tsadmetrics 0.1.2__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tsadmetrics/__init__.py +1 -1
- tsadmetrics/_tsadeval/__init__.py +0 -0
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +295 -0
- tsadmetrics/_tsadeval/discontinuity_graph.py +109 -0
- tsadmetrics/_tsadeval/latency_sparsity_aware.py +294 -0
- tsadmetrics/_tsadeval/metrics.py +698 -0
- tsadmetrics/_tsadeval/nabscore.py +311 -0
- tsadmetrics/_tsadeval/tests.py +376 -0
- tsadmetrics/_tsadeval/threshold_plt.py +30 -0
- tsadmetrics/_tsadeval/time_tolerant.py +33 -0
- tsadmetrics/_tsadeval/vus_utils.py +263 -0
- {tsadmetrics-0.1.2.dist-info → tsadmetrics-0.1.3.dist-info}/METADATA +1 -1
- tsadmetrics-0.1.3.dist-info/RECORD +20 -0
- tsadmetrics-0.1.2.dist-info/RECORD +0 -10
- {tsadmetrics-0.1.2.dist-info → tsadmetrics-0.1.3.dist-info}/WHEEL +0 -0
- {tsadmetrics-0.1.2.dist-info → tsadmetrics-0.1.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,30 @@
|
|
1
|
+
# import numpy as np
|
2
|
+
# from matplotlib import pyplot as plt
|
3
|
+
|
4
|
+
|
5
|
+
# x = np.arange(48)
|
6
|
+
|
7
|
+
# y = np.sin(0.7 + x / 12) + np.sin(x / 4 + 29) + 0.1 * np.sin(1.25 * x) * (np.cos(np.sqrt(1.25 * x) + 2)) + x / 32 + 0.12
|
8
|
+
|
9
|
+
|
10
|
+
# figsize = (3.4, 2)
|
11
|
+
# plt.figure(figsize=figsize)
|
12
|
+
|
13
|
+
# plt.plot(x, y)
|
14
|
+
|
15
|
+
# for t in [0.5, 1, 1.5, 2, 2.5]:
|
16
|
+
# plt.plot(x, x + t - x, ".", color="dimgray")
|
17
|
+
# for i in range(len(x)):
|
18
|
+
# if t < y[i]:
|
19
|
+
# plt.plot([x[i]], [t], ".r")
|
20
|
+
# plt.plot([x[i]], [t], "xw", markersize=2)
|
21
|
+
|
22
|
+
# fs = 7
|
23
|
+
# plt.xlabel("Time", fontsize=fs)
|
24
|
+
# plt.ylabel("Anomaly score / Threshold", fontsize=fs)
|
25
|
+
# plt.xticks(fontsize=fs)
|
26
|
+
# plt.yticks(fontsize=fs)
|
27
|
+
|
28
|
+
# plt.tight_layout()
|
29
|
+
# plt.savefig("thr2.pdf")
|
30
|
+
# plt.show()
|
@@ -0,0 +1,33 @@
|
|
1
|
+
# MIT License
|
2
|
+
#
|
3
|
+
# Copyright (c) 2020 Erik Scharwächter
|
4
|
+
#
|
5
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
# of this software and associated documentation files (the "Software"), to deal
|
7
|
+
# in the Software without restriction, including without limitation the rights
|
8
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
# copies of the Software, and to permit persons to whom the Software is
|
10
|
+
# furnished to do so, subject to the following conditions:
|
11
|
+
#
|
12
|
+
# The above copyright notice and this permission notice shall be included in all
|
13
|
+
# copies or substantial portions of the Software.
|
14
|
+
#
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
# SOFTWARE.
|
22
|
+
|
23
|
+
import numpy as np
|
24
|
+
|
25
|
+
def time_tolerant_recall_(A, E, d):
|
26
|
+
N_E = float(E.sum())
|
27
|
+
T = len(E)
|
28
|
+
return len([t for t in range(d, T-d) if (E[t] == 1) and np.sum(A[(t-d):(t+d)+1]) >= 1])/N_E
|
29
|
+
|
30
|
+
def time_tolerant_precision_(A, E, d):
|
31
|
+
N_A = float(A.sum())
|
32
|
+
T = len(E)
|
33
|
+
return len([t for t in range(d, T-d) if (A[t] == 1) and np.sum(E[(t-d):(t+d)+1]) >= 1])/N_A
|
@@ -0,0 +1,263 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
# This file includes code derived from the VUS project:
|
4
|
+
# https://github.com/TheDatumOrg/VUS
|
5
|
+
#
|
6
|
+
# No license was specified in the original repository at the time of inclusion (April 2025),
|
7
|
+
# which may imply that all rights are reserved by the original author(s).
|
8
|
+
#
|
9
|
+
# This code has been copied and modified for internal use only within the tsadmetrics project.
|
10
|
+
# If you are the author or copyright holder and would like us to remove or relicense
|
11
|
+
# this code, please contact us.
|
12
|
+
#
|
13
|
+
# This file is NOT intended for redistribution as a standalone component or as a derivative
|
14
|
+
# of the original VUS project unless proper licensing is clarified.
|
15
|
+
|
16
|
+
|
17
|
+
def range_convers_new( label):
|
18
|
+
'''
|
19
|
+
input: arrays of binary values
|
20
|
+
output: list of ordered pair [[a0,b0], [a1,b1]... ] of the inputs
|
21
|
+
'''
|
22
|
+
L = []
|
23
|
+
i = 0
|
24
|
+
j = 0
|
25
|
+
while j < len(label):
|
26
|
+
# print(i)
|
27
|
+
while label[i] == 0:
|
28
|
+
i+=1
|
29
|
+
if i >= len(label): #?
|
30
|
+
break #?
|
31
|
+
j = i+1
|
32
|
+
# print('j'+str(j))
|
33
|
+
if j >= len(label):
|
34
|
+
if j==len(label):
|
35
|
+
L.append((i,j-1))
|
36
|
+
|
37
|
+
break
|
38
|
+
while label[j] != 0:
|
39
|
+
j+=1
|
40
|
+
if j >= len(label):
|
41
|
+
L.append((i,j-1))
|
42
|
+
break
|
43
|
+
if j >= len(label):
|
44
|
+
break
|
45
|
+
L.append((i, j-1))
|
46
|
+
i = j
|
47
|
+
return L
|
48
|
+
|
49
|
+
def new_sequence(label, sequence_original, window):
|
50
|
+
a = max(sequence_original[0][0] - window // 2, 0)
|
51
|
+
sequence_new = []
|
52
|
+
for i in range(len(sequence_original) - 1):
|
53
|
+
if sequence_original[i][1] + window // 2 < sequence_original[i + 1][0] - window // 2:
|
54
|
+
sequence_new.append((a, sequence_original[i][1] + window // 2))
|
55
|
+
a = sequence_original[i + 1][0] - window // 2
|
56
|
+
sequence_new.append((a, min(sequence_original[len(sequence_original) - 1][1] + window // 2, len(label) - 1)))
|
57
|
+
return sequence_new
|
58
|
+
|
59
|
+
|
60
|
+
def sequencing(x, L, window=5):
|
61
|
+
label = x.copy().astype(float)
|
62
|
+
length = len(label)
|
63
|
+
|
64
|
+
for k in range(len(L)):
|
65
|
+
s = L[k][0]
|
66
|
+
e = L[k][1]
|
67
|
+
|
68
|
+
x1 = np.arange(e + 1, min(e + window // 2 + 1, length))
|
69
|
+
label[x1] += np.sqrt(1 - (x1 - e) / (window))
|
70
|
+
|
71
|
+
x2 = np.arange(max(s - window // 2, 0), s)
|
72
|
+
label[x2] += np.sqrt(1 - (s - x2) / (window))
|
73
|
+
|
74
|
+
label = np.minimum(np.ones(length), label)
|
75
|
+
return label
|
76
|
+
|
77
|
+
|
78
|
+
def RangeAUC_volume_opt_mem(labels_original, score, windowSize, thre=250):
|
79
|
+
window_3d = np.arange(0, windowSize + 1, 1)
|
80
|
+
P = np.sum(labels_original)
|
81
|
+
seq = range_convers_new(labels_original)
|
82
|
+
l = new_sequence(labels_original, seq, windowSize)
|
83
|
+
|
84
|
+
score_sorted = -np.sort(-score)
|
85
|
+
|
86
|
+
tpr_3d = np.zeros((windowSize + 1, thre + 2))
|
87
|
+
fpr_3d = np.zeros((windowSize + 1, thre + 2))
|
88
|
+
prec_3d = np.zeros((windowSize + 1, thre + 1))
|
89
|
+
|
90
|
+
auc_3d = np.zeros(windowSize + 1)
|
91
|
+
ap_3d = np.zeros(windowSize + 1)
|
92
|
+
|
93
|
+
tp = np.zeros(thre)
|
94
|
+
N_pred = np.zeros(thre)
|
95
|
+
p = np.zeros((thre, len(score)))
|
96
|
+
|
97
|
+
for k, i in enumerate(np.linspace(0, len(score) - 1, thre).astype(int)):
|
98
|
+
threshold = score_sorted[i]
|
99
|
+
pred = score >= threshold
|
100
|
+
p[k] = pred
|
101
|
+
N_pred[k] = np.sum(pred)
|
102
|
+
|
103
|
+
for window in window_3d:
|
104
|
+
labels_extended = sequencing(labels_original, seq, window)
|
105
|
+
L = new_sequence(labels_extended, seq, window)
|
106
|
+
|
107
|
+
TF_list = np.zeros((thre + 2, 2))
|
108
|
+
Precision_list = np.ones(thre + 1)
|
109
|
+
j = 0
|
110
|
+
|
111
|
+
for i in np.linspace(0, len(score) - 1, thre).astype(int):
|
112
|
+
labels = labels_extended.copy()
|
113
|
+
existence = 0
|
114
|
+
|
115
|
+
for seg in L:
|
116
|
+
labels[seg[0]:seg[1] + 1] = labels_extended[seg[0]:seg[1] + 1] * p[j][seg[0]:seg[1] + 1]
|
117
|
+
if (p[j][seg[0]:(seg[1] + 1)] > 0).any():
|
118
|
+
existence += 1
|
119
|
+
for seg in seq:
|
120
|
+
labels[seg[0]:seg[1] + 1] = 1
|
121
|
+
|
122
|
+
N_labels = 0
|
123
|
+
TP = 0
|
124
|
+
for seg in l:
|
125
|
+
TP += np.dot(labels[seg[0]:seg[1] + 1], p[j][seg[0]:seg[1] + 1])
|
126
|
+
N_labels += np.sum(labels[seg[0]:seg[1] + 1])
|
127
|
+
|
128
|
+
TP += tp[j]
|
129
|
+
FP = N_pred[j] - TP
|
130
|
+
|
131
|
+
existence_ratio = existence / len(L)
|
132
|
+
|
133
|
+
P_new = (P + N_labels) / 2
|
134
|
+
recall = min(TP / P_new, 1)
|
135
|
+
|
136
|
+
TPR = recall * existence_ratio
|
137
|
+
|
138
|
+
N_new = len(labels) - P_new
|
139
|
+
FPR = FP / N_new
|
140
|
+
Precision = TP / N_pred[j]
|
141
|
+
j += 1
|
142
|
+
|
143
|
+
TF_list[j] = [TPR, FPR]
|
144
|
+
Precision_list[j] = Precision
|
145
|
+
|
146
|
+
TF_list[j + 1] = [1, 1]
|
147
|
+
tpr_3d[window] = TF_list[:, 0]
|
148
|
+
fpr_3d[window] = TF_list[:, 1]
|
149
|
+
prec_3d[window] = Precision_list
|
150
|
+
|
151
|
+
width = TF_list[1:, 1] - TF_list[:-1, 1]
|
152
|
+
height = (TF_list[1:, 0] + TF_list[:-1, 0]) / 2
|
153
|
+
AUC_range = np.dot(width, height)
|
154
|
+
auc_3d[window] = (AUC_range)
|
155
|
+
|
156
|
+
width_PR = TF_list[1:-1, 0] - TF_list[:-2, 0]
|
157
|
+
height_PR = Precision_list[1:]
|
158
|
+
AP_range = np.dot(width_PR, height_PR)
|
159
|
+
ap_3d[window] = (AP_range)
|
160
|
+
return tpr_3d, fpr_3d, prec_3d, window_3d, sum(auc_3d) / len(window_3d), sum(ap_3d) / len(window_3d)
|
161
|
+
|
162
|
+
def RangeAUC_volume_opt( labels_original, score, windowSize, thre=250):
|
163
|
+
window_3d = np.arange(0, windowSize + 1, 1)
|
164
|
+
P = np.sum(labels_original)
|
165
|
+
seq = range_convers_new(labels_original)
|
166
|
+
l = new_sequence(labels_original, seq, windowSize)
|
167
|
+
|
168
|
+
score_sorted = -np.sort(-score)
|
169
|
+
|
170
|
+
tpr_3d = np.zeros((windowSize + 1, thre + 2))
|
171
|
+
fpr_3d = np.zeros((windowSize + 1, thre + 2))
|
172
|
+
prec_3d = np.zeros((windowSize + 1, thre + 1))
|
173
|
+
|
174
|
+
auc_3d = np.zeros(windowSize + 1)
|
175
|
+
ap_3d = np.zeros(windowSize + 1)
|
176
|
+
|
177
|
+
tp = np.zeros(thre)
|
178
|
+
N_pred = np.zeros(thre)
|
179
|
+
|
180
|
+
for k, i in enumerate(np.linspace(0, len(score) - 1, thre).astype(int)):
|
181
|
+
threshold = score_sorted[i]
|
182
|
+
pred = score >= threshold
|
183
|
+
N_pred[k] = np.sum(pred)
|
184
|
+
|
185
|
+
for window in window_3d:
|
186
|
+
|
187
|
+
labels_extended = sequencing(labels_original, seq, window)
|
188
|
+
L = new_sequence(labels_extended, seq, window)
|
189
|
+
|
190
|
+
TF_list = np.zeros((thre + 2, 2))
|
191
|
+
Precision_list = np.ones(thre + 1)
|
192
|
+
j = 0
|
193
|
+
|
194
|
+
for i in np.linspace(0, len(score) - 1, thre).astype(int):
|
195
|
+
threshold = score_sorted[i]
|
196
|
+
pred = score >= threshold
|
197
|
+
labels = labels_extended.copy()
|
198
|
+
existence = 0
|
199
|
+
|
200
|
+
for seg in L:
|
201
|
+
labels[seg[0]:seg[1] + 1] = labels_extended[seg[0]:seg[1] + 1] * pred[seg[0]:seg[1] + 1]
|
202
|
+
if (pred[seg[0]:(seg[1] + 1)] > 0).any():
|
203
|
+
existence += 1
|
204
|
+
for seg in seq:
|
205
|
+
labels[seg[0]:seg[1] + 1] = 1
|
206
|
+
|
207
|
+
TP = 0
|
208
|
+
N_labels = 0
|
209
|
+
for seg in l:
|
210
|
+
TP += np.dot(labels[seg[0]:seg[1] + 1], pred[seg[0]:seg[1] + 1])
|
211
|
+
N_labels += np.sum(labels[seg[0]:seg[1] + 1])
|
212
|
+
|
213
|
+
TP += tp[j]
|
214
|
+
FP = N_pred[j] - TP
|
215
|
+
|
216
|
+
existence_ratio = existence / len(L)
|
217
|
+
|
218
|
+
P_new = (P + N_labels) / 2
|
219
|
+
recall = min(TP / P_new, 1)
|
220
|
+
|
221
|
+
TPR = recall * existence_ratio
|
222
|
+
N_new = len(labels) - P_new
|
223
|
+
FPR = FP / N_new
|
224
|
+
|
225
|
+
Precision = TP / N_pred[j]
|
226
|
+
|
227
|
+
j += 1
|
228
|
+
TF_list[j] = [TPR, FPR]
|
229
|
+
Precision_list[j] = Precision
|
230
|
+
|
231
|
+
TF_list[j + 1] = [1, 1] # otherwise, range-AUC will stop earlier than (1,1)
|
232
|
+
|
233
|
+
tpr_3d[window] = TF_list[:, 0]
|
234
|
+
fpr_3d[window] = TF_list[:, 1]
|
235
|
+
prec_3d[window] = Precision_list
|
236
|
+
|
237
|
+
width = TF_list[1:, 1] - TF_list[:-1, 1]
|
238
|
+
height = (TF_list[1:, 0] + TF_list[:-1, 0]) / 2
|
239
|
+
AUC_range = np.dot(width, height)
|
240
|
+
auc_3d[window] = (AUC_range)
|
241
|
+
|
242
|
+
width_PR = TF_list[1:-1, 0] - TF_list[:-2, 0]
|
243
|
+
height_PR = Precision_list[1:]
|
244
|
+
|
245
|
+
AP_range = np.dot(width_PR, height_PR)
|
246
|
+
ap_3d[window] = AP_range
|
247
|
+
|
248
|
+
return tpr_3d, fpr_3d, prec_3d, window_3d, sum(auc_3d) / len(window_3d), sum(ap_3d) / len(window_3d)
|
249
|
+
|
250
|
+
def generate_curve(label,score,slidingWindow, version='opt', thre=250):
|
251
|
+
if version =='opt_mem':
|
252
|
+
tpr_3d, fpr_3d, prec_3d, window_3d, avg_auc_3d, avg_ap_3d = RangeAUC_volume_opt_mem(labels_original=label, score=score, windowSize=slidingWindow, thre=thre)
|
253
|
+
else:
|
254
|
+
tpr_3d, fpr_3d, prec_3d, window_3d, avg_auc_3d, avg_ap_3d = RangeAUC_volume_opt(labels_original=label, score=score, windowSize=slidingWindow, thre=thre)
|
255
|
+
|
256
|
+
X = np.array(tpr_3d).reshape(1,-1).ravel()
|
257
|
+
X_ap = np.array(tpr_3d)[:,:-1].reshape(1,-1).ravel()
|
258
|
+
Y = np.array(fpr_3d).reshape(1,-1).ravel()
|
259
|
+
W = np.array(prec_3d).reshape(1,-1).ravel()
|
260
|
+
Z = np.repeat(window_3d, len(tpr_3d[0]))
|
261
|
+
Z_ap = np.repeat(window_3d, len(tpr_3d[0])-1)
|
262
|
+
|
263
|
+
return Y, Z, X, X_ap, W, Z_ap,avg_auc_3d, avg_ap_3d
|
@@ -0,0 +1,20 @@
|
|
1
|
+
tsadmetrics/__init__.py,sha256=MTWOa43fgOdkMNo5NglCReRnB8hoF0ob2PIvDziCNHw,1575
|
2
|
+
tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs,37741
|
3
|
+
tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
|
4
|
+
tsadmetrics/non_binary_metrics.py,sha256=JIOvkigSjHBZLKbGJj7ESe0lPM7P1JPoIUnbiMZuuLg,2896
|
5
|
+
tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
|
+
tsadmetrics/utils.py,sha256=G0yWxgTZ9MBzyB0XDLrO2TMwmtm4hssDp5Sr0CG9FqY,1834
|
7
|
+
tsadmetrics/_tsadeval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8
|
+
tsadmetrics/_tsadeval/auc_roc_pr_plot.py,sha256=PHqJUXq2qI248XV9o04D8SsUJgowetaKq0Cu5bYrIAE,12689
|
9
|
+
tsadmetrics/_tsadeval/discontinuity_graph.py,sha256=Ci65l_DPi6HTtb8NvQJe1najgGrRuEpOMWvSyi2AeR0,4088
|
10
|
+
tsadmetrics/_tsadeval/latency_sparsity_aware.py,sha256=92wt6ARSXL5Y-281joNaSu1E7hnkIbl3m6gyzODTYBE,12092
|
11
|
+
tsadmetrics/_tsadeval/metrics.py,sha256=d-1VpJu_mp8gZjW2FeD7eqkFKEkGsYcsy6DcSGK4kSk,24100
|
12
|
+
tsadmetrics/_tsadeval/nabscore.py,sha256=8H4cgzzjXrbQzpI-YKEJj31eSGSROrT7NNC86n9d2yY,11696
|
13
|
+
tsadmetrics/_tsadeval/tests.py,sha256=KjFPlEHWYkxHXtaEs1_WiTgATEtr7kPKQbgsljSxJ8o,12697
|
14
|
+
tsadmetrics/_tsadeval/threshold_plt.py,sha256=ExgxIcsDMmgLNveNug5fimEhEe6Km0g68npQj-7oWOE,726
|
15
|
+
tsadmetrics/_tsadeval/time_tolerant.py,sha256=duq3B58ohjS6QkWdNUuCQFt2xmCJ0dMWTVzOr6E3H0A,1486
|
16
|
+
tsadmetrics/_tsadeval/vus_utils.py,sha256=XL5tV9hxBW8aGkobT84cp2FdHNuNZ3PUgaplwHsDjNk,7868
|
17
|
+
tsadmetrics-0.1.3.dist-info/METADATA,sha256=OhHUxt6YdnWC49fL3j-UP-HjfGrNudEJwwrA1Mju07s,756
|
18
|
+
tsadmetrics-0.1.3.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
19
|
+
tsadmetrics-0.1.3.dist-info/top_level.txt,sha256=rRMFvkwJRUuenl0__YY_3BNr-rkdhAdj28iICkpC5a4,12
|
20
|
+
tsadmetrics-0.1.3.dist-info/RECORD,,
|
@@ -1,10 +0,0 @@
|
|
1
|
-
tsadmetrics/__init__.py,sha256=KLfasKUf6WmL4KSgMpHi3fEk8tUZk1iNBw6XKIi18W0,1575
|
2
|
-
tsadmetrics/binary_metrics.py,sha256=nwfPdfHAc_4tJMNlyIwMwFQRLvCU-ik9lQLqlaWLqTs,37741
|
3
|
-
tsadmetrics/metric_utils.py,sha256=Y_lOE01_uyC22wnw3_G-kKUEJdqevDIWMWvSDE8Cjms,10477
|
4
|
-
tsadmetrics/non_binary_metrics.py,sha256=JIOvkigSjHBZLKbGJj7ESe0lPM7P1JPoIUnbiMZuuLg,2896
|
5
|
-
tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
|
-
tsadmetrics/utils.py,sha256=G0yWxgTZ9MBzyB0XDLrO2TMwmtm4hssDp5Sr0CG9FqY,1834
|
7
|
-
tsadmetrics-0.1.2.dist-info/METADATA,sha256=awmwvfq5pcaF9ikzThF8Uq5IKsj0U8WZVKCbXIsncJg,756
|
8
|
-
tsadmetrics-0.1.2.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
9
|
-
tsadmetrics-0.1.2.dist-info/top_level.txt,sha256=rRMFvkwJRUuenl0__YY_3BNr-rkdhAdj28iICkpC5a4,12
|
10
|
-
tsadmetrics-0.1.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|