truefoundry 0.5.0rc6__py3-none-any.whl → 0.5.1rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of truefoundry might be problematic. Click here for more details.
- truefoundry/common/utils.py +73 -1
- truefoundry/deploy/__init__.py +5 -0
- truefoundry/deploy/cli/cli.py +2 -0
- truefoundry/deploy/cli/commands/__init__.py +1 -0
- truefoundry/deploy/cli/commands/deploy_init_command.py +22 -0
- truefoundry/deploy/lib/dao/application.py +2 -1
- truefoundry/deploy/v2/lib/patched_models.py +8 -0
- truefoundry/ml/__init__.py +15 -12
- truefoundry/ml/artifact/truefoundry_artifact_repo.py +8 -3
- truefoundry/ml/autogen/client/__init__.py +11 -0
- truefoundry/ml/autogen/client/api/mlfoundry_artifacts_api.py +161 -0
- truefoundry/ml/autogen/client/models/__init__.py +11 -0
- truefoundry/ml/autogen/client/models/artifact_version_manifest.py +2 -2
- truefoundry/ml/autogen/client/models/export_deployment_files_request_dto.py +82 -0
- truefoundry/ml/autogen/client/models/infer_method_name.py +34 -0
- truefoundry/ml/autogen/client/models/model_server.py +34 -0
- truefoundry/ml/autogen/client/models/model_version_environment.py +97 -0
- truefoundry/ml/autogen/client/models/model_version_manifest.py +14 -3
- truefoundry/ml/autogen/client/models/serialization_format.py +35 -0
- truefoundry/ml/autogen/client/models/sklearn_framework.py +31 -2
- truefoundry/ml/autogen/client/models/transformers_framework.py +2 -2
- truefoundry/ml/autogen/client/models/xg_boost_framework.py +20 -2
- truefoundry/ml/autogen/client_README.md +6 -0
- truefoundry/ml/autogen/entities/artifacts.py +65 -6
- truefoundry/ml/cli/commands/model_init.py +97 -0
- truefoundry/ml/cli/utils.py +34 -0
- truefoundry/ml/log_types/artifacts/model.py +48 -24
- truefoundry/ml/log_types/artifacts/utils.py +37 -1
- truefoundry/ml/mlfoundry_api.py +77 -79
- truefoundry/ml/mlfoundry_run.py +3 -31
- truefoundry/ml/model_framework.py +257 -3
- truefoundry/ml/validation_utils.py +2 -0
- {truefoundry-0.5.0rc6.dist-info → truefoundry-0.5.1rc1.dist-info}/METADATA +2 -6
- {truefoundry-0.5.0rc6.dist-info → truefoundry-0.5.1rc1.dist-info}/RECORD +36 -45
- truefoundry/deploy/function_service/__init__.py +0 -3
- truefoundry/deploy/function_service/__main__.py +0 -27
- truefoundry/deploy/function_service/app.py +0 -92
- truefoundry/deploy/function_service/build.py +0 -45
- truefoundry/deploy/function_service/remote/__init__.py +0 -6
- truefoundry/deploy/function_service/remote/context.py +0 -3
- truefoundry/deploy/function_service/remote/method.py +0 -67
- truefoundry/deploy/function_service/remote/remote.py +0 -144
- truefoundry/deploy/function_service/route.py +0 -137
- truefoundry/deploy/function_service/service.py +0 -113
- truefoundry/deploy/function_service/utils.py +0 -53
- truefoundry/langchain/__init__.py +0 -12
- truefoundry/langchain/deprecated.py +0 -302
- truefoundry/langchain/truefoundry_chat.py +0 -130
- truefoundry/langchain/truefoundry_embeddings.py +0 -171
- truefoundry/langchain/truefoundry_llm.py +0 -106
- truefoundry/langchain/utils.py +0 -44
- {truefoundry-0.5.0rc6.dist-info → truefoundry-0.5.1rc1.dist-info}/WHEEL +0 -0
- {truefoundry-0.5.0rc6.dist-info → truefoundry-0.5.1rc1.dist-info}/entry_points.txt +0 -0
|
@@ -1,302 +0,0 @@
|
|
|
1
|
-
import enum
|
|
2
|
-
import warnings
|
|
3
|
-
from typing import Any, Dict, List, Mapping, Optional
|
|
4
|
-
from urllib.parse import urljoin
|
|
5
|
-
|
|
6
|
-
import requests
|
|
7
|
-
from requests.auth import HTTPBasicAuth
|
|
8
|
-
|
|
9
|
-
from truefoundry.deploy.lib.auth.servicefoundry_session import ServiceFoundrySession
|
|
10
|
-
from truefoundry.pydantic_v1 import root_validator
|
|
11
|
-
|
|
12
|
-
try:
|
|
13
|
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
14
|
-
from langchain.llms.base import LLM
|
|
15
|
-
from langchain.llms.utils import enforce_stop_tokens
|
|
16
|
-
except Exception as ex:
|
|
17
|
-
raise Exception(
|
|
18
|
-
"Failed to import langchain."
|
|
19
|
-
" Please install langchain by using `pip install langchain` command"
|
|
20
|
-
) from ex
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
class _ModelServerImpl(str, enum.Enum):
|
|
24
|
-
MLSERVER = "MLSERVER"
|
|
25
|
-
TGI = "TGI"
|
|
26
|
-
VLLM = "VLLM"
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
def _get_model_server_and_validate_if_mlserver(endpoint_url, auth, model_name=None):
|
|
30
|
-
try:
|
|
31
|
-
response = requests.get(urljoin(endpoint_url, "info"), json={}, auth=auth)
|
|
32
|
-
if response.status_code == 200:
|
|
33
|
-
return _ModelServerImpl.TGI, None
|
|
34
|
-
elif response.status_code == 404:
|
|
35
|
-
# We are not using TGI, try for mlserver
|
|
36
|
-
response = requests.post(
|
|
37
|
-
urljoin(endpoint_url, "v2/repository/index"), json={}, auth=auth
|
|
38
|
-
)
|
|
39
|
-
if response.status_code == 200:
|
|
40
|
-
models = response.json()
|
|
41
|
-
if len(models) == 0:
|
|
42
|
-
raise ValueError("No model is deployed in the model server")
|
|
43
|
-
model_names = [m.get("name") for m in models]
|
|
44
|
-
if model_name and model_name not in model_names:
|
|
45
|
-
raise ValueError(
|
|
46
|
-
f"Model {model_name!r} is not available in the model server. "
|
|
47
|
-
f"Available models {model_names!r}"
|
|
48
|
-
)
|
|
49
|
-
if not model_name and len(model_names) > 1:
|
|
50
|
-
raise ValueError(
|
|
51
|
-
f"Please pass `model_name` while instantiating `TruefoundryLLM`. "
|
|
52
|
-
f"Available models are {model_names!r} "
|
|
53
|
-
)
|
|
54
|
-
if model_name:
|
|
55
|
-
return _ModelServerImpl.MLSERVER, model_name
|
|
56
|
-
return _ModelServerImpl.MLSERVER, model_names[0]
|
|
57
|
-
if response.status_code == 404:
|
|
58
|
-
return _ModelServerImpl.VLLM, None
|
|
59
|
-
response.raise_for_status()
|
|
60
|
-
except Exception as e:
|
|
61
|
-
raise Exception(f"Error raised by inference API: {e}") from e
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
# TODO (chiragjn): Refactor this into separate implementations for each model server
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
class TruefoundryLLM(LLM):
|
|
68
|
-
"""Wrapper around TFY model deployment.
|
|
69
|
-
To use this class, you need to have the langchain library installed.
|
|
70
|
-
Example:
|
|
71
|
-
.. code-block:: python
|
|
72
|
-
from truefoundry.langchain import TruefoundryLLM
|
|
73
|
-
endpoint_url = (
|
|
74
|
-
"https://pythia-70m-model-model-catalogue.demo2.truefoundry.tech"
|
|
75
|
-
)
|
|
76
|
-
model = TruefoundryLLM(
|
|
77
|
-
endpoint_url=endpoint_url,
|
|
78
|
-
parameters={
|
|
79
|
-
"max_new_tokens": 100,
|
|
80
|
-
"temperature": 0.7,
|
|
81
|
-
"top_k": 5,
|
|
82
|
-
"top_p": 0.9
|
|
83
|
-
}
|
|
84
|
-
)
|
|
85
|
-
"""
|
|
86
|
-
|
|
87
|
-
endpoint_url: str
|
|
88
|
-
model_name: Optional[str] = None
|
|
89
|
-
auth: Optional[HTTPBasicAuth] = None
|
|
90
|
-
parameters: Optional[Dict[str, Any]] = None
|
|
91
|
-
model_server_impl: Optional[_ModelServerImpl] = None
|
|
92
|
-
|
|
93
|
-
@root_validator(pre=False)
|
|
94
|
-
def validate_model_server_and_name(cls, values: Dict):
|
|
95
|
-
warnings.warn(
|
|
96
|
-
message=f"{cls.__name__} is deprecated and will be removed soon. Please use `TrueFoundryLLM` or `TrueFoundryChat` to invoke models using the new TrueFoundry LLM Gateway",
|
|
97
|
-
category=DeprecationWarning,
|
|
98
|
-
stacklevel=2,
|
|
99
|
-
)
|
|
100
|
-
endpoint_url = values["endpoint_url"]
|
|
101
|
-
model_name = values.get("model_name")
|
|
102
|
-
auth = values.get("auth")
|
|
103
|
-
model_server_impl, model_name = _get_model_server_and_validate_if_mlserver(
|
|
104
|
-
endpoint_url=endpoint_url, model_name=model_name, auth=auth
|
|
105
|
-
)
|
|
106
|
-
values["model_server_impl"] = model_server_impl
|
|
107
|
-
if model_server_impl == _ModelServerImpl.MLSERVER:
|
|
108
|
-
values["model_name"] = model_name
|
|
109
|
-
return values
|
|
110
|
-
|
|
111
|
-
@property
|
|
112
|
-
def _identifying_params(self) -> Mapping[str, Any]:
|
|
113
|
-
"""Get the identifying parameters."""
|
|
114
|
-
return {
|
|
115
|
-
"endpoint_url": self.endpoint_url,
|
|
116
|
-
"model_name": self.model_name,
|
|
117
|
-
}
|
|
118
|
-
|
|
119
|
-
@property
|
|
120
|
-
def _llm_type(self) -> str:
|
|
121
|
-
"""Return type of llm."""
|
|
122
|
-
return "tfy_model_deployment"
|
|
123
|
-
|
|
124
|
-
def _call( # noqa: C901
|
|
125
|
-
self,
|
|
126
|
-
prompt: str,
|
|
127
|
-
stop: Optional[List[str]] = None,
|
|
128
|
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
129
|
-
**params: Any,
|
|
130
|
-
) -> str:
|
|
131
|
-
"""Call out to the deployed model
|
|
132
|
-
Args:
|
|
133
|
-
prompt: The prompt to pass into the model.
|
|
134
|
-
stop: Optional list of stop words to use when generating.
|
|
135
|
-
Returns:
|
|
136
|
-
The string generated by the model.
|
|
137
|
-
Example:
|
|
138
|
-
.. code-block:: python
|
|
139
|
-
response = model("Tell me a joke.")
|
|
140
|
-
"""
|
|
141
|
-
_params_already_set = self.parameters or {}
|
|
142
|
-
params = {**_params_already_set, **params, "return_full_text": False}
|
|
143
|
-
|
|
144
|
-
if self.model_server_impl == _ModelServerImpl.MLSERVER:
|
|
145
|
-
generate_path = f"v2/models/{self.model_name}/infer/simple"
|
|
146
|
-
payload = {"inputs": prompt, "parameters": params}
|
|
147
|
-
elif self.model_server_impl == _ModelServerImpl.TGI:
|
|
148
|
-
generate_path = "generate"
|
|
149
|
-
payload = {"inputs": prompt, "parameters": params}
|
|
150
|
-
elif self.model_server_impl == _ModelServerImpl.VLLM:
|
|
151
|
-
generate_path = "generate"
|
|
152
|
-
payload = {**params, "prompt": prompt}
|
|
153
|
-
else:
|
|
154
|
-
raise ValueError(f"No known generate path for {self.model_server_impl}")
|
|
155
|
-
url = urljoin(self.endpoint_url, generate_path)
|
|
156
|
-
|
|
157
|
-
try:
|
|
158
|
-
response = requests.post(url, json=payload, auth=self.auth)
|
|
159
|
-
response.raise_for_status()
|
|
160
|
-
except Exception as e:
|
|
161
|
-
raise Exception(f"Error raised by inference API: {e}") from e
|
|
162
|
-
response_dict = response.json()
|
|
163
|
-
if "error" in response_dict:
|
|
164
|
-
raise ValueError(
|
|
165
|
-
f"Error raised by inference API: {response_dict['error']!r}"
|
|
166
|
-
)
|
|
167
|
-
|
|
168
|
-
if self.model_server_impl == _ModelServerImpl.MLSERVER:
|
|
169
|
-
inference_result = response_dict[0]
|
|
170
|
-
elif self.model_server_impl == _ModelServerImpl.TGI:
|
|
171
|
-
inference_result = response_dict
|
|
172
|
-
elif self.model_server_impl == _ModelServerImpl.VLLM:
|
|
173
|
-
inference_result = response_dict
|
|
174
|
-
else:
|
|
175
|
-
raise ValueError(
|
|
176
|
-
f"Unknown model server {self.model_server_impl}, cannot parse response"
|
|
177
|
-
)
|
|
178
|
-
|
|
179
|
-
if "generated_text" in inference_result:
|
|
180
|
-
text = inference_result["generated_text"]
|
|
181
|
-
elif "summarization" in inference_result:
|
|
182
|
-
text = inference_result["summary_text"]
|
|
183
|
-
elif "text" in inference_result:
|
|
184
|
-
text = inference_result["text"]
|
|
185
|
-
else:
|
|
186
|
-
raise ValueError(f"Could not parse inference response: {response_dict!r}")
|
|
187
|
-
|
|
188
|
-
if isinstance(text, list):
|
|
189
|
-
text = text[0]
|
|
190
|
-
|
|
191
|
-
if stop:
|
|
192
|
-
text = enforce_stop_tokens(text, stop)
|
|
193
|
-
|
|
194
|
-
return text
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
class TruefoundryPlaygroundLLM(LLM):
|
|
198
|
-
"""Wrapper around TFY Playground.
|
|
199
|
-
To use this class, you need to have the langchain library installed.
|
|
200
|
-
Example:
|
|
201
|
-
.. code-block:: python
|
|
202
|
-
from truefoundry.langchain import TruefoundryPlaygroundLLM
|
|
203
|
-
import os
|
|
204
|
-
# Note: Login using tfy login --host <https://example-domain.com>
|
|
205
|
-
model = TruefoundryPlaygroundLLM(
|
|
206
|
-
model_name="vicuna-13b",
|
|
207
|
-
parameters={
|
|
208
|
-
"maximumLength": 100,
|
|
209
|
-
"temperature": 0.7,
|
|
210
|
-
"topP": 0.9,
|
|
211
|
-
"repetitionPenalty": 1
|
|
212
|
-
}
|
|
213
|
-
)
|
|
214
|
-
response = model.predict("Enter the prompt here")
|
|
215
|
-
"""
|
|
216
|
-
|
|
217
|
-
model_name: str
|
|
218
|
-
parameters: Optional[Dict[str, Any]] = None
|
|
219
|
-
provider: str = "truefoundry-public"
|
|
220
|
-
|
|
221
|
-
@root_validator(pre=False)
|
|
222
|
-
def validate_model_server_and_name(cls, values: Dict):
|
|
223
|
-
warnings.warn(
|
|
224
|
-
message=f"{cls.__name__} is deprecated and will be removed soon. Please use `TrueFoundryLLM` or `TrueFoundryChat` to invoke models using the new TrueFoundry LLM Gateway",
|
|
225
|
-
category=DeprecationWarning,
|
|
226
|
-
stacklevel=2,
|
|
227
|
-
)
|
|
228
|
-
return values
|
|
229
|
-
|
|
230
|
-
@property
|
|
231
|
-
def _get_model(self) -> str:
|
|
232
|
-
"""returns the model name"""
|
|
233
|
-
return self.model_name
|
|
234
|
-
|
|
235
|
-
@property
|
|
236
|
-
def _get_provider(self) -> str:
|
|
237
|
-
"""Returns the provider name"""
|
|
238
|
-
return self.provider
|
|
239
|
-
|
|
240
|
-
@property
|
|
241
|
-
def _llm_type(self) -> str:
|
|
242
|
-
"""Return type of llm."""
|
|
243
|
-
return "tfy_playground"
|
|
244
|
-
|
|
245
|
-
def _call(
|
|
246
|
-
self,
|
|
247
|
-
prompt: str,
|
|
248
|
-
stop: Optional[List[str]] = None,
|
|
249
|
-
**params: Any,
|
|
250
|
-
) -> str:
|
|
251
|
-
"""Call out to the deployed model
|
|
252
|
-
Args:
|
|
253
|
-
prompt: The prompt to pass into the model.
|
|
254
|
-
stop: Optional list of stop words to use when generating.
|
|
255
|
-
Returns:
|
|
256
|
-
The string generated by the model.
|
|
257
|
-
Example:
|
|
258
|
-
.. code-block:: python
|
|
259
|
-
response = model("I have a joke for you...")
|
|
260
|
-
"""
|
|
261
|
-
_params_already_set = self.parameters or {}
|
|
262
|
-
params = {**_params_already_set, **params}
|
|
263
|
-
if stop:
|
|
264
|
-
params["stopSequences"] = stop
|
|
265
|
-
session = ServiceFoundrySession()
|
|
266
|
-
|
|
267
|
-
if not session:
|
|
268
|
-
raise Exception(
|
|
269
|
-
"Unauthenticated: Please login using tfy login --host <https://example-domain.com>"
|
|
270
|
-
)
|
|
271
|
-
|
|
272
|
-
host = session.base_url
|
|
273
|
-
|
|
274
|
-
if host[-1] == "/":
|
|
275
|
-
host = host[: len(host) - 1]
|
|
276
|
-
|
|
277
|
-
url = f"{host}/llm-playground/api/inference/text"
|
|
278
|
-
headers = {"Authorization": f"Bearer {session.access_token}"}
|
|
279
|
-
|
|
280
|
-
json = {
|
|
281
|
-
"prompt": prompt,
|
|
282
|
-
"models": [
|
|
283
|
-
{
|
|
284
|
-
"name": self.model_name,
|
|
285
|
-
"provider": self.provider,
|
|
286
|
-
"tag": self.model_name,
|
|
287
|
-
"parameters": params,
|
|
288
|
-
}
|
|
289
|
-
],
|
|
290
|
-
}
|
|
291
|
-
|
|
292
|
-
try:
|
|
293
|
-
response = requests.post(url=url, headers=headers, json=json)
|
|
294
|
-
response.raise_for_status()
|
|
295
|
-
except Exception as ex:
|
|
296
|
-
raise Exception(f"Error inferencing the model: {ex}") from ex
|
|
297
|
-
|
|
298
|
-
data = response.json()
|
|
299
|
-
text = data[0].get("text")
|
|
300
|
-
if stop:
|
|
301
|
-
text = enforce_stop_tokens(text, stop)
|
|
302
|
-
return text
|
|
@@ -1,130 +0,0 @@
|
|
|
1
|
-
from typing import Any, Dict, List, Optional
|
|
2
|
-
|
|
3
|
-
from langchain.chat_models.base import SimpleChatModel
|
|
4
|
-
from langchain.pydantic_v1 import Extra, Field, root_validator
|
|
5
|
-
from langchain.schema.messages import (
|
|
6
|
-
AIMessage,
|
|
7
|
-
BaseMessage,
|
|
8
|
-
ChatMessage,
|
|
9
|
-
HumanMessage,
|
|
10
|
-
SystemMessage,
|
|
11
|
-
)
|
|
12
|
-
|
|
13
|
-
from truefoundry.common.request_utils import requests_retry_session
|
|
14
|
-
from truefoundry.langchain.utils import (
|
|
15
|
-
validate_tfy_environment,
|
|
16
|
-
)
|
|
17
|
-
from truefoundry.logger import logger
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class TrueFoundryChat(SimpleChatModel):
|
|
21
|
-
"""`TrueFoundry LLM Gateway` chat models API.
|
|
22
|
-
|
|
23
|
-
To use, you must have the environment variable ``TFY_API_KEY`` set with your API key and ``TFY_HOST`` set with your host or pass it as a named parameter to the constructor.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
model: str = Field(description="The model to use for chat.")
|
|
27
|
-
"""The model to use for chat."""
|
|
28
|
-
tfy_llm_gateway_url: Optional[str] = Field(default=None)
|
|
29
|
-
"""TrueFoundry LLM Gateway endpoint URL. Automatically inferred from env var `TFY_LLM_GATEWAY_URL` if not provided."""
|
|
30
|
-
tfy_api_key: Optional[str] = Field(default=None)
|
|
31
|
-
"""TrueFoundry API Key. Automatically inferred from env var `TFY_API_KEY` if not provided."""
|
|
32
|
-
model_parameters: Optional[dict] = Field(default_factory=dict)
|
|
33
|
-
"""Model parameters"""
|
|
34
|
-
request_timeout: int = Field(default=30)
|
|
35
|
-
"""The timeout for the request in seconds."""
|
|
36
|
-
max_retries: int = Field(default=5)
|
|
37
|
-
"""The number of retries for HTTP requests."""
|
|
38
|
-
retry_backoff_factor: float = Field(default=0.3)
|
|
39
|
-
"""The backoff factor for exponential backoff during retries."""
|
|
40
|
-
system_prompt: str = Field(default="You are a AI assistant")
|
|
41
|
-
|
|
42
|
-
class Config:
|
|
43
|
-
"""Configuration for this pydantic object."""
|
|
44
|
-
|
|
45
|
-
extra = Extra.forbid
|
|
46
|
-
allow_population_by_field_name = True
|
|
47
|
-
|
|
48
|
-
@root_validator()
|
|
49
|
-
def validate_environment(cls, values: Dict) -> Dict:
|
|
50
|
-
values = validate_tfy_environment(values)
|
|
51
|
-
if not values["tfy_api_key"]:
|
|
52
|
-
raise ValueError(
|
|
53
|
-
"Did not find `tfy_api_key`, please add an environment variable"
|
|
54
|
-
" `TFY_API_KEY` which contains it, or pass"
|
|
55
|
-
" `tfy_api_key` as a named parameter."
|
|
56
|
-
)
|
|
57
|
-
if not values["tfy_llm_gateway_url"]:
|
|
58
|
-
raise ValueError(
|
|
59
|
-
"Did not find `tfy_llm_gateway_url`, please add an environment variable"
|
|
60
|
-
" `TFY_LLM_GATEWAY_URL` which contains it, or pass"
|
|
61
|
-
" `tfy_llm_gateway_url` as a named parameter."
|
|
62
|
-
)
|
|
63
|
-
return values
|
|
64
|
-
|
|
65
|
-
@property
|
|
66
|
-
def _llm_type(self) -> str:
|
|
67
|
-
"""Return type of chat model."""
|
|
68
|
-
return "truefoundry-chat"
|
|
69
|
-
|
|
70
|
-
def _call(
|
|
71
|
-
self,
|
|
72
|
-
messages: List[BaseMessage],
|
|
73
|
-
stop: Optional[List[str]] = None,
|
|
74
|
-
**kwargs: Any,
|
|
75
|
-
) -> str:
|
|
76
|
-
if len(messages) == 0:
|
|
77
|
-
raise ValueError("No messages provided to chat.")
|
|
78
|
-
|
|
79
|
-
if not isinstance(messages[0], SystemMessage):
|
|
80
|
-
messages.insert(0, SystemMessage(content=self.system_prompt))
|
|
81
|
-
|
|
82
|
-
message_dicts = [
|
|
83
|
-
TrueFoundryChat._convert_message_to_dict(message) for message in messages
|
|
84
|
-
]
|
|
85
|
-
|
|
86
|
-
payload = {**self.model_parameters} if self.model_parameters else {}
|
|
87
|
-
|
|
88
|
-
if stop:
|
|
89
|
-
payload["stop_sequences"] = stop
|
|
90
|
-
|
|
91
|
-
payload["messages"] = message_dicts
|
|
92
|
-
payload["model"] = self.model
|
|
93
|
-
|
|
94
|
-
session = requests_retry_session(
|
|
95
|
-
retries=self.max_retries, backoff_factor=self.retry_backoff_factor
|
|
96
|
-
)
|
|
97
|
-
|
|
98
|
-
url = f"{self.tfy_llm_gateway_url}/openai/chat/completions"
|
|
99
|
-
logger.debug(f"Chat using - model: {self.model} at endpoint: {url}")
|
|
100
|
-
response = session.post(
|
|
101
|
-
url=url,
|
|
102
|
-
json=payload,
|
|
103
|
-
headers={
|
|
104
|
-
"Authorization": f"Bearer {self.tfy_api_key}",
|
|
105
|
-
},
|
|
106
|
-
timeout=self.request_timeout,
|
|
107
|
-
)
|
|
108
|
-
response.raise_for_status()
|
|
109
|
-
output = response.json()
|
|
110
|
-
return output["choices"][0]["message"]["content"]
|
|
111
|
-
|
|
112
|
-
@staticmethod
|
|
113
|
-
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
114
|
-
if isinstance(message, ChatMessage):
|
|
115
|
-
message_dict = {"role": message.role, "content": message.content}
|
|
116
|
-
elif isinstance(message, HumanMessage):
|
|
117
|
-
message_dict = {"role": "user", "content": message.content}
|
|
118
|
-
elif isinstance(message, AIMessage):
|
|
119
|
-
message_dict = {"role": "assistant", "content": message.content}
|
|
120
|
-
elif isinstance(message, SystemMessage):
|
|
121
|
-
message_dict = {"role": "system", "content": message.content}
|
|
122
|
-
else:
|
|
123
|
-
raise ValueError(f"Got unknown message type: {message}")
|
|
124
|
-
if message.additional_kwargs:
|
|
125
|
-
logger.debug(
|
|
126
|
-
"Additional message arguments are unsupported by TrueFoundry LLM Gateway "
|
|
127
|
-
" and will be ignored: %s",
|
|
128
|
-
message.additional_kwargs,
|
|
129
|
-
)
|
|
130
|
-
return message_dict
|
|
@@ -1,171 +0,0 @@
|
|
|
1
|
-
import concurrent.futures
|
|
2
|
-
import math
|
|
3
|
-
from typing import Dict, List, Optional
|
|
4
|
-
|
|
5
|
-
import tqdm
|
|
6
|
-
from langchain.embeddings.base import Embeddings
|
|
7
|
-
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
|
8
|
-
|
|
9
|
-
from truefoundry.common.request_utils import requests_retry_session
|
|
10
|
-
from truefoundry.langchain.utils import (
|
|
11
|
-
validate_tfy_environment,
|
|
12
|
-
)
|
|
13
|
-
from truefoundry.logger import logger
|
|
14
|
-
|
|
15
|
-
EMBEDDER_BATCH_SIZE = 32
|
|
16
|
-
PARALLEL_WORKERS = 4
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
class TrueFoundryEmbeddings(BaseModel, Embeddings):
|
|
20
|
-
"""`TrueFoundry LLM Gateway` embedding models API.
|
|
21
|
-
|
|
22
|
-
To use, you must have the environment variable ``TFY_API_KEY`` set with your API key and ``TFY_HOST`` set with your host or pass it
|
|
23
|
-
as a named parameter to the constructor.
|
|
24
|
-
"""
|
|
25
|
-
|
|
26
|
-
model: str = Field(description="The model to use for embedding.")
|
|
27
|
-
"""The model to use for embedding."""
|
|
28
|
-
tfy_llm_gateway_url: Optional[str] = Field(default=None)
|
|
29
|
-
"""TrueFoundry LLM Gateway endpoint URL. Automatically inferred from env var `TFY_LLM_GATEWAY_URL` if not provided."""
|
|
30
|
-
tfy_api_key: Optional[str] = Field(default=None)
|
|
31
|
-
"""TrueFoundry API Key. Automatically inferred from env var `TFY_API_KEY` if not provided."""
|
|
32
|
-
model_parameters: Optional[dict] = Field(default_factory=dict)
|
|
33
|
-
"""Model parameters"""
|
|
34
|
-
request_timeout: int = Field(default=30)
|
|
35
|
-
"""The timeout for the request in seconds."""
|
|
36
|
-
max_retries: int = Field(default=5)
|
|
37
|
-
"""The number of retries for HTTP requests."""
|
|
38
|
-
retry_backoff_factor: float = Field(default=0.3)
|
|
39
|
-
"""The backoff factor for exponential backoff during retries."""
|
|
40
|
-
batch_size: int = Field(default=EMBEDDER_BATCH_SIZE)
|
|
41
|
-
"""The batch size to use for embedding."""
|
|
42
|
-
parallel_workers: int = Field(default=PARALLEL_WORKERS)
|
|
43
|
-
"""The number of parallel workers to use for embedding."""
|
|
44
|
-
|
|
45
|
-
__private_attributes__ = {"_executor"}
|
|
46
|
-
|
|
47
|
-
class Config:
|
|
48
|
-
"""Configuration for this pydantic object."""
|
|
49
|
-
|
|
50
|
-
extra = Extra.forbid
|
|
51
|
-
allow_population_by_field_name = True
|
|
52
|
-
|
|
53
|
-
@root_validator()
|
|
54
|
-
def validate_environment(cls, values: Dict) -> Dict:
|
|
55
|
-
values = validate_tfy_environment(values)
|
|
56
|
-
if not values["tfy_api_key"]:
|
|
57
|
-
raise ValueError(
|
|
58
|
-
"Did not find `tfy_api_key`, please add an environment variable"
|
|
59
|
-
" `TFY_API_KEY` which contains it, or pass"
|
|
60
|
-
" `tfy_api_key` as a named parameter."
|
|
61
|
-
)
|
|
62
|
-
if not values["tfy_llm_gateway_url"]:
|
|
63
|
-
raise ValueError(
|
|
64
|
-
"Did not find `tfy_llm_gateway_url`, please add an environment variable"
|
|
65
|
-
" `TFY_LLM_GATEWAY_URL` which contains it, or pass"
|
|
66
|
-
" `tfy_llm_gateway_url` as a named parameter."
|
|
67
|
-
)
|
|
68
|
-
return values
|
|
69
|
-
|
|
70
|
-
def _init_private_attributes(self):
|
|
71
|
-
self._executor = concurrent.futures.ThreadPoolExecutor(
|
|
72
|
-
max_workers=self.parallel_workers
|
|
73
|
-
)
|
|
74
|
-
|
|
75
|
-
@property
|
|
76
|
-
def _llm_type(self) -> str:
|
|
77
|
-
"""Return type of embedding model."""
|
|
78
|
-
return "truefoundry-embeddings"
|
|
79
|
-
|
|
80
|
-
def __del__(self):
|
|
81
|
-
"""
|
|
82
|
-
Destructor method to clean up the executor when the object is deleted.
|
|
83
|
-
|
|
84
|
-
Returns:
|
|
85
|
-
None
|
|
86
|
-
"""
|
|
87
|
-
self._executor.shutdown()
|
|
88
|
-
|
|
89
|
-
def _remote_embed(self, texts, query_mode=False):
|
|
90
|
-
"""
|
|
91
|
-
Perform remote embedding using a HTTP POST request to a designated endpoint.
|
|
92
|
-
|
|
93
|
-
Args:
|
|
94
|
-
texts (List[str]): A list of text strings to be embedded.
|
|
95
|
-
query_mode (bool): A flag to indicate if running in query mode or in embed mode (indexing).
|
|
96
|
-
Returns:
|
|
97
|
-
List[List[float]]: A list of embedded representations of the input texts.
|
|
98
|
-
"""
|
|
99
|
-
session = requests_retry_session(
|
|
100
|
-
retries=self.max_retries, backoff_factor=self.retry_backoff_factor
|
|
101
|
-
)
|
|
102
|
-
|
|
103
|
-
payload = {
|
|
104
|
-
"input": texts,
|
|
105
|
-
"model": self.model,
|
|
106
|
-
}
|
|
107
|
-
|
|
108
|
-
url = f"{self.tfy_llm_gateway_url}/openai/embeddings"
|
|
109
|
-
logger.debug(
|
|
110
|
-
f"Embedding using - model: {self.model} at endpoint: {url}, for {len(texts)} texts"
|
|
111
|
-
)
|
|
112
|
-
response = session.post(
|
|
113
|
-
url=url,
|
|
114
|
-
json=payload,
|
|
115
|
-
headers={
|
|
116
|
-
"Authorization": f"Bearer {self.tfy_api_key}",
|
|
117
|
-
},
|
|
118
|
-
timeout=self.request_timeout,
|
|
119
|
-
)
|
|
120
|
-
response.raise_for_status()
|
|
121
|
-
output = response.json()
|
|
122
|
-
return [data["embedding"] for data in output["data"]]
|
|
123
|
-
|
|
124
|
-
def _embed(self, texts: List[str], query_mode: bool):
|
|
125
|
-
"""
|
|
126
|
-
Perform embedding on a list of texts using remote embedding in chunks.
|
|
127
|
-
|
|
128
|
-
Args:
|
|
129
|
-
texts (List[str]): A list of text strings to be embedded.
|
|
130
|
-
query_mode (bool): A flag to indicate if running in query mode or in embed mode (indexing).
|
|
131
|
-
Returns:
|
|
132
|
-
List[List[float]]: A list of embedded representations of the input texts.
|
|
133
|
-
"""
|
|
134
|
-
embeddings = []
|
|
135
|
-
|
|
136
|
-
def _feeder():
|
|
137
|
-
for i in range(0, len(texts), self.batch_size):
|
|
138
|
-
chunk = texts[i : i + self.batch_size]
|
|
139
|
-
yield chunk
|
|
140
|
-
|
|
141
|
-
embeddings = list(
|
|
142
|
-
tqdm.tqdm(
|
|
143
|
-
self._executor.map(self._remote_embed, _feeder()),
|
|
144
|
-
total=int(math.ceil(len(texts) / self.batch_size)),
|
|
145
|
-
)
|
|
146
|
-
)
|
|
147
|
-
return [item for batch in embeddings for item in batch]
|
|
148
|
-
|
|
149
|
-
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
150
|
-
"""
|
|
151
|
-
Embed a list of text documents.
|
|
152
|
-
|
|
153
|
-
Args:
|
|
154
|
-
texts (List[str]): A list of text documents to be embedded.
|
|
155
|
-
|
|
156
|
-
Returns:
|
|
157
|
-
List[List[float]]: A list of embedded representations of the input documents.
|
|
158
|
-
"""
|
|
159
|
-
return self._embed(texts, query_mode=False)
|
|
160
|
-
|
|
161
|
-
def embed_query(self, text: str) -> List[float]:
|
|
162
|
-
"""
|
|
163
|
-
Embed a query text.
|
|
164
|
-
|
|
165
|
-
Args:
|
|
166
|
-
text (str): The query text to be embedded.
|
|
167
|
-
|
|
168
|
-
Returns:
|
|
169
|
-
List[float]: The embedded representation of the input query text.
|
|
170
|
-
"""
|
|
171
|
-
return self._embed([text], query_mode=True)[0]
|