 
| 
      
 311 
     | 
    
         
            +
             
     | 
| 
      
 312 
     | 
    
         
            +
                def test_time_tolerant_f_score(self):
         
     | 
| 
      
 313 
     | 
    
         
            +
                    """
         
     | 
| 
      
 314 
     | 
    
         
            +
                    Prueba para la función time_tolerant_f_score.
         
     | 
| 
      
 315 
     | 
    
         
            +
                    """
         
     | 
| 
      
 316 
     | 
    
         
            +
                    f_score = round(time_tolerant_f_score(self.y_true, self.y_pred1,2),2)
         
     | 
| 
      
 317 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 318 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 319 
     | 
    
         
            +
             
     | 
| 
      
 320 
     | 
    
         
            +
                    f_score = round(time_tolerant_f_score(self.y_true, self.y_pred2,2),2)
         
     | 
| 
      
 321 
     | 
    
         
            +
                    expected_f_score = 0.55
         
     | 
| 
      
 322 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 323 
     | 
    
         
            +
                    
         
     | 
| 
      
 324 
     | 
    
         
            +
                def test_time_tolerant_consistency(self):
         
     | 
| 
      
 325 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 326 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 327 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 328 
     | 
    
         
            +
                        time_tolerant_f_score(y_true, y_pred,7)
         
     | 
| 
      
 329 
     | 
    
         
            +
                        for _ in range(1000):
         
     | 
| 
      
 330 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 331 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 332 
     | 
    
         
            +
                            t = random.randint(1,100)
         
     | 
| 
      
 333 
     | 
    
         
            +
                            f_score = time_tolerant_f_score(y_true, y_pred,t)
         
     | 
| 
      
 334 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 335 
     | 
    
         
            +
                        self.fail(f"time_tolerant_f_score raised an exception {e}")
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
             
     | 
| 
      
 338 
     | 
    
         
            +
            class TestRangeBasedMetrics(unittest.TestCase):
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 341 
     | 
    
         
            +
                    """
         
     | 
| 
      
 342 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 343 
     | 
    
         
            +
                    """
         
     | 
| 
      
 344 
     | 
    
         
            +
                    self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 345 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 346 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 347 
     | 
    
         
            +
             
     | 
| 
      
 348 
     | 
    
         
            +
                    self.y_true2  = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 349 
     | 
    
         
            +
                    self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 350 
     | 
    
         
            +
                    self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 351 
     | 
    
         
            +
                
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
                def test_range_based_f_score(self):
         
     | 
| 
      
 354 
     | 
    
         
            +
                    """
         
     | 
| 
      
 355 
     | 
    
         
            +
                    Prueba para la función range_based_f_score.
         
     | 
| 
      
 356 
     | 
    
         
            +
                    """
         
     | 
| 
      
 357 
     | 
    
         
            +
                    f_score = round(range_based_f_score(self.y_true1, self.y_pred1, beta=1,p_alpha=0.2,r_alpha=0.2,cardinality_mode='one',p_bias='flat',r_bias='flat'),2)
         
     | 
| 
      
 358 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 359 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                    f_score = round(range_based_f_score(self.y_true1, self.y_pred2,beta=1,p_alpha=0.2,r_alpha=0.2,cardinality_mode='one',p_bias='flat',r_bias='flat'),2)
         
     | 
| 
      
 362 
     | 
    
         
            +
                    expected_f_score = 0.46
         
     | 
| 
      
 363 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 364 
     | 
    
         
            +
             
     | 
| 
      
 365 
     | 
    
         
            +
                    f_score = round(range_based_f_score(self.y_true2, self.y_pred21,beta=1,p_alpha=0.2,r_alpha=0.2,cardinality_mode='one',p_bias='flat',r_bias='flat'),2)
         
     | 
| 
      
 366 
     | 
    
         
            +
                    expected_f_score = 0.71
         
     | 
| 
      
 367 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
                    f_score = round(range_based_f_score(self.y_true2, self.y_pred22,beta=1,p_alpha=0.2,r_alpha=0.2,cardinality_mode='one',p_bias='flat',r_bias='flat'),2)
         
     | 
| 
      
 370 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 371 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 372 
     | 
    
         
            +
                    
         
     | 
| 
      
 373 
     | 
    
         
            +
                def test_range_based_consistency(self):
         
     | 
| 
      
 374 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 375 
     | 
    
         
            +
                        modes = ['flat','front','back','middle']
         
     | 
| 
      
 376 
     | 
    
         
            +
                        modes_c = ['one','reciprocal']
         
     | 
| 
      
 377 
     | 
    
         
            +
             
     | 
| 
      
 378 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 379 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 380 
     | 
    
         
            +
                        range_based_f_score(y_true, y_pred,beta=2,p_alpha=random.random(),r_alpha=random.random(),cardinality_mode=random.choice(modes_c),p_bias=random.choice(modes),r_bias=random.choice(modes))
         
     | 
| 
      
 381 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 382 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 383 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 384 
     | 
    
         
            +
                            f_score = range_based_f_score(y_true, y_pred,beta=2,p_alpha=random.random(),r_alpha=random.random(),cardinality_mode=random.choice(modes_c),p_bias=random.choice(modes),r_bias=random.choice(modes))
         
     | 
| 
      
 385 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 386 
     | 
    
         
            +
                        self.fail(f"range_based_f_score raised an exception {e}")
         
     | 
| 
      
 387 
     | 
    
         
            +
             
     | 
| 
      
 388 
     | 
    
         
            +
            class TestTSAwareMetrics(unittest.TestCase):
         
     | 
| 
      
 389 
     | 
    
         
            +
             
     | 
| 
      
 390 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 391 
     | 
    
         
            +
                    """
         
     | 
| 
      
 392 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 393 
     | 
    
         
            +
                    """
         
     | 
| 
      
 394 
     | 
    
         
            +
                    self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 395 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 396 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 397 
     | 
    
         
            +
             
     | 
| 
      
 398 
     | 
    
         
            +
                    self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 399 
     | 
    
         
            +
                    self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 400 
     | 
    
         
            +
                    self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 401 
     | 
    
         
            +
             
     | 
| 
      
 402 
     | 
    
         
            +
                
         
     | 
| 
      
 403 
     | 
    
         
            +
             
     | 
| 
      
 404 
     | 
    
         
            +
                def test_ts_aware_f_score(self):
         
     | 
| 
      
 405 
     | 
    
         
            +
                    """
         
     | 
| 
      
 406 
     | 
    
         
            +
                    Prueba para la función ts_aware_f_score.
         
     | 
| 
      
 407 
     | 
    
         
            +
                    """
         
     | 
| 
      
 408 
     | 
    
         
            +
                    f_score = round(ts_aware_f_score(self.y_true1, self.y_pred1,1, 0.5, 0, 0.5),2)
         
     | 
| 
      
 409 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 410 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 411 
     | 
    
         
            +
             
     | 
| 
      
 412 
     | 
    
         
            +
                    f_score = round(ts_aware_f_score(self.y_true1, self.y_pred2,1, 0.5, 0, 0.5),2)
         
     | 
| 
      
 413 
     | 
    
         
            +
                    expected_f_score = 0.12
         
     | 
| 
      
 414 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 415 
     | 
    
         
            +
             
     | 
| 
      
 416 
     | 
    
         
            +
                    f_score = round(ts_aware_f_score(self.y_true2, self.y_pred21,1, 0.5, 0, 0.5),2)
         
     | 
| 
      
 417 
     | 
    
         
            +
                    expected_f_score = 0.77
         
     | 
| 
      
 418 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
                    f_score = round(ts_aware_f_score(self.y_true2, self.y_pred22,1, 0.5, 0, 0.5),2)
         
     | 
| 
      
 421 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 422 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 423 
     | 
    
         
            +
                    
         
     | 
| 
      
 424 
     | 
    
         
            +
                def test_ts_aware_consistency(self):
         
     | 
| 
      
 425 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 426 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 427 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 428 
     | 
    
         
            +
                        ts_aware_f_score(y_true, y_pred, 1, random.random(), 0, random.random())
         
     | 
| 
      
 429 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 430 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 431 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 432 
     | 
    
         
            +
             
     | 
| 
      
 433 
     | 
    
         
            +
                            f_score = ts_aware_f_score(y_true, y_pred, 1, random.random(), 0, random.random())
         
     | 
| 
      
 434 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 435 
     | 
    
         
            +
                        self.fail(f"ts_aware_f_score raised an exception {e}")
         
     | 
| 
      
 436 
     | 
    
         
            +
             
     | 
| 
      
 437 
     | 
    
         
            +
            class TestEnhancedTSAwareMetrics(unittest.TestCase):
         
     | 
| 
      
 438 
     | 
    
         
            +
             
     | 
| 
      
 439 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 440 
     | 
    
         
            +
                    """
         
     | 
| 
      
 441 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 442 
     | 
    
         
            +
                    """
         
     | 
| 
      
 443 
     | 
    
         
            +
                    self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 444 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 445 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 446 
     | 
    
         
            +
             
     | 
| 
      
 447 
     | 
    
         
            +
                    self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 448 
     | 
    
         
            +
                    self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 449 
     | 
    
         
            +
                    self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 450 
     | 
    
         
            +
             
     | 
| 
      
 451 
     | 
    
         
            +
                
         
     | 
| 
      
 452 
     | 
    
         
            +
             
     | 
| 
      
 453 
     | 
    
         
            +
                def test_enhanced_ts_aware_f_score(self):
         
     | 
| 
      
 454 
     | 
    
         
            +
                    """
         
     | 
| 
      
 455 
     | 
    
         
            +
                    Prueba para la función ts_aware_f_score.
         
     | 
| 
      
 456 
     | 
    
         
            +
                    """
         
     | 
| 
      
 457 
     | 
    
         
            +
                    f_score = round(enhanced_ts_aware_f_score(self.y_true1, self.y_pred1,1, 0.5, 0.1),2)
         
     | 
| 
      
 458 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 459 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 460 
     | 
    
         
            +
             
     | 
| 
      
 461 
     | 
    
         
            +
                    f_score = round(enhanced_ts_aware_f_score(self.y_true1, self.y_pred2,1, 0.5, 0.1),2)
         
     | 
| 
      
 462 
     | 
    
         
            +
                    expected_f_score = 0.72
         
     | 
| 
      
 463 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 464 
     | 
    
         
            +
             
     | 
| 
      
 465 
     | 
    
         
            +
                    f_score = round(enhanced_ts_aware_f_score(self.y_true2, self.y_pred21,1, 0.5, 0.1),2)
         
     | 
| 
      
 466 
     | 
    
         
            +
                    expected_f_score = 0.77
         
     | 
| 
      
 467 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
      
 469 
     | 
    
         
            +
                    f_score = round(enhanced_ts_aware_f_score(self.y_true2, self.y_pred22,1, 0.5, 0.1),2)
         
     | 
| 
      
 470 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 471 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 472 
     | 
    
         
            +
                    
         
     | 
| 
      
 473 
     | 
    
         
            +
                def test_enhanced_ts_aware_consistency(self):
         
     | 
| 
      
 474 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 475 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 476 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 477 
     | 
    
         
            +
                        enhanced_ts_aware_f_score(y_true, y_pred, 1, random.random(), random.random())
         
     | 
| 
      
 478 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 479 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 480 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 481 
     | 
    
         
            +
             
     | 
| 
      
 482 
     | 
    
         
            +
                            f_score = enhanced_ts_aware_f_score(y_true, y_pred, 1, random.random(), random.random())
         
     | 
| 
      
 483 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 484 
     | 
    
         
            +
                        self.fail(f"enhanced_ts_aware_f_score raised an exception {e}")
         
     | 
| 
      
 485 
     | 
    
         
            +
             
     | 
| 
      
 486 
     | 
    
         
            +
             
     | 
| 
      
 487 
     | 
    
         
            +
            class TestAffiliationBasedMetrics(unittest.TestCase):
         
     | 
| 
      
 488 
     | 
    
         
            +
             
     | 
| 
      
 489 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 490 
     | 
    
         
            +
                    """
         
     | 
| 
      
 491 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 492 
     | 
    
         
            +
                    """
         
     | 
| 
      
 493 
     | 
    
         
            +
                    self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 494 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 495 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 496 
     | 
    
         
            +
             
     | 
| 
      
 497 
     | 
    
         
            +
                    self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 498 
     | 
    
         
            +
                    self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 499 
     | 
    
         
            +
                    self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
         
     | 
| 
      
 500 
     | 
    
         
            +
             
     | 
| 
      
 501 
     | 
    
         
            +
                
         
     | 
| 
      
 502 
     | 
    
         
            +
             
     | 
| 
      
 503 
     | 
    
         
            +
                def test_affiliation_based_f_score(self):
         
     | 
| 
      
 504 
     | 
    
         
            +
                    """
         
     | 
| 
      
 505 
     | 
    
         
            +
                    Prueba para la función ts_aware_f_score.
         
     | 
| 
      
 506 
     | 
    
         
            +
                    """
         
     | 
| 
      
 507 
     | 
    
         
            +
                    f_score = round(affiliation_based_f_score(self.y_true1, self.y_pred1,1),2)
         
     | 
| 
      
 508 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 509 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 510 
     | 
    
         
            +
             
     | 
| 
      
 511 
     | 
    
         
            +
                    f_score = round(affiliation_based_f_score(self.y_true1, self.y_pred2,1),2)
         
     | 
| 
      
 512 
     | 
    
         
            +
                    expected_f_score = 0.77
         
     | 
| 
      
 513 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 514 
     | 
    
         
            +
             
     | 
| 
      
 515 
     | 
    
         
            +
                    f_score = round(affiliation_based_f_score(self.y_true2, self.y_pred21,1),2)
         
     | 
| 
      
 516 
     | 
    
         
            +
                    expected_f_score = 0.77
         
     | 
| 
      
 517 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 518 
     | 
    
         
            +
             
     | 
| 
      
 519 
     | 
    
         
            +
                    f_score = round(affiliation_based_f_score(self.y_true2, self.y_pred22,1),2)
         
     | 
| 
      
 520 
     | 
    
         
            +
                    expected_f_score = 0.67
         
     | 
| 
      
 521 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 522 
     | 
    
         
            +
                    
         
     | 
| 
      
 523 
     | 
    
         
            +
                def test_affiliation_based_consistency(self):
         
     | 
| 
      
 524 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 525 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 526 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 527 
     | 
    
         
            +
                        affiliation_based_f_score(y_true, y_pred, 1)
         
     | 
| 
      
 528 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 529 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 530 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
                            f_score = affiliation_based_f_score(y_true, y_pred, 1)
         
     | 
| 
      
 533 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 534 
     | 
    
         
            +
                        self.fail(f"affiliation_based_f_score raised an exception {e}")
         
     | 
| 
      
 535 
     | 
    
         
            +
             
     | 
| 
      
 536 
     | 
    
         
            +
             
     | 
| 
      
 537 
     | 
    
         
            +
             
     | 
| 
      
 538 
     | 
    
         
            +
            class TestNABScore(unittest.TestCase):
         
     | 
| 
      
 539 
     | 
    
         
            +
             
     | 
| 
      
 540 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 541 
     | 
    
         
            +
                    """
         
     | 
| 
      
 542 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 543 
     | 
    
         
            +
                    """
         
     | 
| 
      
 544 
     | 
    
         
            +
                    self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
         
     | 
| 
      
 545 
     | 
    
         
            +
                    self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 546 
     | 
    
         
            +
                    self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
         
     | 
| 
      
 547 
     | 
    
         
            +
             
     | 
| 
      
 548 
     | 
    
         
            +
                    self.y_true2  = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
         
     | 
| 
      
 549 
     | 
    
         
            +
                    self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
         
     | 
| 
      
 550 
     | 
    
         
            +
                    self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
         
     | 
| 
      
 551 
     | 
    
         
            +
             
     | 
| 
      
 552 
     | 
    
         
            +
                
         
     | 
| 
      
 553 
     | 
    
         
            +
             
     | 
| 
      
 554 
     | 
    
         
            +
                def test_nab_score(self):
         
     | 
| 
      
 555 
     | 
    
         
            +
                    """
         
     | 
| 
      
 556 
     | 
    
         
            +
                    Prueba para la función ts_aware_f_score.
         
     | 
| 
      
 557 
     | 
    
         
            +
                    """
         
     | 
| 
      
 558 
     | 
    
         
            +
                    f_score = round(nab_score(self.y_true1, self.y_pred1),2)
         
     | 
| 
      
 559 
     | 
    
         
            +
                    expected_f_score = 50
         
     | 
| 
      
 560 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 561 
     | 
    
         
            +
             
     | 
| 
      
 562 
     | 
    
         
            +
                    f_score = round(nab_score(self.y_true1, self.y_pred2),2)
         
     | 
| 
      
 563 
     | 
    
         
            +
                    expected_f_score = 100
         
     | 
| 
      
 564 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
                    f_score = round(nab_score(self.y_true2, self.y_pred21),2)
         
     | 
| 
      
 567 
     | 
    
         
            +
                    expected_f_score = 33.33
         
     | 
| 
      
 568 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 569 
     | 
    
         
            +
             
     | 
| 
      
 570 
     | 
    
         
            +
                    f_score = round(nab_score(self.y_true2, self.y_pred22),2)
         
     | 
| 
      
 571 
     | 
    
         
            +
                    expected_f_score = 66.67
         
     | 
| 
      
 572 
     | 
    
         
            +
                    self.assertAlmostEqual(f_score, expected_f_score, places=4)
         
     | 
| 
      
 573 
     | 
    
         
            +
                    
         
     | 
| 
      
 574 
     | 
    
         
            +
                def test_nab_score_consistency(self):
         
     | 
| 
      
 575 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 576 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 577 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 578 
     | 
    
         
            +
                        nab_score(y_true, y_pred)
         
     | 
| 
      
 579 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 580 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 581 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 582 
     | 
    
         
            +
             
     | 
| 
      
 583 
     | 
    
         
            +
                            score = nab_score(y_true, y_pred)
         
     | 
| 
      
 584 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 585 
     | 
    
         
            +
                        self.fail(f"nab_score raised an exception {e}")
         
     | 
| 
      
 586 
     | 
    
         
            +
             
     | 
| 
      
 587 
     | 
    
         
            +
             
     | 
| 
      
 588 
     | 
    
         
            +
            class TestAverageDetectionCount(unittest.TestCase):
         
     | 
| 
      
 589 
     | 
    
         
            +
             
     | 
| 
      
 590 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 591 
     | 
    
         
            +
                    """
         
     | 
| 
      
 592 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 593 
     | 
    
         
            +
                    """
         
     | 
| 
      
 594 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 595 
     | 
    
         
            +
             
     | 
| 
      
 596 
     | 
    
         
            +
                
         
     | 
| 
      
 597 
     | 
    
         
            +
             
     | 
| 
      
 598 
     | 
    
         
            +
                    
         
     | 
| 
      
 599 
     | 
    
         
            +
                def test_average_detection_count_consistency(self):
         
     | 
| 
      
 600 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 601 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 602 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 603 
     | 
    
         
            +
                        average_detection_count(y_true, y_pred)
         
     | 
| 
      
 604 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 605 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 606 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 607 
     | 
    
         
            +
             
     | 
| 
      
 608 
     | 
    
         
            +
                            score = average_detection_count(y_true, y_pred)
         
     | 
| 
      
 609 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 610 
     | 
    
         
            +
                        self.fail(f"average_detection_count raised an exception {e}")
         
     | 
| 
      
 611 
     | 
    
         
            +
             
     | 
| 
      
 612 
     | 
    
         
            +
            class TestAbsoluteDetectionDistance(unittest.TestCase):
         
     | 
| 
      
 613 
     | 
    
         
            +
             
     | 
| 
      
 614 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 615 
     | 
    
         
            +
                    """
         
     | 
| 
      
 616 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 617 
     | 
    
         
            +
                    """
         
     | 
| 
      
 618 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 619 
     | 
    
         
            +
             
     | 
| 
      
 620 
     | 
    
         
            +
                
         
     | 
| 
      
 621 
     | 
    
         
            +
             
     | 
| 
      
 622 
     | 
    
         
            +
                    
         
     | 
| 
      
 623 
     | 
    
         
            +
                def test_absolute_detection_distance_consistency(self):
         
     | 
| 
      
 624 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 625 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 626 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 627 
     | 
    
         
            +
                        absolute_detection_distance(y_true, y_pred)
         
     | 
| 
      
 628 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 629 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 630 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 631 
     | 
    
         
            +
             
     | 
| 
      
 632 
     | 
    
         
            +
                            score = absolute_detection_distance(y_true, y_pred)
         
     | 
| 
      
 633 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 634 
     | 
    
         
            +
                        self.fail(f"absolute_detection_distance raised an exception {e}")
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
            class TestTotalDetectedInRange(unittest.TestCase):
         
     | 
| 
      
 637 
     | 
    
         
            +
             
     | 
| 
      
 638 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 639 
     | 
    
         
            +
                    """
         
     | 
| 
      
 640 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 641 
     | 
    
         
            +
                    """
         
     | 
| 
      
 642 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 643 
     | 
    
         
            +
             
     | 
| 
      
 644 
     | 
    
         
            +
                
         
     | 
| 
      
 645 
     | 
    
         
            +
             
     | 
| 
      
 646 
     | 
    
         
            +
                    
         
     | 
| 
      
 647 
     | 
    
         
            +
                def test_total_detected_in_range_consistency(self):
         
     | 
| 
      
 648 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 649 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 650 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 651 
     | 
    
         
            +
                        total_detected_in_range(y_true, y_pred,k=4)
         
     | 
| 
      
 652 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 653 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 654 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
      
 656 
     | 
    
         
            +
                            score = total_detected_in_range(y_true, y_pred,k=4)
         
     | 
| 
      
 657 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 658 
     | 
    
         
            +
                        self.fail(f"total_detected_in_range raised an exception {e}")
         
     | 
| 
      
 659 
     | 
    
         
            +
             
     | 
| 
      
 660 
     | 
    
         
            +
            class TestDetectionAccuracyInRange(unittest.TestCase):
         
     | 
| 
      
 661 
     | 
    
         
            +
             
     | 
| 
      
 662 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 663 
     | 
    
         
            +
                    """
         
     | 
| 
      
 664 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 665 
     | 
    
         
            +
                    """
         
     | 
| 
      
 666 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 667 
     | 
    
         
            +
             
     | 
| 
      
 668 
     | 
    
         
            +
                
         
     | 
| 
      
 669 
     | 
    
         
            +
             
     | 
| 
      
 670 
     | 
    
         
            +
                    
         
     | 
| 
      
 671 
     | 
    
         
            +
                def test_detection_accuracy_in_range_consistency(self):
         
     | 
| 
      
 672 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 673 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 674 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 675 
     | 
    
         
            +
                        detection_accuracy_in_range(y_true, y_pred,k=4)
         
     | 
| 
      
 676 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 677 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 678 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 679 
     | 
    
         
            +
             
     | 
| 
      
 680 
     | 
    
         
            +
                            score = detection_accuracy_in_range(y_true, y_pred,k=4)
         
     | 
| 
      
 681 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 682 
     | 
    
         
            +
                        self.fail(f"detection_accuracy_in_range raised an exception {e}")
         
     | 
| 
      
 683 
     | 
    
         
            +
             
     | 
| 
      
 684 
     | 
    
         
            +
             
     | 
| 
      
 685 
     | 
    
         
            +
            class TestWeightedDetectionDifference(unittest.TestCase):
         
     | 
| 
      
 686 
     | 
    
         
            +
             
     | 
| 
      
 687 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 688 
     | 
    
         
            +
                    """
         
     | 
| 
      
 689 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 690 
     | 
    
         
            +
                    """
         
     | 
| 
      
 691 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 692 
     | 
    
         
            +
             
     | 
| 
      
 693 
     | 
    
         
            +
                
         
     | 
| 
      
 694 
     | 
    
         
            +
             
     | 
| 
      
 695 
     | 
    
         
            +
                    
         
     | 
| 
      
 696 
     | 
    
         
            +
                def test_weighted_detection_difference_consistency(self):
         
     | 
| 
      
 697 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 698 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 699 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 700 
     | 
    
         
            +
                        weighted_detection_difference(y_true, y_pred,k=4)
         
     | 
| 
      
 701 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 702 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 703 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 704 
     | 
    
         
            +
             
     | 
| 
      
 705 
     | 
    
         
            +
                            score = weighted_detection_difference(y_true, y_pred,k=4)
         
     | 
| 
      
 706 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 707 
     | 
    
         
            +
                        self.fail(f"weighted_detection_difference raised an exception {e}")
         
     | 
| 
      
 708 
     | 
    
         
            +
             
     | 
| 
      
 709 
     | 
    
         
            +
            class TestPATE(unittest.TestCase):
         
     | 
| 
      
 710 
     | 
    
         
            +
             
     | 
| 
      
 711 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 712 
     | 
    
         
            +
                    """
         
     | 
| 
      
 713 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 714 
     | 
    
         
            +
                    """
         
     | 
| 
      
 715 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 716 
     | 
    
         
            +
             
     | 
| 
      
 717 
     | 
    
         
            +
                
         
     | 
| 
      
 718 
     | 
    
         
            +
             
     | 
| 
      
 719 
     | 
    
         
            +
                    
         
     | 
| 
      
 720 
     | 
    
         
            +
                def test_pate_consistency(self):
         
     | 
| 
      
 721 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 722 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 723 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 724 
     | 
    
         
            +
                        binary_pate(y_true, y_pred, early=5, delay=5)
         
     | 
| 
      
 725 
     | 
    
         
            +
                        for _ in range(10):
         
     | 
| 
      
 726 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 727 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 728 
     | 
    
         
            +
             
     | 
| 
      
 729 
     | 
    
         
            +
                            score = binary_pate(y_true, y_pred, early=5, delay=5)
         
     | 
| 
      
 730 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 731 
     | 
    
         
            +
                        self.fail(f"binary_pate raised an exception {e}")
         
     | 
| 
      
 732 
     | 
    
         
            +
             
     | 
| 
      
 733 
     | 
    
         
            +
             
     | 
| 
      
 734 
     | 
    
         
            +
            class TestMeanTimeToDetect(unittest.TestCase):
         
     | 
| 
      
 735 
     | 
    
         
            +
             
     | 
| 
      
 736 
     | 
    
         
            +
                def setUp(self):
         
     | 
| 
      
 737 
     | 
    
         
            +
                    """
         
     | 
| 
      
 738 
     | 
    
         
            +
                    Configuración inicial para las pruebas.
         
     | 
| 
      
 739 
     | 
    
         
            +
                    """
         
     | 
| 
      
 740 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 741 
     | 
    
         
            +
             
     | 
| 
      
 742 
     | 
    
         
            +
                
         
     | 
| 
      
 743 
     | 
    
         
            +
             
     | 
| 
      
 744 
     | 
    
         
            +
                    
         
     | 
| 
      
 745 
     | 
    
         
            +
                def test_mean_time_to_detect_consistency(self):
         
     | 
| 
      
 746 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 747 
     | 
    
         
            +
                        y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 748 
     | 
    
         
            +
                        y_pred = np.zeros(100)
         
     | 
| 
      
 749 
     | 
    
         
            +
                        mean_time_to_detect(y_true, y_pred)
         
     | 
| 
      
 750 
     | 
    
         
            +
                        for _ in range(100):
         
     | 
| 
      
 751 
     | 
    
         
            +
                            y_true = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 752 
     | 
    
         
            +
                            y_pred = np.random.choice([0, 1], size=(100,))
         
     | 
| 
      
 753 
     | 
    
         
            +
             
     | 
| 
      
 754 
     | 
    
         
            +
                            score = mean_time_to_detect(y_true, y_pred)
         
     | 
| 
      
 755 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 756 
     | 
    
         
            +
                        self.fail(f"mean_time_to_detect raised an exception {e}")
         
     | 
| 
      
 757 
     | 
    
         
            +
             
     | 
| 
      
 758 
     | 
    
         
            +
            if __name__ == '__main__':
         
     | 
| 
      
 759 
     | 
    
         
            +
                unittest.main()
         
     |