tritopic 0.1.0__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tritopic might be problematic. Click here for more details.

@@ -1,14 +1,12 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tritopic
3
- Version: 0.1.0
4
- Summary: Tri-Modal Graph Topic Modeling with Iterative Refinement - A state-of-the-art topic modeling library
5
- Author-email: Roman Egger <roman@example.com>
3
+ Version: 1.1.0
4
+ Summary: Tri-Modal Graph Topic Modeling with Iterative Refinement
5
+ Author-email: Roman Egger <roman.egger@smartvisions.at>
6
6
  License: MIT
7
- Project-URL: Homepage, https://github.com/roman-egger/tritopic
8
- Project-URL: Documentation, https://tritopic.readthedocs.io
9
- Project-URL: Repository, https://github.com/roman-egger/tritopic
10
- Keywords: topic-modeling,nlp,machine-learning,graph-clustering,leiden,embeddings,text-analysis,bertopic-alternative
7
+ Keywords: topic-modeling,nlp,machine-learning,bertopic,clustering,text-analysis,multilingual
11
8
  Classifier: Development Status :: 4 - Beta
9
+ Classifier: Intended Audience :: Developers
12
10
  Classifier: Intended Audience :: Science/Research
13
11
  Classifier: License :: OSI Approved :: MIT License
14
12
  Classifier: Programming Language :: Python :: 3
@@ -20,35 +18,42 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
18
  Classifier: Topic :: Text Processing :: Linguistic
21
19
  Requires-Python: >=3.9
22
20
  Description-Content-Type: text/markdown
23
- License-File: LICENSE
24
21
  Requires-Dist: numpy>=1.21.0
25
- Requires-Dist: pandas>=1.3.0
26
22
  Requires-Dist: scipy>=1.7.0
27
23
  Requires-Dist: scikit-learn>=1.0.0
24
+ Requires-Dist: pandas>=1.3.0
28
25
  Requires-Dist: sentence-transformers>=2.2.0
29
26
  Requires-Dist: leidenalg>=0.9.0
30
- Requires-Dist: igraph>=0.10.0
31
- Requires-Dist: umap-learn>=0.5.0
32
- Requires-Dist: hdbscan>=0.8.0
33
- Requires-Dist: plotly>=5.0.0
27
+ Requires-Dist: python-igraph>=0.10.0
34
28
  Requires-Dist: tqdm>=4.60.0
35
- Requires-Dist: rank-bm25>=0.2.0
36
- Requires-Dist: keybert>=0.7.0
37
29
  Provides-Extra: llm
38
30
  Requires-Dist: anthropic>=0.18.0; extra == "llm"
39
31
  Requires-Dist: openai>=1.0.0; extra == "llm"
40
- Provides-Extra: full
41
- Requires-Dist: anthropic>=0.18.0; extra == "full"
42
- Requires-Dist: openai>=1.0.0; extra == "full"
43
- Requires-Dist: pacmap>=0.6.0; extra == "full"
44
- Requires-Dist: datamapplot>=0.1.0; extra == "full"
32
+ Provides-Extra: multilingual
33
+ Requires-Dist: langdetect>=1.0.9; extra == "multilingual"
34
+ Requires-Dist: jieba>=0.42.1; extra == "multilingual"
35
+ Provides-Extra: japanese
36
+ Requires-Dist: fugashi>=1.2.0; extra == "japanese"
37
+ Requires-Dist: unidic-lite>=1.0.8; extra == "japanese"
38
+ Provides-Extra: korean
39
+ Requires-Dist: konlpy>=0.6.0; extra == "korean"
40
+ Provides-Extra: thai
41
+ Requires-Dist: pythainlp>=4.0.0; extra == "thai"
42
+ Provides-Extra: visualization
43
+ Requires-Dist: plotly>=5.0.0; extra == "visualization"
44
+ Requires-Dist: matplotlib>=3.4.0; extra == "visualization"
45
+ Requires-Dist: umap-learn>=0.5.0; extra == "visualization"
46
+ Provides-Extra: evaluation
47
+ Requires-Dist: gensim>=4.0.0; extra == "evaluation"
48
+ Provides-Extra: all
49
+ Requires-Dist: tritopic[evaluation,llm,multilingual,visualization]; extra == "all"
45
50
  Provides-Extra: dev
46
51
  Requires-Dist: pytest>=7.0.0; extra == "dev"
47
52
  Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
48
53
  Requires-Dist: black>=23.0.0; extra == "dev"
49
54
  Requires-Dist: ruff>=0.1.0; extra == "dev"
50
55
  Requires-Dist: mypy>=1.0.0; extra == "dev"
51
- Dynamic: license-file
56
+ Requires-Dist: sphinx>=6.0.0; extra == "dev"
52
57
 
53
58
  # 🔺 TriTopic
54
59
 
@@ -68,6 +73,8 @@ A state-of-the-art topic modeling library that consistently outperforms BERTopic
68
73
  | **Mutual kNN + SNN** | Eliminates noise bridges between unrelated documents |
69
74
  | **Leiden + Consensus** | Dramatically more stable than single-run clustering |
70
75
  | **Iterative Refinement** | Topics improve embeddings, embeddings improve topics |
76
+ | **Multilingual Support** | 60+ languages with auto language detection |
77
+ | **Archetype Representatives** | Rich document selection beyond simple centroids |
71
78
  | **LLM-Powered Labels** | Human-readable topic names via Claude or GPT-4 |
72
79
 
73
80
  ## 📦 Installation
@@ -79,8 +86,11 @@ pip install tritopic
79
86
  # With LLM labeling support
80
87
  pip install tritopic[llm]
81
88
 
89
+ # With multilingual support
90
+ pip install tritopic[multilingual]
91
+
82
92
  # Full installation (all features)
83
- pip install tritopic[full]
93
+ pip install tritopic[all]
84
94
  ```
85
95
 
86
96
  ### From source (development)
@@ -171,6 +181,23 @@ model.generate_labels(labeler)
171
181
  print(model.get_topic_info())
172
182
  ```
173
183
 
184
+ ### Multilingual Support
185
+
186
+ ```python
187
+ from tritopic import TriTopic
188
+
189
+ # Auto-detect language and select appropriate model
190
+ model = TriTopic(
191
+ language="auto", # Auto-detect language
192
+ multilingual=False, # Use language-specific model
193
+ verbose=True
194
+ )
195
+
196
+ # Works with Chinese, German, Japanese, etc.
197
+ chinese_docs = ["机器学习正在改变医疗诊断", "深度神经网络取得超人类表现", ...]
198
+ topics = model.fit_transform(chinese_docs)
199
+ ```
200
+
174
201
  ### With Metadata
175
202
 
176
203
  ```python
@@ -202,13 +229,18 @@ from tritopic import TriTopic, TriTopicConfig
202
229
 
203
230
  config = TriTopicConfig(
204
231
  # Embedding settings
205
- embedding_model="all-MiniLM-L6-v2", # or "BAAI/bge-base-en-v1.5"
232
+ embedding_model="all-MiniLM-L6-v2", # or "auto", "BAAI/bge-base-en-v1.5"
206
233
  embedding_batch_size=32,
207
234
 
235
+ # Language settings
236
+ language="auto", # or "en", "de", "zh", etc.
237
+ multilingual=False, # Force multilingual model
238
+ language_detection_sample=100,
239
+
208
240
  # Graph construction
209
241
  n_neighbors=15,
210
242
  metric="cosine",
211
- graph_type="hybrid", # "knn", "mutual_knn", "snn", "hybrid"
243
+ graph_type="hybrid", # "knn", "mutual_knn", "snn", "hybrid"
212
244
  snn_weight=0.5,
213
245
 
214
246
  # Multi-view fusion weights
@@ -227,11 +259,17 @@ config = TriTopicConfig(
227
259
  use_iterative_refinement=True,
228
260
  max_iterations=5,
229
261
  convergence_threshold=0.95,
262
+ refinement_strength=0.15,
230
263
 
231
264
  # Keywords
232
265
  n_keywords=10,
266
+ keyword_method="ctfidf", # "ctfidf", "bm25", "keybert"
267
+
268
+ # Representatives (with archetype support)
233
269
  n_representative_docs=5,
234
- keyword_method="ctfidf", # "ctfidf", "bm25", "keybert"
270
+ representative_method="hybrid", # "centroid", "medoid", "archetype", "diverse", "hybrid"
271
+ n_archetypes=4,
272
+ archetype_method="furthest_sum",
235
273
 
236
274
  # Misc
237
275
  outlier_threshold=0.1,
@@ -242,16 +280,25 @@ config = TriTopicConfig(
242
280
  model = TriTopic(config=config)
243
281
  ```
244
282
 
245
- ### Quick Parameter Override
283
+ ### Pre-defined Configurations
246
284
 
247
285
  ```python
248
- # Override just what you need
249
- model = TriTopic(
250
- embedding_model="BAAI/bge-base-en-v1.5",
251
- n_neighbors=20,
252
- use_iterative_refinement=True,
253
- verbose=True,
254
- )
286
+ from tritopic import TriTopic, get_config
287
+
288
+ # Fast processing (less accurate)
289
+ model = TriTopic(config=get_config("fast"))
290
+
291
+ # High quality (slower)
292
+ model = TriTopic(config=get_config("quality"))
293
+
294
+ # Multilingual corpus
295
+ model = TriTopic(config=get_config("multilingual"))
296
+
297
+ # Chinese text
298
+ model = TriTopic(config=get_config("chinese"))
299
+
300
+ # German text
301
+ model = TriTopic(config=get_config("german"))
255
302
  ```
256
303
 
257
304
  ## 📊 Evaluation
@@ -285,20 +332,6 @@ model = TriTopic()
285
332
  topics = model.fit_transform(documents, embeddings=embeddings)
286
333
  ```
287
334
 
288
- ### Find Optimal Resolution
289
-
290
- ```python
291
- from tritopic.core.clustering import ConsensusLeiden
292
-
293
- clusterer = ConsensusLeiden()
294
- optimal_res = clusterer.find_optimal_resolution(
295
- graph=model.graph_,
296
- resolution_range=(0.5, 2.0),
297
- target_n_topics=15, # Optional: target number
298
- )
299
- print(f"Optimal resolution: {optimal_res}")
300
- ```
301
-
302
335
  ### Transform New Documents
303
336
 
304
337
  ```python
@@ -327,7 +360,8 @@ model = TriTopic.load("my_topic_model.pkl")
327
360
  | Views | Embeddings only | Semantic + Lexical + Metadata |
328
361
  | Refinement | None | Iterative embedding refinement |
329
362
  | Stability | Low (varies by run) | High (consensus clustering) |
330
- | Outlier Handling | HDBSCAN built-in | Configurable threshold |
363
+ | Languages | Limited | 60+ with auto-detection |
364
+ | Representatives | Centroid only | Archetypes, medoids, diverse |
331
365
 
332
366
  ### Benchmark Results
333
367
 
@@ -339,7 +373,7 @@ On 20 Newsgroups dataset (n=18,846):
339
373
  | Diversity | 0.834 | **0.891** | +7% |
340
374
  | Stability (ARI) | 0.721 | **0.934** | +30% |
341
375
 
342
- ## 🏗️ Architecture
376
+ ## 🗂️ Architecture
343
377
 
344
378
  ```
345
379
  Documents
@@ -347,10 +381,10 @@ Documents
347
381
  ├─── Embedding Engine ──────────────┐
348
382
  │ (Sentence-BERT/BGE/Instructor) │
349
383
  │ │
350
- ├─── Lexical Matrix ───────────────┼─── Multi-View
384
+ ├─── Lexical Matrix ────────────────┼─── Multi-View
351
385
  │ (TF-IDF/BM25) │ Graph Builder
352
386
  │ │ │
353
- └─── Metadata Graph ───────────────┘
387
+ └─── Metadata Graph ────────────────┘
354
388
  (Optional) │
355
389
 
356
390
  ┌─────────────────────┐
@@ -369,6 +403,12 @@ Documents
369
403
  └──────────┬──────────┘
370
404
 
371
405
  ┌──────────▼──────────┐
406
+ │ Representative │
407
+ │ Selection │
408
+ │ (Archetype/Hybrid) │
409
+ └──────────┬──────────┘
410
+
411
+ ┌──────────▼──────────┐
372
412
  │ LLM Labeling │
373
413
  │ (Claude/GPT-4) │
374
414
  └─────────────────────┘
@@ -0,0 +1,20 @@
1
+ tritopic/__init__.py,sha256=BaHbardg5BW9zykYOtYG1ZM1nGwvfVt7DV7NJ7tp4l8,936
2
+ tritopic/config.py,sha256=vL47vU5KAYD1iCzH3cRMFUO1w1NSibmjIuAHNsBLu5c,10614
3
+ tritopic/labeling.py,sha256=SJsvOXRl-q8f3qtk1S66FGozTJsW8bwNnAKGkAklmVQ,8883
4
+ tritopic/model.py,sha256=mzptfvqG_Q81OcS6kiYd7u2uU2AKjxpDYKo9u1EfpH4,25015
5
+ tritopic/visualization.py,sha256=MCiIgIoTzFoQ7GG9WjfSZlV2j1BBGzZwxRddmvmh1OY,9841
6
+ tritopic/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ tritopic/core/clustering.py,sha256=mZoU8SkfSLWjFbdJYcBfjIJ75uQJVH1guMPoVTZOmnM,9461
8
+ tritopic/core/embeddings.py,sha256=ouqW9YQKSn8MtIt0DShhFB14QIhCnqryyz27Ilwg6sM,6707
9
+ tritopic/core/graph.py,sha256=a949-6N9ZH8Jd7hFt6fDdB4K7r1A2qs16eZfYmJFKHM,13605
10
+ tritopic/core/keywords.py,sha256=AnHY7QFGlGsSRfcsss6EpUIGD91ybo3MsWs5Ritb9cM,9667
11
+ tritopic/core/refinement.py,sha256=7e6K-EuqZ4ttqNkhsvOeHlDC1ZjP9TA0_8mdyy5kTEw,7695
12
+ tritopic/core/representatives.py,sha256=hqpnNMxhqyZxjM7CaGV5M1RxR3B358tMaGTKWn8jWOo,19154
13
+ tritopic/multilingual/__init__.py,sha256=EagOqVqMDNKX7AfEAQfVgbR92f2vBy1KSM5O88AEt20,699
14
+ tritopic/multilingual/detection.py,sha256=xeZqNp4l-fRII5s2S4EMzBdJPf3Xgt6e1a3Od2hc2q4,5700
15
+ tritopic/multilingual/stopwords.py,sha256=viMM1pb4VpDEmDpGpx_8sDfumXfrVXKfUULyOZXFFYU,29942
16
+ tritopic/multilingual/tokenizers.py,sha256=seTCzRiUOqO0UbAqA3nn8V8EoVYQ1wiwqcH8lafRCxM,9954
17
+ tritopic-1.1.0.dist-info/METADATA,sha256=nIWD3zUMOQR9efdUFo8zUjM0JVJGgrzgZVDyLbbjJ7I,13922
18
+ tritopic-1.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
19
+ tritopic-1.1.0.dist-info/top_level.txt,sha256=9PASbqQyi0-wa7E2Hl3Z0u1ae7MwLcfgFliFE1ioFBA,9
20
+ tritopic-1.1.0.dist-info/RECORD,,