tsadmetrics 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tsadmetrics/__init__.py +2 -4
- tsadmetrics/_tsadeval/__init__.py +0 -0
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +295 -0
- tsadmetrics/_tsadeval/discontinuity_graph.py +109 -0
- tsadmetrics/_tsadeval/latency_sparsity_aware.py +294 -0
- tsadmetrics/_tsadeval/metrics.py +698 -0
- tsadmetrics/_tsadeval/nabscore.py +311 -0
- tsadmetrics/_tsadeval/tests.py +376 -0
- tsadmetrics/_tsadeval/threshold_plt.py +30 -0
- tsadmetrics/_tsadeval/time_tolerant.py +33 -0
- tsadmetrics/_tsadeval/vus_utils.py +263 -0
- tsadmetrics/binary_metrics.py +2 -2
- tsadmetrics/metric_utils.py +1 -1
- tsadmetrics/non_binary_metrics.py +1 -1
- tsadmetrics-0.1.3.dist-info/METADATA +23 -0
- tsadmetrics-0.1.3.dist-info/RECORD +20 -0
- tsadmetrics/ts_aware_utils.py +0 -2
- tsadmetrics-0.1.1.dist-info/METADATA +0 -10
- tsadmetrics-0.1.1.dist-info/RECORD +0 -11
- {tsadmetrics-0.1.1.dist-info → tsadmetrics-0.1.3.dist-info}/WHEEL +0 -0
- {tsadmetrics-0.1.1.dist-info → tsadmetrics-0.1.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,294 @@
|
|
1
|
+
# BSD License
|
2
|
+
#
|
3
|
+
# Copyright (c) 2021, eBay Inc
|
4
|
+
# All rights reserved.
|
5
|
+
#
|
6
|
+
# Redistribution and use in source and binary forms, with or without modification,
|
7
|
+
# are permitted provided that the following conditions are met:
|
8
|
+
#
|
9
|
+
# * Redistributions of source code must retain the above copyright notice, this
|
10
|
+
# list of conditions and the following disclaimer.
|
11
|
+
#
|
12
|
+
# * Redistributions in binary form must reproduce the above copyright notice, this
|
13
|
+
# list of conditions and the following disclaimer in the documentation and/or
|
14
|
+
# other materials provided with the distribution.
|
15
|
+
#
|
16
|
+
# * Neither the name of the copyright holder nor the names of its
|
17
|
+
# contributors may be used to endorse or promote products derived from this
|
18
|
+
# software without specific prior written permission.
|
19
|
+
#
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
21
|
+
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
22
|
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
23
|
+
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
24
|
+
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
25
|
+
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
26
|
+
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
27
|
+
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
28
|
+
# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
29
|
+
# OF THE POSSIBILITY OF SUCH DAMAGE.
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
# -*- coding: utf-8 -*-
|
34
|
+
import numpy as np
|
35
|
+
|
36
|
+
|
37
|
+
def calc_point2point(predict, actual):
|
38
|
+
"""
|
39
|
+
calculate f1 score by predict and actual.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
predict (np.ndarray): the predict label
|
43
|
+
actual (np.ndarray): np.ndarray
|
44
|
+
"""
|
45
|
+
TP = np.sum(predict * actual)
|
46
|
+
TN = np.sum((1 - predict) * (1 - actual))
|
47
|
+
FP = np.sum(predict * (1 - actual))
|
48
|
+
FN = np.sum((1 - predict) * actual)
|
49
|
+
precision = TP / (TP + FP + 0.00001)
|
50
|
+
recall = TP / (TP + FN + 0.00001)
|
51
|
+
f1 = 2 * precision * recall / (precision + recall + 0.00001)
|
52
|
+
FPR = FP / (FP + TN + 0.00001)
|
53
|
+
return f1, precision, recall, FPR, TP, TN, FP, FN
|
54
|
+
|
55
|
+
|
56
|
+
def adjust_predicts(score, label,
|
57
|
+
threshold=None,
|
58
|
+
pred=None,
|
59
|
+
calc_latency=False):
|
60
|
+
"""
|
61
|
+
Calculate adjusted predict labels using given `score`, `threshold` (or given `pred`) and `label`.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
score (np.ndarray): The anomaly score
|
65
|
+
label (np.ndarray): The ground-truth label
|
66
|
+
threshold (float): The threshold of anomaly score.
|
67
|
+
A point is labeled as "anomaly" if its score is lower than the threshold.
|
68
|
+
pred (np.ndarray or None): if not None, adjust `pred` and ignore `score` and `threshold`,
|
69
|
+
calc_latency (bool):
|
70
|
+
|
71
|
+
Returns:
|
72
|
+
np.ndarray: predict labels
|
73
|
+
"""
|
74
|
+
if len(score) != len(label):
|
75
|
+
raise ValueError("score and label must have the same length")
|
76
|
+
score = np.asarray(score)
|
77
|
+
label = np.asarray(label)
|
78
|
+
latency = 0
|
79
|
+
if pred is None:
|
80
|
+
predict = score < threshold
|
81
|
+
else:
|
82
|
+
predict = pred
|
83
|
+
actual = label > 0.1
|
84
|
+
anomaly_state = False
|
85
|
+
anomaly_count = 0
|
86
|
+
for i in range(len(score)):
|
87
|
+
if actual[i] and predict[i] and not anomaly_state:
|
88
|
+
anomaly_state = True
|
89
|
+
anomaly_count += 1
|
90
|
+
for j in range(i, 0, -1):
|
91
|
+
if not actual[j]:
|
92
|
+
break
|
93
|
+
else:
|
94
|
+
if not predict[j]:
|
95
|
+
predict[j] = True
|
96
|
+
latency += 1
|
97
|
+
elif not actual[i]:
|
98
|
+
anomaly_state = False
|
99
|
+
if anomaly_state:
|
100
|
+
predict[i] = True
|
101
|
+
if calc_latency:
|
102
|
+
return predict, latency / (anomaly_count + 1e-4)
|
103
|
+
else:
|
104
|
+
return predict
|
105
|
+
|
106
|
+
|
107
|
+
def calc_seq(score, label, threshold, pred=None, calc_latency=False):
|
108
|
+
"""
|
109
|
+
Calculate f1 score for a score sequence
|
110
|
+
"""
|
111
|
+
if calc_latency:
|
112
|
+
predict, latency = adjust_predicts(score, label, threshold, pred=pred, calc_latency=calc_latency)
|
113
|
+
t = list(calc_point2point(predict, label))
|
114
|
+
t.append(latency)
|
115
|
+
return t
|
116
|
+
else:
|
117
|
+
predict = adjust_predicts(score, label, threshold, pred=pred, calc_latency=calc_latency)
|
118
|
+
return calc_point2point(predict, label)
|
119
|
+
|
120
|
+
|
121
|
+
def bf_search(score, label, start, end=None, step_num=1, display_freq=1, verbose=True, direction='>'):
|
122
|
+
"""
|
123
|
+
Find the best-f1 score by searching best `threshold` in [`start`, `end`).
|
124
|
+
|
125
|
+
|
126
|
+
Returns:
|
127
|
+
list: list for results
|
128
|
+
float: the `threshold` for best-f1
|
129
|
+
"""
|
130
|
+
if step_num is None or end is None:
|
131
|
+
end = start
|
132
|
+
step_num = 1
|
133
|
+
search_step, search_range, search_lower_bound = step_num, end - start, start
|
134
|
+
if verbose:
|
135
|
+
print("search range: ", search_lower_bound, search_lower_bound + search_range)
|
136
|
+
threshold = search_lower_bound
|
137
|
+
m = (-1., -1., -1.)
|
138
|
+
m_t = 0.0
|
139
|
+
m_90 = (-1., -1., -1.)
|
140
|
+
m_t_90 = 0.0
|
141
|
+
for i in range(search_step):
|
142
|
+
threshold += search_range / float(search_step)
|
143
|
+
pred = eval('score{}threshold'.format(direction))
|
144
|
+
target = calc_seq(score, label, threshold, pred=pred, calc_latency=True)
|
145
|
+
if target[0] > m[0]:
|
146
|
+
m_t = threshold
|
147
|
+
m = target
|
148
|
+
if target[3] <= 0.1 and target[0] > m_90[0]:
|
149
|
+
m_t_90 = threshold
|
150
|
+
m_90 = target
|
151
|
+
if verbose and i % display_freq == 0:
|
152
|
+
print("cur thr: ", threshold, target, m, m_t, m_90, m_t_90)
|
153
|
+
print(m, m_t, m_90, m_t_90)
|
154
|
+
return m, m_t
|
155
|
+
|
156
|
+
#...............................................................................................................................
|
157
|
+
def blind_bf_search(
|
158
|
+
score, label, val, start, end=None, step_num=1, guess=None, display_freq=1, verbose=True, tw=15, normal=0, direction='>'
|
159
|
+
):
|
160
|
+
"""
|
161
|
+
Find the best-f1 score by searching best `threshold` in [`start`, `end`] for an potion of the test set, then evaluate on a
|
162
|
+
hold-out (i.e. blind) set.
|
163
|
+
|
164
|
+
Params:
|
165
|
+
score: The anomaly detection results
|
166
|
+
label: The target labels (ground truth)
|
167
|
+
val: tuple or list of the results and labels to be used for threshold tuning
|
168
|
+
start: the minimum threshold
|
169
|
+
end: the maximum threshold
|
170
|
+
step_num: the number of steps to search between start and end
|
171
|
+
guess: The default threshold to use if no labels were present and no false positives obtained
|
172
|
+
display_freq: frequency of printing out current iteration summary
|
173
|
+
verbose: whether to print out summary
|
174
|
+
tw: The resampling frequency for avoiding overcounting TP & FP or undercounting FN & TN (i.e. batch_size)
|
175
|
+
normal: the value of normal behavior
|
176
|
+
direction: directuib of the anomaly from the threshold (< for OMNI)
|
177
|
+
|
178
|
+
Returns:
|
179
|
+
list: list for results
|
180
|
+
float: the `threshold` for best-f1
|
181
|
+
"""
|
182
|
+
score_val, label_val = val
|
183
|
+
if step_num is None or end is None:
|
184
|
+
end = start
|
185
|
+
step_num = 1
|
186
|
+
search_step, search_range, search_lower_bound = step_num, end - start, start
|
187
|
+
if verbose:
|
188
|
+
print("search range: ", search_lower_bound, search_lower_bound + search_range)
|
189
|
+
if guess is None:
|
190
|
+
guess = (start + end) / 2 # automatically select guess as the midpoint if not provided
|
191
|
+
threshold = search_lower_bound
|
192
|
+
m = (-1., -1., -1.)
|
193
|
+
m_t = 0.0
|
194
|
+
for i in range(search_step):
|
195
|
+
threshold += search_range / float(search_step)
|
196
|
+
pred = eval('score_val{}threshold'.format(direction))
|
197
|
+
if np.abs(label_val - normal).max() or pred.max():
|
198
|
+
target = calc_twseq(score_val, label_val, normal, threshold, tw, pred=pred)
|
199
|
+
if target[0] > m[0]:
|
200
|
+
m_t = threshold
|
201
|
+
m = target
|
202
|
+
if verbose and i % display_freq == 0:
|
203
|
+
print("cur in-sample thr: ", threshold, target, m, m_t)
|
204
|
+
else:
|
205
|
+
continue
|
206
|
+
threshold = m_t # this is the best threhsold found
|
207
|
+
if threshold == 0.0:
|
208
|
+
threshold = guess
|
209
|
+
if verbose:
|
210
|
+
print("No true labels or false detections to tune threshold, using a guessed threshold instead...")
|
211
|
+
blind_target = calc_twseq(score, label, normal, threshold, tw, pred=eval('score{}threshold'.format(direction)))
|
212
|
+
m, m_t = blind_target, threshold
|
213
|
+
print('\nOut-of-sample score:')
|
214
|
+
print(m, m_t)
|
215
|
+
return m, m_t
|
216
|
+
|
217
|
+
def calc_twseq(score, label, normal, threshold, tw, pred=None):
|
218
|
+
"""
|
219
|
+
Calculate f1 score for a score sequence, resampled at non-rolling time-window
|
220
|
+
"""
|
221
|
+
predict, pred_batch, label_batch = adjust_predicts_tw(score, label, normal, threshold, tw, pred=pred)
|
222
|
+
return calc_point2point(pred_batch, label_batch)
|
223
|
+
|
224
|
+
def adjust_predicts_tw(score, label, normal, threshold, tw, pred=None):
|
225
|
+
"""
|
226
|
+
Calculate adjusted predict labels using given `score`, `threshold` (or given `pred`) and `label`, where a non-rolling time
|
227
|
+
window (i.e. batch)is used as the basis for adjusting the score. As for adjusting score, only intervals after the first
|
228
|
+
true positive detection are adjusted, wheras late detections are not rewarded.
|
229
|
+
|
230
|
+
Args:
|
231
|
+
score (np.ndarray): The anomaly score
|
232
|
+
label (np.ndarray): The ground-truth label
|
233
|
+
normal (float): The value of a normal label (not anomaly)
|
234
|
+
threshold (float): The threshold of anomaly score.
|
235
|
+
A point is labeled as "anomaly" if its score is higher than the threshold.
|
236
|
+
tw (int): the nonrolling interval for adjusting the score
|
237
|
+
pred (np.ndarray or None): if not None, adjust `pred` and ignore `score` and `threshold`,
|
238
|
+
|
239
|
+
Returns:
|
240
|
+
predict (np.ndarray): adjusted predict labels
|
241
|
+
pred_batch (np.ndarray): downsampled (in batches) adjusted predict labels
|
242
|
+
score_batch (np.ndarray): downsampled true labels
|
243
|
+
"""
|
244
|
+
if len(score) != len(label):
|
245
|
+
raise ValueError("score and label must have the same length")
|
246
|
+
score = np.asarray(score)
|
247
|
+
label = np.asarray(label)
|
248
|
+
batched_shape = (int(np.ceil(score.shape[0]/tw)), 1)
|
249
|
+
label_batch, pred_batch = np.zeros(batched_shape), np.zeros(batched_shape)
|
250
|
+
if pred is None:
|
251
|
+
predict = score > threshold
|
252
|
+
else:
|
253
|
+
predict = pred
|
254
|
+
actual = label != normal
|
255
|
+
detect_state = False # triggered when a True anomaly is detected by model
|
256
|
+
anomaly_batch_count = 0
|
257
|
+
i, i_tw = 0, 0
|
258
|
+
step = tw
|
259
|
+
while i < len(score):
|
260
|
+
j = min(i+step, len(score)) # end of tw (batch) starting at i
|
261
|
+
|
262
|
+
# Adjust step size if needed
|
263
|
+
if step > 2 and actual[i:j].sum() > 1:
|
264
|
+
if np.diff(np.where(actual[i:j])).max() > 1: # if it finds an interruption in the true label continuity
|
265
|
+
step = min(int((j-i)/2), 2) # reduce step size
|
266
|
+
label_batch, pred_batch = np.append(label_batch, 0), np.append(pred_batch, 0) # increase size
|
267
|
+
j = i + step
|
268
|
+
else:
|
269
|
+
step = tw
|
270
|
+
else:
|
271
|
+
step = tw
|
272
|
+
|
273
|
+
# start rolling window scoring
|
274
|
+
if actual[i:j].max(): # If label = T
|
275
|
+
if not actual[i]: # if first value is normal
|
276
|
+
detect_state = False
|
277
|
+
s = actual[i:j].argmax() # this is the index of the first occurance
|
278
|
+
if detect_state: # if anomaly was previously detected by model
|
279
|
+
anomaly_batch_count += 1
|
280
|
+
pred_batch[i_tw], label_batch[i_tw], predict[i+s:j] = 1, 1, 1
|
281
|
+
elif predict[i:j].max(): # if alert was detected with T
|
282
|
+
detect_state = True # turn on detection state
|
283
|
+
anomaly_batch_count += 1
|
284
|
+
pred_batch[i_tw], label_batch[i_tw], predict[i+s:j] = 1, 1, 1
|
285
|
+
else:
|
286
|
+
detect_state = False
|
287
|
+
label_batch[i_tw] = 1
|
288
|
+
else:
|
289
|
+
detect_state = False
|
290
|
+
if predict[i:j].max(): # if False positive
|
291
|
+
pred_batch[i_tw] = 1
|
292
|
+
i += step
|
293
|
+
i_tw += 1
|
294
|
+
return predict, pred_batch, label_batch
|