truefoundry 0.5.0rc7__py3-none-any.whl → 0.5.1rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of truefoundry might be problematic. Click here for more details.

Files changed (52) hide show
  1. truefoundry/common/utils.py +73 -1
  2. truefoundry/deploy/__init__.py +5 -0
  3. truefoundry/deploy/cli/cli.py +2 -0
  4. truefoundry/deploy/cli/commands/__init__.py +1 -0
  5. truefoundry/deploy/cli/commands/deploy_init_command.py +22 -0
  6. truefoundry/deploy/lib/dao/application.py +2 -1
  7. truefoundry/deploy/v2/lib/patched_models.py +8 -0
  8. truefoundry/ml/__init__.py +14 -12
  9. truefoundry/ml/autogen/client/__init__.py +5 -0
  10. truefoundry/ml/autogen/client/api/mlfoundry_artifacts_api.py +161 -0
  11. truefoundry/ml/autogen/client/models/__init__.py +5 -0
  12. truefoundry/ml/autogen/client/models/artifact_version_manifest.py +2 -2
  13. truefoundry/ml/autogen/client/models/export_deployment_files_request_dto.py +82 -0
  14. truefoundry/ml/autogen/client/models/infer_method_name.py +34 -0
  15. truefoundry/ml/autogen/client/models/model_server.py +34 -0
  16. truefoundry/ml/autogen/client/models/model_version_environment.py +1 -1
  17. truefoundry/ml/autogen/client/models/model_version_manifest.py +3 -3
  18. truefoundry/ml/autogen/client/models/sklearn_framework.py +17 -1
  19. truefoundry/ml/autogen/client/models/transformers_framework.py +2 -2
  20. truefoundry/ml/autogen/client/models/xg_boost_framework.py +6 -1
  21. truefoundry/ml/autogen/client_README.md +4 -0
  22. truefoundry/ml/autogen/entities/artifacts.py +29 -7
  23. truefoundry/ml/cli/commands/model_init.py +97 -0
  24. truefoundry/ml/cli/utils.py +34 -0
  25. truefoundry/ml/log_types/artifacts/model.py +63 -24
  26. truefoundry/ml/log_types/artifacts/utils.py +37 -1
  27. truefoundry/ml/mlfoundry_api.py +74 -78
  28. truefoundry/ml/mlfoundry_run.py +0 -30
  29. truefoundry/ml/model_framework.py +257 -3
  30. truefoundry/ml/validation_utils.py +2 -0
  31. {truefoundry-0.5.0rc7.dist-info → truefoundry-0.5.1rc2.dist-info}/METADATA +1 -5
  32. {truefoundry-0.5.0rc7.dist-info → truefoundry-0.5.1rc2.dist-info}/RECORD +34 -46
  33. truefoundry/deploy/function_service/__init__.py +0 -3
  34. truefoundry/deploy/function_service/__main__.py +0 -27
  35. truefoundry/deploy/function_service/app.py +0 -92
  36. truefoundry/deploy/function_service/build.py +0 -45
  37. truefoundry/deploy/function_service/remote/__init__.py +0 -6
  38. truefoundry/deploy/function_service/remote/context.py +0 -3
  39. truefoundry/deploy/function_service/remote/method.py +0 -67
  40. truefoundry/deploy/function_service/remote/remote.py +0 -144
  41. truefoundry/deploy/function_service/route.py +0 -137
  42. truefoundry/deploy/function_service/service.py +0 -113
  43. truefoundry/deploy/function_service/utils.py +0 -53
  44. truefoundry/langchain/__init__.py +0 -12
  45. truefoundry/langchain/deprecated.py +0 -302
  46. truefoundry/langchain/truefoundry_chat.py +0 -130
  47. truefoundry/langchain/truefoundry_embeddings.py +0 -171
  48. truefoundry/langchain/truefoundry_llm.py +0 -106
  49. truefoundry/langchain/utils.py +0 -44
  50. truefoundry/ml/log_types/artifacts/model_extras.py +0 -48
  51. {truefoundry-0.5.0rc7.dist-info → truefoundry-0.5.1rc2.dist-info}/WHEEL +0 -0
  52. {truefoundry-0.5.0rc7.dist-info → truefoundry-0.5.1rc2.dist-info}/entry_points.txt +0 -0
@@ -1,137 +0,0 @@
1
- import inspect
2
- import json
3
- from typing import Any, Callable, Dict, List
4
-
5
- from truefoundry.deploy.function_service.remote import RemoteClass
6
- from truefoundry.deploy.function_service.utils import (
7
- create_pydantic_model_from_function_signature,
8
- get_qual_name,
9
- )
10
- from truefoundry.logger import logger
11
- from truefoundry.pydantic_v1 import BaseModel, Field, constr, validator
12
-
13
-
14
- def validate_we_can_create_pydantic_model_of_func_args(func: Callable):
15
- qual_name = get_qual_name(func)
16
- try:
17
- create_pydantic_model_from_function_signature(func, get_qual_name(func))
18
- except Exception as ex:
19
- raise Exception(
20
- f"Unable to create a route for {qual_name!r}.\n"
21
- "Please ensure that in the function type signature, you have only used in-built\n"
22
- "types like `int`, `float`, `str`, `bool`, `typing.Dict`, `typing.List`, typing.Optional`.\n"
23
- "To temporarily resolve this error, you can remove the unsupported type signatures.\n"
24
- ) from ex
25
-
26
-
27
- def path_pre_processor(path: str, prefix: str = "") -> str:
28
- path = path.strip("/")
29
-
30
- if not path:
31
- raise ValueError("path cannot be empty")
32
-
33
- prefix = prefix.strip("/")
34
- if not prefix:
35
- return f"/{path}"
36
-
37
- return f"/{prefix}/{path}"
38
-
39
-
40
- class Route(BaseModel):
41
- function_name: str
42
- http_method: str
43
- path: constr(regex=r"^[A-Za-z0-9\-_/]+$")
44
-
45
- qual_name: str
46
-
47
-
48
- class FunctionRoute(Route):
49
- module: str
50
-
51
- @classmethod
52
- def from_func(cls, func: Callable, path: str):
53
- validate_we_can_create_pydantic_model_of_func_args(func)
54
- return cls(
55
- function_name=func.__name__,
56
- http_method="POST",
57
- path=path_pre_processor(path or func.__name__),
58
- qual_name=get_qual_name(func),
59
- module=func.__module__,
60
- )
61
-
62
-
63
- class ClassRoute(BaseModel):
64
- class_name: str
65
- init_kwargs: Dict[str, Any] = Field(default_factory=dict)
66
- module: str
67
-
68
- routes: List[Route] = Field(default_factory=list)
69
-
70
- @validator("init_kwargs")
71
- def init_kwargs_is_json_serializable(cls, v, values):
72
- try:
73
- json.dumps(v)
74
- except Exception as ex:
75
- class_name = values.get("class_name")
76
- raise ValueError(
77
- f"init_kwargs {v!r} of class {class_name!r} is not JSON serializable"
78
- ) from ex
79
-
80
- return v
81
-
82
- @classmethod
83
- def from_class(cls, remote_class: RemoteClass):
84
- routes = []
85
- methods = inspect.getmembers(remote_class.class_, predicate=inspect.isfunction)
86
-
87
- for method_name, method in methods:
88
- if method_name.startswith("_"):
89
- continue
90
- validate_we_can_create_pydantic_model_of_func_args(method)
91
- route = Route(
92
- function_name=method_name,
93
- http_method="POST",
94
- path=path_pre_processor(prefix=remote_class.name, path=method_name),
95
- qual_name=remote_class.get_qual_name(method),
96
- )
97
- routes.append(route)
98
-
99
- return cls(
100
- class_name=remote_class.class_.__name__,
101
- init_kwargs=remote_class.init_kwargs,
102
- routes=routes,
103
- module=remote_class.class_.__module__,
104
- )
105
-
106
-
107
- class RouteGroups(BaseModel):
108
- functions: List[FunctionRoute] = Field(default_factory=list)
109
- classes: Dict[str, ClassRoute] = Field(default_factory=dict)
110
-
111
- def register_function(self, func, path):
112
- function_route = FunctionRoute.from_func(func=func, path=path)
113
- logger.info(
114
- "Function %r from module %r will be deployed on path '%s %s'.",
115
- function_route.function_name,
116
- function_route.module,
117
- function_route.http_method,
118
- function_route.path,
119
- )
120
- self.functions.append(function_route)
121
-
122
- def register_class(self, remote_class: RemoteClass):
123
- if remote_class.name in self.classes:
124
- raise ValueError(
125
- f"name {remote_class.name!r} is already used to register a class"
126
- )
127
- class_route = ClassRoute.from_class(remote_class)
128
- for route in class_route.routes:
129
- logger.info(
130
- "Method %r from `%s:%s` will be deployed on path '%s %s'.",
131
- route.function_name,
132
- class_route.class_name,
133
- remote_class.name,
134
- route.http_method,
135
- route.path,
136
- )
137
- self.classes[remote_class.name] = class_route
@@ -1,113 +0,0 @@
1
- from threading import Thread
2
- from typing import Any, Callable, Dict, Optional, Union
3
-
4
- import yaml
5
-
6
- from truefoundry.deploy.auto_gen.models import Port, Resources
7
- from truefoundry.deploy.function_service.app import (
8
- build_and_run_app_in_background_thread,
9
- )
10
- from truefoundry.deploy.function_service.build import BuildConfig
11
- from truefoundry.deploy.function_service.remote import RemoteClass
12
- from truefoundry.deploy.function_service.route import RouteGroups
13
- from truefoundry.deploy.v2.lib.deployable_patched_models import Service
14
- from truefoundry.deploy.v2.lib.patched_models import Build, LocalSource
15
- from truefoundry.logger import logger
16
-
17
-
18
- class FunctionService:
19
- def __init__(
20
- self,
21
- name: str,
22
- build_config: Optional[BuildConfig] = None,
23
- resources: Optional[Resources] = None,
24
- replicas: int = 1,
25
- port: Union[int, Port] = 8000,
26
- env: Optional[Dict[str, str]] = None,
27
- ):
28
- self._name = name
29
- self._build_config = build_config or BuildConfig()
30
- self._resources = resources or Resources()
31
- self._replicas = replicas
32
- if isinstance(port, int):
33
- port = Port(port=port, expose=False)
34
- if not port.host:
35
- logger.warning(
36
- "No host is set for the port. This is not an issue if you don't "
37
- "want an exposed endpoint or are just testing locally.\n"
38
- "However, for actual deployment it is required to pass an "
39
- "instance of `truefoundry.deploy.Port` with "
40
- "`host` argument defined.\n"
41
- "E.g. `FunctionService(name='...', port=Port(port=8000, host='...', path='...'), ...)`"
42
- )
43
- self._port = port
44
- self._env = env or {}
45
-
46
- self._route_groups: RouteGroups = RouteGroups()
47
-
48
- @property
49
- def route_groups(self) -> RouteGroups:
50
- return self._route_groups
51
-
52
- def __repr__(self):
53
- return yaml.dump(
54
- {
55
- "name": self._name,
56
- "build_config": self._build_config.dict(),
57
- "resources": self._resources.dict(),
58
- "routes": self._route_groups.dict(),
59
- "replicas": self._replicas,
60
- "port": self._port.dict(),
61
- "env": self._env,
62
- },
63
- indent=2,
64
- )
65
-
66
- def register_function(
67
- self,
68
- func: Callable,
69
- *,
70
- path: Optional[str] = None,
71
- ):
72
- self._route_groups.register_function(func=func, path=path)
73
-
74
- def register_class(
75
- self,
76
- class_,
77
- *,
78
- init_kwargs: Optional[Dict[str, Any]] = None,
79
- name: Optional[str] = None,
80
- ):
81
- # TODO: I need to rethink this `RemoteClass`.
82
- # I am mixing up multiple responsibilities here.
83
- # For now, I am removing the burden of using `remote` from the user when deploying
84
- # an instance of a class.
85
- remote_class = RemoteClass(class_, init_kwargs=init_kwargs, name=name)
86
- self._route_groups.register_class(remote_class=remote_class)
87
-
88
- def run(self) -> Thread:
89
- return build_and_run_app_in_background_thread(
90
- route_groups=self._route_groups, port=self._port.port
91
- )
92
-
93
- def get_deployment_definition(self) -> Service:
94
- # Keeping this function right now so that later,
95
- # the constructor of the application call this function
96
- # to get the component spec, if an object of this class
97
- # is directly passed as a component
98
- tfy_python_build_config = self._build_config.to_tfy_python_build_config(
99
- port=self._port.port, route_groups=self._route_groups
100
- )
101
- service = Service(
102
- name=self._name,
103
- image=Build(build_source=LocalSource(), build_spec=tfy_python_build_config),
104
- resources=self._resources,
105
- replicas=self._replicas,
106
- ports=[self._port],
107
- env=self._env,
108
- )
109
- return service
110
-
111
- def deploy(self, workspace_fqn: str, wait: bool = True):
112
- service = self.get_deployment_definition()
113
- service.deploy(workspace_fqn=workspace_fqn, wait=wait)
@@ -1,53 +0,0 @@
1
- import inspect
2
- from typing import Any
3
-
4
- from truefoundry.pydantic_v1 import BaseModel
5
- from truefoundry.pydantic_v1 import create_model as pydantic_create_model
6
-
7
-
8
- def get_qual_name(obj):
9
- return f"{obj.__module__}.{obj.__qualname__}"
10
-
11
-
12
- def create_pydantic_model_from_function_signature(func, model_name: str):
13
- # https://github.com/pydantic/pydantic/issues/1391
14
- (
15
- args,
16
- _,
17
- varkw,
18
- defaults,
19
- kwonlyargs,
20
- kwonlydefaults,
21
- annotations,
22
- ) = inspect.getfullargspec(func)
23
- defaults = defaults or []
24
- args = args or []
25
- if len(args) > 0 and args[0] == "self":
26
- del args[0]
27
-
28
- non_default_args = len(args) - len(defaults)
29
- defaults = [
30
- ...,
31
- ] * non_default_args + list(defaults)
32
-
33
- keyword_only_params = {
34
- param: kwonlydefaults.get(param, Any) for param in kwonlyargs
35
- }
36
- params = {
37
- param: (annotations.get(param, Any), default)
38
- for param, default in zip(args, defaults)
39
- }
40
-
41
- class Config:
42
- extra = "allow"
43
-
44
- # Allow extra params if there is a **kwargs parameter in the function signature
45
- config = Config if varkw else None
46
-
47
- return pydantic_create_model(
48
- model_name,
49
- **params,
50
- **keyword_only_params,
51
- __base__=BaseModel,
52
- __config__=config,
53
- )
@@ -1,12 +0,0 @@
1
- try:
2
- import langchain as _
3
- except Exception as ex:
4
- raise Exception(
5
- "Failed to import langchain. "
6
- "Please install langchain by using `pip install langchain` command"
7
- ) from ex
8
- from truefoundry.langchain.deprecated import TruefoundryLLM, TruefoundryPlaygroundLLM
9
- from truefoundry.langchain.truefoundry_chat import TrueFoundryChat
10
- from truefoundry.langchain.truefoundry_embeddings import TrueFoundryEmbeddings
11
- from truefoundry.langchain.truefoundry_llm import TrueFoundryLLM
12
- from truefoundry.langchain.utils import ModelParameters
@@ -1,302 +0,0 @@
1
- import enum
2
- import warnings
3
- from typing import Any, Dict, List, Mapping, Optional
4
- from urllib.parse import urljoin
5
-
6
- import requests
7
- from requests.auth import HTTPBasicAuth
8
-
9
- from truefoundry.deploy.lib.auth.servicefoundry_session import ServiceFoundrySession
10
- from truefoundry.pydantic_v1 import root_validator
11
-
12
- try:
13
- from langchain.callbacks.manager import CallbackManagerForLLMRun
14
- from langchain.llms.base import LLM
15
- from langchain.llms.utils import enforce_stop_tokens
16
- except Exception as ex:
17
- raise Exception(
18
- "Failed to import langchain."
19
- " Please install langchain by using `pip install langchain` command"
20
- ) from ex
21
-
22
-
23
- class _ModelServerImpl(str, enum.Enum):
24
- MLSERVER = "MLSERVER"
25
- TGI = "TGI"
26
- VLLM = "VLLM"
27
-
28
-
29
- def _get_model_server_and_validate_if_mlserver(endpoint_url, auth, model_name=None):
30
- try:
31
- response = requests.get(urljoin(endpoint_url, "info"), json={}, auth=auth)
32
- if response.status_code == 200:
33
- return _ModelServerImpl.TGI, None
34
- elif response.status_code == 404:
35
- # We are not using TGI, try for mlserver
36
- response = requests.post(
37
- urljoin(endpoint_url, "v2/repository/index"), json={}, auth=auth
38
- )
39
- if response.status_code == 200:
40
- models = response.json()
41
- if len(models) == 0:
42
- raise ValueError("No model is deployed in the model server")
43
- model_names = [m.get("name") for m in models]
44
- if model_name and model_name not in model_names:
45
- raise ValueError(
46
- f"Model {model_name!r} is not available in the model server. "
47
- f"Available models {model_names!r}"
48
- )
49
- if not model_name and len(model_names) > 1:
50
- raise ValueError(
51
- f"Please pass `model_name` while instantiating `TruefoundryLLM`. "
52
- f"Available models are {model_names!r} "
53
- )
54
- if model_name:
55
- return _ModelServerImpl.MLSERVER, model_name
56
- return _ModelServerImpl.MLSERVER, model_names[0]
57
- if response.status_code == 404:
58
- return _ModelServerImpl.VLLM, None
59
- response.raise_for_status()
60
- except Exception as e:
61
- raise Exception(f"Error raised by inference API: {e}") from e
62
-
63
-
64
- # TODO (chiragjn): Refactor this into separate implementations for each model server
65
-
66
-
67
- class TruefoundryLLM(LLM):
68
- """Wrapper around TFY model deployment.
69
- To use this class, you need to have the langchain library installed.
70
- Example:
71
- .. code-block:: python
72
- from truefoundry.langchain import TruefoundryLLM
73
- endpoint_url = (
74
- "https://pythia-70m-model-model-catalogue.demo2.truefoundry.tech"
75
- )
76
- model = TruefoundryLLM(
77
- endpoint_url=endpoint_url,
78
- parameters={
79
- "max_new_tokens": 100,
80
- "temperature": 0.7,
81
- "top_k": 5,
82
- "top_p": 0.9
83
- }
84
- )
85
- """
86
-
87
- endpoint_url: str
88
- model_name: Optional[str] = None
89
- auth: Optional[HTTPBasicAuth] = None
90
- parameters: Optional[Dict[str, Any]] = None
91
- model_server_impl: Optional[_ModelServerImpl] = None
92
-
93
- @root_validator(pre=False)
94
- def validate_model_server_and_name(cls, values: Dict):
95
- warnings.warn(
96
- message=f"{cls.__name__} is deprecated and will be removed soon. Please use `TrueFoundryLLM` or `TrueFoundryChat` to invoke models using the new TrueFoundry LLM Gateway",
97
- category=DeprecationWarning,
98
- stacklevel=2,
99
- )
100
- endpoint_url = values["endpoint_url"]
101
- model_name = values.get("model_name")
102
- auth = values.get("auth")
103
- model_server_impl, model_name = _get_model_server_and_validate_if_mlserver(
104
- endpoint_url=endpoint_url, model_name=model_name, auth=auth
105
- )
106
- values["model_server_impl"] = model_server_impl
107
- if model_server_impl == _ModelServerImpl.MLSERVER:
108
- values["model_name"] = model_name
109
- return values
110
-
111
- @property
112
- def _identifying_params(self) -> Mapping[str, Any]:
113
- """Get the identifying parameters."""
114
- return {
115
- "endpoint_url": self.endpoint_url,
116
- "model_name": self.model_name,
117
- }
118
-
119
- @property
120
- def _llm_type(self) -> str:
121
- """Return type of llm."""
122
- return "tfy_model_deployment"
123
-
124
- def _call( # noqa: C901
125
- self,
126
- prompt: str,
127
- stop: Optional[List[str]] = None,
128
- run_manager: Optional[CallbackManagerForLLMRun] = None,
129
- **params: Any,
130
- ) -> str:
131
- """Call out to the deployed model
132
- Args:
133
- prompt: The prompt to pass into the model.
134
- stop: Optional list of stop words to use when generating.
135
- Returns:
136
- The string generated by the model.
137
- Example:
138
- .. code-block:: python
139
- response = model("Tell me a joke.")
140
- """
141
- _params_already_set = self.parameters or {}
142
- params = {**_params_already_set, **params, "return_full_text": False}
143
-
144
- if self.model_server_impl == _ModelServerImpl.MLSERVER:
145
- generate_path = f"v2/models/{self.model_name}/infer/simple"
146
- payload = {"inputs": prompt, "parameters": params}
147
- elif self.model_server_impl == _ModelServerImpl.TGI:
148
- generate_path = "generate"
149
- payload = {"inputs": prompt, "parameters": params}
150
- elif self.model_server_impl == _ModelServerImpl.VLLM:
151
- generate_path = "generate"
152
- payload = {**params, "prompt": prompt}
153
- else:
154
- raise ValueError(f"No known generate path for {self.model_server_impl}")
155
- url = urljoin(self.endpoint_url, generate_path)
156
-
157
- try:
158
- response = requests.post(url, json=payload, auth=self.auth)
159
- response.raise_for_status()
160
- except Exception as e:
161
- raise Exception(f"Error raised by inference API: {e}") from e
162
- response_dict = response.json()
163
- if "error" in response_dict:
164
- raise ValueError(
165
- f"Error raised by inference API: {response_dict['error']!r}"
166
- )
167
-
168
- if self.model_server_impl == _ModelServerImpl.MLSERVER:
169
- inference_result = response_dict[0]
170
- elif self.model_server_impl == _ModelServerImpl.TGI:
171
- inference_result = response_dict
172
- elif self.model_server_impl == _ModelServerImpl.VLLM:
173
- inference_result = response_dict
174
- else:
175
- raise ValueError(
176
- f"Unknown model server {self.model_server_impl}, cannot parse response"
177
- )
178
-
179
- if "generated_text" in inference_result:
180
- text = inference_result["generated_text"]
181
- elif "summarization" in inference_result:
182
- text = inference_result["summary_text"]
183
- elif "text" in inference_result:
184
- text = inference_result["text"]
185
- else:
186
- raise ValueError(f"Could not parse inference response: {response_dict!r}")
187
-
188
- if isinstance(text, list):
189
- text = text[0]
190
-
191
- if stop:
192
- text = enforce_stop_tokens(text, stop)
193
-
194
- return text
195
-
196
-
197
- class TruefoundryPlaygroundLLM(LLM):
198
- """Wrapper around TFY Playground.
199
- To use this class, you need to have the langchain library installed.
200
- Example:
201
- .. code-block:: python
202
- from truefoundry.langchain import TruefoundryPlaygroundLLM
203
- import os
204
- # Note: Login using tfy login --host <https://example-domain.com>
205
- model = TruefoundryPlaygroundLLM(
206
- model_name="vicuna-13b",
207
- parameters={
208
- "maximumLength": 100,
209
- "temperature": 0.7,
210
- "topP": 0.9,
211
- "repetitionPenalty": 1
212
- }
213
- )
214
- response = model.predict("Enter the prompt here")
215
- """
216
-
217
- model_name: str
218
- parameters: Optional[Dict[str, Any]] = None
219
- provider: str = "truefoundry-public"
220
-
221
- @root_validator(pre=False)
222
- def validate_model_server_and_name(cls, values: Dict):
223
- warnings.warn(
224
- message=f"{cls.__name__} is deprecated and will be removed soon. Please use `TrueFoundryLLM` or `TrueFoundryChat` to invoke models using the new TrueFoundry LLM Gateway",
225
- category=DeprecationWarning,
226
- stacklevel=2,
227
- )
228
- return values
229
-
230
- @property
231
- def _get_model(self) -> str:
232
- """returns the model name"""
233
- return self.model_name
234
-
235
- @property
236
- def _get_provider(self) -> str:
237
- """Returns the provider name"""
238
- return self.provider
239
-
240
- @property
241
- def _llm_type(self) -> str:
242
- """Return type of llm."""
243
- return "tfy_playground"
244
-
245
- def _call(
246
- self,
247
- prompt: str,
248
- stop: Optional[List[str]] = None,
249
- **params: Any,
250
- ) -> str:
251
- """Call out to the deployed model
252
- Args:
253
- prompt: The prompt to pass into the model.
254
- stop: Optional list of stop words to use when generating.
255
- Returns:
256
- The string generated by the model.
257
- Example:
258
- .. code-block:: python
259
- response = model("I have a joke for you...")
260
- """
261
- _params_already_set = self.parameters or {}
262
- params = {**_params_already_set, **params}
263
- if stop:
264
- params["stopSequences"] = stop
265
- session = ServiceFoundrySession()
266
-
267
- if not session:
268
- raise Exception(
269
- "Unauthenticated: Please login using tfy login --host <https://example-domain.com>"
270
- )
271
-
272
- host = session.base_url
273
-
274
- if host[-1] == "/":
275
- host = host[: len(host) - 1]
276
-
277
- url = f"{host}/llm-playground/api/inference/text"
278
- headers = {"Authorization": f"Bearer {session.access_token}"}
279
-
280
- json = {
281
- "prompt": prompt,
282
- "models": [
283
- {
284
- "name": self.model_name,
285
- "provider": self.provider,
286
- "tag": self.model_name,
287
- "parameters": params,
288
- }
289
- ],
290
- }
291
-
292
- try:
293
- response = requests.post(url=url, headers=headers, json=json)
294
- response.raise_for_status()
295
- except Exception as ex:
296
- raise Exception(f"Error inferencing the model: {ex}") from ex
297
-
298
- data = response.json()
299
- text = data[0].get("text")
300
- if stop:
301
- text = enforce_stop_tokens(text, stop)
302
- return text