tsadmetrics 0.1.4__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. entorno/bin/activate_this.py +32 -0
  2. entorno/bin/rst2html.py +23 -0
  3. entorno/bin/rst2html4.py +26 -0
  4. entorno/bin/rst2html5.py +33 -0
  5. entorno/bin/rst2latex.py +26 -0
  6. entorno/bin/rst2man.py +27 -0
  7. entorno/bin/rst2odt.py +28 -0
  8. entorno/bin/rst2odt_prepstyles.py +20 -0
  9. entorno/bin/rst2pseudoxml.py +23 -0
  10. entorno/bin/rst2s5.py +24 -0
  11. entorno/bin/rst2xetex.py +27 -0
  12. entorno/bin/rst2xml.py +23 -0
  13. entorno/bin/rstpep2html.py +25 -0
  14. experiments/scripts/compute_metrics.py +187 -0
  15. experiments/scripts/metrics_complexity_analysis.py +109 -0
  16. experiments/scripts/metro_experiment.py +133 -0
  17. experiments/scripts/opt_metro_experiment.py +343 -0
  18. tests/__init__.py +0 -0
  19. tests/test_binary.py +759 -0
  20. tests/test_non_binary.py +371 -0
  21. tsadmetrics/_tsadeval/affiliation/__init__.py +0 -0
  22. tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +86 -0
  23. tsadmetrics/_tsadeval/affiliation/_integral_interval.py +464 -0
  24. tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +68 -0
  25. tsadmetrics/_tsadeval/affiliation/generics.py +135 -0
  26. tsadmetrics/_tsadeval/affiliation/metrics.py +114 -0
  27. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +175 -0
  28. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +50 -0
  29. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +184 -0
  30. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/__init__.py +0 -0
  31. tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
  32. tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +386 -0
  33. tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +362 -0
  34. tsadmetrics/_tsadeval/prts/__init__.py +0 -0
  35. tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
  36. tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +165 -0
  37. tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +121 -0
  38. tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
  39. tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +61 -0
  40. tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +86 -0
  41. tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +21 -0
  42. tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +85 -0
  43. {tsadmetrics-0.1.4.dist-info → tsadmetrics-0.1.5.dist-info}/METADATA +1 -1
  44. tsadmetrics-0.1.5.dist-info/RECORD +62 -0
  45. tsadmetrics-0.1.5.dist-info/top_level.txt +4 -0
  46. tsadmetrics-0.1.4.dist-info/RECORD +0 -20
  47. tsadmetrics-0.1.4.dist-info/top_level.txt +0 -1
  48. {tsadmetrics-0.1.4.dist-info → tsadmetrics-0.1.5.dist-info}/WHEEL +0 -0
@@ -0,0 +1,61 @@
1
+ import numpy as np
2
+
3
+ from ..base.time_series_metrics import BaseTimeSeriesMetrics
4
+ from .precision import TimeSeriesPrecision
5
+ from .recall import TimeSeriesRecall
6
+
7
+
8
+ class TimeSeriesFScore(BaseTimeSeriesMetrics):
9
+ """ This class calculates f-score for time series"""
10
+
11
+ def __init__(self, beta=1.0, p_alpha=0.0, r_alpha=0.0, cardinality="one", p_bias="flat", r_bias="flat"):
12
+ """Constructor
13
+
14
+ Args:
15
+ beta (float, optional): determines the weight of recall in the combined score.. Defaults to 1.0.
16
+ p_alpha (float, optional): alpha of precision, 0<=alpha_p<=1. Defaults to 0.0.
17
+ r_alpha (float, optional): alpha of recall, 0<=alpha<=1. Defaults to 0.0.
18
+ cardinality (str, optional): ["one", "reciprocal", "udf_gamma"]. Defaults to "one".
19
+ p_bias (str, optional): bias of precision, ["flat", "front", "middle", "back"]. Defaults to "flat".
20
+ r_bias (str, optional): bias of recall, ["flat", "front", "middle", "back"]. Defaults to "flat".
21
+ """
22
+
23
+ assert beta >= 0
24
+
25
+ self.beta = beta
26
+ self.p_alpha = p_alpha
27
+ self.r_alpha = r_alpha
28
+ self.cardinality = cardinality
29
+ self.p_bias = p_bias
30
+ self.r_bias = r_bias
31
+
32
+ def score(self, real: np.ndarray, pred: np.ndarray) -> float:
33
+ """Computing fbeta score
34
+
35
+ Args:
36
+ real (np.ndarray):
37
+ One-dimensional array of correct answers with values of 1 or 0.
38
+ pred (np.ndarray):
39
+ One-dimensional array of predicted answers with values of 1 or 0.
40
+
41
+ Returns:
42
+ float: fbeta
43
+ """
44
+
45
+ assert isinstance(real, np.ndarray) or isinstance(real, list)
46
+ assert isinstance(pred, np.ndarray) or isinstance(pred, list)
47
+
48
+ if not isinstance(real, np.ndarray):
49
+ real = np.array(real)
50
+ if not isinstance(pred, np.ndarray):
51
+ pred = np.array(pred)
52
+
53
+ precision = TimeSeriesPrecision(self.p_alpha, self.cardinality, self.p_bias).score(real, pred)
54
+ recall = TimeSeriesRecall(self.r_alpha, self.cardinality, self.r_bias).score(real, pred)
55
+
56
+ if precision + recall != 0:
57
+ f_beta = (1 + self.beta ** 2) * precision * recall / (self.beta ** 2 * precision + recall)
58
+ else:
59
+ f_beta = 0
60
+
61
+ return f_beta
@@ -0,0 +1,86 @@
1
+ from typing import Union
2
+
3
+ import numpy as np
4
+
5
+ from ..base.time_series_metrics import BaseTimeSeriesMetrics
6
+
7
+
8
+ class TimeSeriesPrecision(BaseTimeSeriesMetrics):
9
+ """ This class calculates precision for time series"""
10
+
11
+ def __init__(self, alpha=0.0, cardinality="one", bias="flat"):
12
+ """Constructor
13
+
14
+ Args:
15
+ alpha (float, optional): 0 <= alpha <= 1. Defaults to 0.0.
16
+ cardinality (str, optional): ["one", "reciprocal", "udf_gamma"]. Defaults to "one".
17
+ bias (str, optional): ["flat", "front", "middle", "back"]. Defaults to "flat".
18
+ """
19
+
20
+ assert (alpha >= 0) & (alpha <= 1)
21
+ assert cardinality in ["one", "reciprocal", "udf_gamma"]
22
+ assert bias in ["flat", "front", "middle", "back"]
23
+
24
+ self.alpha = alpha
25
+ self.cardinality = cardinality
26
+ self.bias = bias
27
+
28
+ def score(self, real: Union[np.ndarray, list], pred: Union[np.ndarray, list]) -> float:
29
+ """Computing precision score
30
+
31
+ Args:
32
+ real (np.ndarray or list):
33
+ One-dimensional array of correct answers with values of 1 or 0.
34
+ pred (np.ndarray or list):
35
+ One-dimensional array of predicted answers with values of 1 or 0.
36
+
37
+ Returns:
38
+ float: precision
39
+ """
40
+
41
+ assert isinstance(real, np.ndarray) or isinstance(real, list)
42
+ assert isinstance(pred, np.ndarray) or isinstance(pred, list)
43
+
44
+ if not isinstance(real, np.ndarray):
45
+ real = np.array(real)
46
+ if not isinstance(pred, np.ndarray):
47
+ pred = np.array(pred)
48
+
49
+ real_anomalies, predicted_anomalies = self._prepare_data(real, pred)
50
+ precision = self._update_precision(real_anomalies, predicted_anomalies)
51
+
52
+ return precision
53
+
54
+ def _update_precision(self, real_anomalies: np.ndarray, predicted_anomalies: np.ndarray) -> float:
55
+ """Update precision
56
+
57
+ Args:
58
+ real_anomalies (np.ndarray):
59
+ 2-dimensional array of the first and last indexes of each real anomaly range.
60
+ e.g. np.array([[1933, 1953],[1958, 2000], ...])
61
+ predicted_anomalies (np.ndarray):
62
+ 2-dimensional array of the first and last indexes of each predicted anomaly range.
63
+ e.g. np.array([[1933, 1953],[1958, 2000], ...])
64
+
65
+ Returns:
66
+ float: precision
67
+ """
68
+ precision = 0
69
+ if len(predicted_anomalies) == 0:
70
+ return 0
71
+ for i in range(len(predicted_anomalies)):
72
+ range_p = predicted_anomalies[i, :]
73
+ omega_reward = 0
74
+ overlap_count = [0]
75
+ for j in range(len(real_anomalies)):
76
+ range_r = real_anomalies[j, :]
77
+ omega_reward += self._compute_omega_reward(range_p, range_r, overlap_count)
78
+ overlap_reward = self._gamma_function(overlap_count) * omega_reward
79
+ if overlap_count[0] > 0:
80
+ existence_reward = 1
81
+ else:
82
+ existence_reward = 0
83
+
84
+ precision += self.alpha * existence_reward + (1 - self.alpha) * overlap_reward
85
+ precision /= len(predicted_anomalies)
86
+ return precision
@@ -0,0 +1,21 @@
1
+ from typing import Any
2
+
3
+ import numpy as np
4
+
5
+ from prts.base.time_series_metrics import BaseTimeSeriesMetrics
6
+
7
+
8
+ class TimeSeriesPrecisionRecall(BaseTimeSeriesMetrics):
9
+ """ This class calculates precision and recall for time series """
10
+
11
+ def score(self, real: np.ndarray, pred: np.ndarray) -> Any:
12
+ """
13
+
14
+ Args:
15
+ real:
16
+ pred:
17
+
18
+ Returns:
19
+
20
+ """
21
+ # TODO: impl
@@ -0,0 +1,85 @@
1
+ from typing import Union
2
+
3
+ import numpy as np
4
+
5
+ from ..base.time_series_metrics import BaseTimeSeriesMetrics
6
+
7
+
8
+ class TimeSeriesRecall(BaseTimeSeriesMetrics):
9
+ """ This class calculates recall for time series """
10
+
11
+ def __init__(self, alpha=0.0, cardinality="one", bias="flat"):
12
+ """Constructor
13
+
14
+ Args:
15
+ alpha (float, optional): 0 <= alpha <= 1. Defaults to 0.0.
16
+ cardinality (str, optional): ["one", "reciprocal", "udf_gamma"]. Defaults to "one".
17
+ bias (str, optional): ["flat", "front", "middle", "back"]. Defaults to "flat".
18
+ """
19
+
20
+ assert (alpha >= 0) & (alpha <= 1)
21
+ assert cardinality in ["one", "reciprocal", "udf_gamma"]
22
+ assert bias in ["flat", "front", "middle", "back"]
23
+
24
+ self.alpha = alpha
25
+ self.cardinality = cardinality
26
+ self.bias = bias
27
+
28
+ def score(self, real: Union[np.ndarray, list], pred: Union[np.ndarray, list]) -> float:
29
+ """Computing recall score
30
+
31
+ Args:
32
+ real (np.ndarray or list):
33
+ One-dimensional array of correct answers with values of 1 or 0.
34
+ pred (np.ndarray or list):
35
+ One-dimensional array of predicted answers with values of 1 or 0.
36
+ Returns:
37
+ float: recall
38
+ """
39
+
40
+ assert isinstance(real, np.ndarray) or isinstance(real, list)
41
+ assert isinstance(pred, np.ndarray) or isinstance(pred, list)
42
+
43
+ if not isinstance(real, np.ndarray):
44
+ real = np.array(real)
45
+ if not isinstance(pred, np.ndarray):
46
+ pred = np.array(pred)
47
+
48
+ real_anomalies, predicted_anomalies = self._prepare_data(real, pred)
49
+ recall = self._update_recall(real_anomalies, predicted_anomalies)
50
+
51
+ return recall
52
+
53
+ def _update_recall(self, real_anomalies: np.ndarray, predicted_anomalies: np.ndarray) -> float:
54
+ """Update recall
55
+ Args:
56
+ real_anomalies (np.ndarray):
57
+ 2-dimensional array of the first and last indexes of each real anomaly range.
58
+ e.g. np.array([[1933, 1953],[1958, 2000], ...])
59
+ predicted_anomalies (np.ndarray):
60
+ 2-dimensional array of the first and last indexes of each predicted anomaly range.
61
+ e.g. np.array([[1933, 1953],[1958, 2000], ...])
62
+ Returns:
63
+ float: recall
64
+ """
65
+
66
+ recall = 0
67
+ if len(real_anomalies) == 0:
68
+ return 0
69
+ for i in range(len(real_anomalies)):
70
+ omega_reward = 0
71
+ overlap_count = [0]
72
+ range_r = real_anomalies[i, :]
73
+ for j in range(len(predicted_anomalies)):
74
+ range_p = predicted_anomalies[j, :]
75
+ omega_reward += self._compute_omega_reward(range_r, range_p, overlap_count)
76
+ overlap_reward = self._gamma_function(overlap_count) * omega_reward
77
+
78
+ if overlap_count[0] > 0:
79
+ existence_reward = 1
80
+ else:
81
+ existence_reward = 0
82
+
83
+ recall += self.alpha * existence_reward + (1 - self.alpha) * overlap_reward
84
+ recall /= len(real_anomalies)
85
+ return recall
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tsadmetrics
3
- Version: 0.1.4
3
+ Version: 0.1.5
4
4
  Summary: Librería para evaluación de detección de anomalías en series temporales
5
5
  Home-page: https://github.com/pathsko/TSADmetrics
6
6
  Author: Pedro Rafael Velasco Priego
@@ -0,0 +1,62 @@
1
+ entorno/bin/activate_this.py,sha256=45dnJsdtOWIt5LtVSBmBfB8E7AlKcnhnZe9e3WGclak,1199
2
+ entorno/bin/rst2html.py,sha256=H9TATamf9PBnKJUpNWctEFAp5q9LObX353tIkArBdsA,639
3
+ entorno/bin/rst2html4.py,sha256=z0108x1oxTOXg-oU_s4j9cv7OxCrPTTmV6LfADMtbjs,761
4
+ entorno/bin/rst2html5.py,sha256=qMrEoZ1mjo5Tt8yCqXNCquYJ-DDynFVqKN5ZeOfLLB8,1096
5
+ entorno/bin/rst2latex.py,sha256=8gZ9ryotGng3K0goX5P51-L3oKW9chJXpQumAPJkwyU,838
6
+ entorno/bin/rst2man.py,sha256=ryMvgZX7IDfC7N-vTywTj-8iVlpHJkbMTEyDhHIdOsI,661
7
+ entorno/bin/rst2odt.py,sha256=Mjs19kOZ30tHB1cRb9km3anspnLv7ftoSlw2zHdpvvw,827
8
+ entorno/bin/rst2odt_prepstyles.py,sha256=8G8wdgn7UhaxI-PZYLVIwssvtSUSt1vmEuOI1HCZlrc,633
9
+ entorno/bin/rst2pseudoxml.py,sha256=ydQMcz9e0Zu6O8go0I_QoG7t8CtbRAzXy5I27JJcIV4,646
10
+ entorno/bin/rst2s5.py,sha256=4uDPt_H4qIMkQVLcXxVgIyy01Evhv34BBLEMVFzZM48,682
11
+ entorno/bin/rst2xetex.py,sha256=ISxJ2axfgO94mR6a7n6eFC1jMBiwwqZUFLROX5BjVJs,918
12
+ entorno/bin/rst2xml.py,sha256=vfsZFTKMpkJ1TZuttq2UrKgFWDOwOd8mWG8qHbu_6QA,647
13
+ entorno/bin/rstpep2html.py,sha256=jrbcAcQDtHW6S1f9Ef4XM0DuzbDG-VuE2I_AeRAelGs,715
14
+ experiments/scripts/compute_metrics.py,sha256=vBfOg2E967AhRqZQhoASNcDcZTVTjgobyW2U4UAfHt0,8047
15
+ experiments/scripts/metrics_complexity_analysis.py,sha256=ky5tNiiqhGazDCJr_QiFegD4inEiIM6rCwgMFBXxKNc,3921
16
+ experiments/scripts/metro_experiment.py,sha256=3xXE1FWj88HnJ2vWL14n-1GoEKZX218NG_PNEXBkAOs,5051
17
+ experiments/scripts/opt_metro_experiment.py,sha256=NAfmzmPPh_malkmtTRstByJoRbJnrC8UyWQFuRJ6-1g,13011
18
+ tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ tests/test_binary.py,sha256=3uLdXzdbQcqLRfXeKDmt2g2XQTU5lZOFQoiy-r9Olqo,29801
20
+ tests/test_non_binary.py,sha256=PRvsgGbwbRXVNkYBk2-oJw8ekLW4DWJkEZhAWO0L9sk,11309
21
+ tsadmetrics/__init__.py,sha256=MTWOa43fgOdkMNo5NglCReRnB8hoF0ob2PIvDziCNHw,1575
22
+ tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs,37741
23
+ tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
24
+ tsadmetrics/non_binary_metrics.py,sha256=JIOvkigSjHBZLKbGJj7ESe0lPM7P1JPoIUnbiMZuuLg,2896
25
+ tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ tsadmetrics/utils.py,sha256=G0yWxgTZ9MBzyB0XDLrO2TMwmtm4hssDp5Sr0CG9FqY,1834
27
+ tsadmetrics/_tsadeval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ tsadmetrics/_tsadeval/auc_roc_pr_plot.py,sha256=PHqJUXq2qI248XV9o04D8SsUJgowetaKq0Cu5bYrIAE,12689
29
+ tsadmetrics/_tsadeval/discontinuity_graph.py,sha256=Ci65l_DPi6HTtb8NvQJe1najgGrRuEpOMWvSyi2AeR0,4088
30
+ tsadmetrics/_tsadeval/latency_sparsity_aware.py,sha256=92wt6ARSXL5Y-281joNaSu1E7hnkIbl3m6gyzODTYBE,12092
31
+ tsadmetrics/_tsadeval/metrics.py,sha256=d-1VpJu_mp8gZjW2FeD7eqkFKEkGsYcsy6DcSGK4kSk,24100
32
+ tsadmetrics/_tsadeval/nabscore.py,sha256=8H4cgzzjXrbQzpI-YKEJj31eSGSROrT7NNC86n9d2yY,11696
33
+ tsadmetrics/_tsadeval/tests.py,sha256=KjFPlEHWYkxHXtaEs1_WiTgATEtr7kPKQbgsljSxJ8o,12697
34
+ tsadmetrics/_tsadeval/threshold_plt.py,sha256=ExgxIcsDMmgLNveNug5fimEhEe6Km0g68npQj-7oWOE,726
35
+ tsadmetrics/_tsadeval/time_tolerant.py,sha256=duq3B58ohjS6QkWdNUuCQFt2xmCJ0dMWTVzOr6E3H0A,1486
36
+ tsadmetrics/_tsadeval/vus_utils.py,sha256=XL5tV9hxBW8aGkobT84cp2FdHNuNZ3PUgaplwHsDjNk,7868
37
+ tsadmetrics/_tsadeval/affiliation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
+ tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py,sha256=Oyib8Rzr5hSvq-NTyHPekLqd6_iDGu-Pc1MocNzgG6I,3486
39
+ tsadmetrics/_tsadeval/affiliation/_integral_interval.py,sha256=gXfmnsywrk6nay9U9nma5hdYtaEDYD-uPRo6jTMefNo,20845
40
+ tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py,sha256=oEtdqg-w72iJOAfHq11DU7Q_DVIxrgbvAAay5s-TkWU,3488
41
+ tsadmetrics/_tsadeval/affiliation/generics.py,sha256=FnQ7IE0k_ri6neqrzrewz5AFIBNuijt35JlEj8qvv8k,4882
42
+ tsadmetrics/_tsadeval/affiliation/metrics.py,sha256=EZLnHI2ACpPzB8HuqTRkFXHJuKa1jJ0jGa1BZyDqC0Q,5045
43
+ tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
+ tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py,sha256=3CJRdDL-edxKrHGmQHPzZDg8X5O42NGLXme6nc-jfgE,15768
45
+ tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py,sha256=KGgRyLVBcHQfDyaPtyU8t3Iq1CZreIkc6xJ8BZfygQw,14645
46
+ tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py,sha256=98Nkr84vvZ0rpLIcH28DrR7RaBistLpF_8rZ9MpUj-0,6691
47
+ tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py,sha256=ZJuaX3kNtCuZNmOAxIXJejawoeZrH6hupX3DILIqmCM,1825
48
+ tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py,sha256=IIrMdeM4YUrNmUskLw58crCN8URqY8rHn7q5zJDjDUU,8497
49
+ tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
+ tsadmetrics/_tsadeval/prts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
+ tsadmetrics/_tsadeval/prts/basic_metrics_ts.py,sha256=GPM2EdLL4tmxuuD6Q15Uk9IuAFPkSMn8LZpxLTYao_0,6066
52
+ tsadmetrics/_tsadeval/prts/base/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
+ tsadmetrics/_tsadeval/prts/base/time_series_metrics.py,sha256=ngKaP_8IwmA6GzDlGYSE32yDNoj7wmN9rgB-EeKwvG0,5615
54
+ tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
+ tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py,sha256=pJz4iuPyVGNvwsaRY9F0DlCbKAKJv4CdZl8Ulvyq6pw,2336
56
+ tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py,sha256=jLkcMg7UNl25SHtZUBGkP-RV8HsvaZCtjakryl7PFWU,3204
57
+ tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py,sha256=OhUJSm_I7VZ_gX_SSg8AYUq3_NW9rMIy7lAVsnOFw4Q,417
58
+ tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py,sha256=LL-0pPer3ymovVRlktaHo5XDzpgiDhWOVfdPOzKR6og,3152
59
+ tsadmetrics-0.1.5.dist-info/METADATA,sha256=Z1lOZK8SyydVHNA_-JKWuoogGAw-apiynWXIkc9vGvk,756
60
+ tsadmetrics-0.1.5.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
61
+ tsadmetrics-0.1.5.dist-info/top_level.txt,sha256=RBlddXJB5cEhcrINYC_6YGVtpv4GXGan4eVNyobrVRk,38
62
+ tsadmetrics-0.1.5.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ entorno
2
+ experiments
3
+ tests
4
+ tsadmetrics
@@ -1,20 +0,0 @@
1
- tsadmetrics/__init__.py,sha256=MTWOa43fgOdkMNo5NglCReRnB8hoF0ob2PIvDziCNHw,1575
2
- tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs,37741
3
- tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
4
- tsadmetrics/non_binary_metrics.py,sha256=JIOvkigSjHBZLKbGJj7ESe0lPM7P1JPoIUnbiMZuuLg,2896
5
- tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- tsadmetrics/utils.py,sha256=G0yWxgTZ9MBzyB0XDLrO2TMwmtm4hssDp5Sr0CG9FqY,1834
7
- tsadmetrics/_tsadeval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py,sha256=PHqJUXq2qI248XV9o04D8SsUJgowetaKq0Cu5bYrIAE,12689
9
- tsadmetrics/_tsadeval/discontinuity_graph.py,sha256=Ci65l_DPi6HTtb8NvQJe1najgGrRuEpOMWvSyi2AeR0,4088
10
- tsadmetrics/_tsadeval/latency_sparsity_aware.py,sha256=92wt6ARSXL5Y-281joNaSu1E7hnkIbl3m6gyzODTYBE,12092
11
- tsadmetrics/_tsadeval/metrics.py,sha256=d-1VpJu_mp8gZjW2FeD7eqkFKEkGsYcsy6DcSGK4kSk,24100
12
- tsadmetrics/_tsadeval/nabscore.py,sha256=8H4cgzzjXrbQzpI-YKEJj31eSGSROrT7NNC86n9d2yY,11696
13
- tsadmetrics/_tsadeval/tests.py,sha256=KjFPlEHWYkxHXtaEs1_WiTgATEtr7kPKQbgsljSxJ8o,12697
14
- tsadmetrics/_tsadeval/threshold_plt.py,sha256=ExgxIcsDMmgLNveNug5fimEhEe6Km0g68npQj-7oWOE,726
15
- tsadmetrics/_tsadeval/time_tolerant.py,sha256=duq3B58ohjS6QkWdNUuCQFt2xmCJ0dMWTVzOr6E3H0A,1486
16
- tsadmetrics/_tsadeval/vus_utils.py,sha256=XL5tV9hxBW8aGkobT84cp2FdHNuNZ3PUgaplwHsDjNk,7868
17
- tsadmetrics-0.1.4.dist-info/METADATA,sha256=7CclFJyIyGpieaaykLuCaTh-P1u4O0KnOrdgL8ZQoWk,756
18
- tsadmetrics-0.1.4.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
19
- tsadmetrics-0.1.4.dist-info/top_level.txt,sha256=rRMFvkwJRUuenl0__YY_3BNr-rkdhAdj28iICkpC5a4,12
20
- tsadmetrics-0.1.4.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- tsadmetrics