tsadmetrics 0.1.11__py3-none-any.whl → 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -503,13 +503,16 @@ def composite_f_score(y_true: np.array, y_pred: np.array, beta=1):
503
503
  Implementation of https://ieeexplore.ieee.org/document/9525836
504
504
 
505
505
  Parameters:
506
- y_true (np.array): The ground truth binary labels for the time series data.
507
- y_pred (np.array): The predicted binary labels for the time series data.
508
- beta (float): The beta value, which determines the weight of precision in the combined score.
509
- Default is 1, which gives equal weight to precision and recall.
506
+ y_true (np.array):
507
+ The ground truth binary labels for the time series data.
508
+ y_pred (np.array):
509
+ The predicted binary labels for the time series data.
510
+ beta (float):
511
+ The beta value, which determines the weight of precision in the combined score.
512
+ Default is 1, which gives equal weight to precision and recall.
510
513
 
511
514
  Returns:
512
- float: The composite F-score, which is the harmonic mean of precision and recall, adjusted by the beta value.
515
+ float: The composite F-score, which is the harmonic mean of precision and recall, adjusted by the beta value.
513
516
 
514
517
  """
515
518
  m = Composite_f(len(y_true),y_true,y_pred)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tsadmetrics
3
- Version: 0.1.11
3
+ Version: 0.1.12
4
4
  Summary: =?unknown-8bit?q?Librer=C3=ADa_para_evaluaci=C3=B3n_de_detecci=C3=B3n_de_anomal=C3=ADas?= en series temporales
5
5
  Home-page: https://github.com/pathsko/TSADmetrics
6
6
  Author: Pedro Rafael Velasco Priego
@@ -16,7 +16,7 @@ tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
16
  tests/test_binary.py,sha256=dj9BsKBo5rpWw4JGiKKoVkg4rIW4YylTie2VxH2DAGo,29787
17
17
  tests/test_non_binary.py,sha256=syANlwm0DKsL6geGeq6nQI6ZVe6T_YXWTyk2-Hmck4s,11308
18
18
  tsadmetrics/__init__.py,sha256=MTWOa43fgOdkMNo5NglCReRnB8hoF0ob2PIvDziCNHw,1575
19
- tsadmetrics/binary_metrics.py,sha256=pEIe8s3_obGN1hHhfvQwg0BXKafs4lQ3l1-K03P3Ews,60067
19
+ tsadmetrics/binary_metrics.py,sha256=vpUczjPPv1GhTDnFL2fNsHnCuZSRmmGQVsj5te2c6Ss,60116
20
20
  tsadmetrics/metric_utils.py,sha256=fm8v0X37_AlqWpkcUT9r3680QsjLljrHe2YuXkRLAZ4,10873
21
21
  tsadmetrics/non_binary_metrics.py,sha256=yo620BWZIq-OkBqQV7t7ynjGhcuX6QWQ6iq_7eJq9gI,13074
22
22
  tsadmetrics/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -53,7 +53,7 @@ tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py,sha256=pJz4iuPyVGNvwsaR
53
53
  tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py,sha256=jLkcMg7UNl25SHtZUBGkP-RV8HsvaZCtjakryl7PFWU,3204
54
54
  tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py,sha256=OhUJSm_I7VZ_gX_SSg8AYUq3_NW9rMIy7lAVsnOFw4Q,417
55
55
  tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py,sha256=LL-0pPer3ymovVRlktaHo5XDzpgiDhWOVfdPOzKR6og,3152
56
- tsadmetrics-0.1.11.dist-info/METADATA,sha256=JrsyLRUVbWIhrBkE56hn3ALYUycm3j52kSmmcq8TMhA,831
57
- tsadmetrics-0.1.11.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
58
- tsadmetrics-0.1.11.dist-info/top_level.txt,sha256=s2VIr_ePl-WZbYt9FsYbsDGM7J-Qc5cgpwEOeQ3FVpM,31
59
- tsadmetrics-0.1.11.dist-info/RECORD,,
56
+ tsadmetrics-0.1.12.dist-info/METADATA,sha256=cVz915nkQa7ViK8Va6rQlW5Z5U6ABoP47rWQmpMnqaY,831
57
+ tsadmetrics-0.1.12.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
58
+ tsadmetrics-0.1.12.dist-info/top_level.txt,sha256=s2VIr_ePl-WZbYt9FsYbsDGM7J-Qc5cgpwEOeQ3FVpM,31
59
+ tsadmetrics-0.1.12.dist-info/RECORD,,