triton-windows 3.2.0.post11__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of triton-windows might be problematic. Click here for more details.
- triton/_C/libtriton.pyd +0 -0
- triton/__init__.py +85 -0
- triton/_internal_testing.py +123 -0
- triton/backends/__init__.py +50 -0
- triton/backends/amd/compiler.py +368 -0
- triton/backends/amd/driver.c +211 -0
- triton/backends/amd/driver.py +512 -0
- triton/backends/amd/include/hip/amd_detail/amd_channel_descriptor.h +358 -0
- triton/backends/amd/include/hip/amd_detail/amd_device_functions.h +1031 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_atomic.h +1612 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_bf16.h +1337 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_bfloat16.h +293 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_common.h +32 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_complex.h +174 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_cooperative_groups.h +829 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_fp16.h +1809 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_gl_interop.h +108 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_math_constants.h +124 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_runtime.h +405 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_runtime_pt_api.h +196 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_unsafe_atomics.h +565 -0
- triton/backends/amd/include/hip/amd_detail/amd_hip_vector_types.h +2226 -0
- triton/backends/amd/include/hip/amd_detail/amd_math_functions.h +104 -0
- triton/backends/amd/include/hip/amd_detail/amd_surface_functions.h +244 -0
- triton/backends/amd/include/hip/amd_detail/amd_warp_functions.h +494 -0
- triton/backends/amd/include/hip/amd_detail/concepts.hpp +30 -0
- triton/backends/amd/include/hip/amd_detail/device_library_decls.h +133 -0
- triton/backends/amd/include/hip/amd_detail/functional_grid_launch.hpp +218 -0
- triton/backends/amd/include/hip/amd_detail/grid_launch.h +67 -0
- triton/backends/amd/include/hip/amd_detail/grid_launch.hpp +50 -0
- triton/backends/amd/include/hip/amd_detail/grid_launch_GGL.hpp +26 -0
- triton/backends/amd/include/hip/amd_detail/helpers.hpp +137 -0
- triton/backends/amd/include/hip/amd_detail/hip_api_trace.hpp +1350 -0
- triton/backends/amd/include/hip/amd_detail/hip_assert.h +101 -0
- triton/backends/amd/include/hip/amd_detail/hip_cooperative_groups_helper.h +242 -0
- triton/backends/amd/include/hip/amd_detail/hip_fp16_gcc.h +254 -0
- triton/backends/amd/include/hip/amd_detail/hip_fp16_math_fwd.h +96 -0
- triton/backends/amd/include/hip/amd_detail/hip_ldg.h +100 -0
- triton/backends/amd/include/hip/amd_detail/hip_prof_str.h +10169 -0
- triton/backends/amd/include/hip/amd_detail/hip_runtime_prof.h +77 -0
- triton/backends/amd/include/hip/amd_detail/host_defines.h +180 -0
- triton/backends/amd/include/hip/amd_detail/hsa_helpers.hpp +102 -0
- triton/backends/amd/include/hip/amd_detail/macro_based_grid_launch.hpp +798 -0
- triton/backends/amd/include/hip/amd_detail/math_fwd.h +698 -0
- triton/backends/amd/include/hip/amd_detail/ockl_image.h +177 -0
- triton/backends/amd/include/hip/amd_detail/program_state.hpp +107 -0
- triton/backends/amd/include/hip/amd_detail/texture_fetch_functions.h +491 -0
- triton/backends/amd/include/hip/amd_detail/texture_indirect_functions.h +478 -0
- triton/backends/amd/include/hip/channel_descriptor.h +39 -0
- triton/backends/amd/include/hip/device_functions.h +38 -0
- triton/backends/amd/include/hip/driver_types.h +468 -0
- triton/backends/amd/include/hip/hip_bf16.h +36 -0
- triton/backends/amd/include/hip/hip_bfloat16.h +44 -0
- triton/backends/amd/include/hip/hip_common.h +100 -0
- triton/backends/amd/include/hip/hip_complex.h +38 -0
- triton/backends/amd/include/hip/hip_cooperative_groups.h +46 -0
- triton/backends/amd/include/hip/hip_deprecated.h +95 -0
- triton/backends/amd/include/hip/hip_ext.h +159 -0
- triton/backends/amd/include/hip/hip_fp16.h +36 -0
- triton/backends/amd/include/hip/hip_gl_interop.h +32 -0
- triton/backends/amd/include/hip/hip_hcc.h +24 -0
- triton/backends/amd/include/hip/hip_math_constants.h +36 -0
- triton/backends/amd/include/hip/hip_profile.h +27 -0
- triton/backends/amd/include/hip/hip_runtime.h +75 -0
- triton/backends/amd/include/hip/hip_runtime_api.h +8919 -0
- triton/backends/amd/include/hip/hip_texture_types.h +29 -0
- triton/backends/amd/include/hip/hip_vector_types.h +41 -0
- triton/backends/amd/include/hip/hip_version.h +17 -0
- triton/backends/amd/include/hip/hiprtc.h +421 -0
- triton/backends/amd/include/hip/library_types.h +78 -0
- triton/backends/amd/include/hip/math_functions.h +42 -0
- triton/backends/amd/include/hip/surface_types.h +63 -0
- triton/backends/amd/include/hip/texture_types.h +194 -0
- triton/backends/amd/include/hsa/Brig.h +1131 -0
- triton/backends/amd/include/hsa/amd_hsa_common.h +91 -0
- triton/backends/amd/include/hsa/amd_hsa_elf.h +436 -0
- triton/backends/amd/include/hsa/amd_hsa_kernel_code.h +269 -0
- triton/backends/amd/include/hsa/amd_hsa_queue.h +109 -0
- triton/backends/amd/include/hsa/amd_hsa_signal.h +80 -0
- triton/backends/amd/include/hsa/hsa.h +5729 -0
- triton/backends/amd/include/hsa/hsa_amd_tool.h +91 -0
- triton/backends/amd/include/hsa/hsa_api_trace.h +566 -0
- triton/backends/amd/include/hsa/hsa_ext_amd.h +3090 -0
- triton/backends/amd/include/hsa/hsa_ext_finalize.h +531 -0
- triton/backends/amd/include/hsa/hsa_ext_image.h +1454 -0
- triton/backends/amd/include/hsa/hsa_ven_amd_aqlprofile.h +488 -0
- triton/backends/amd/include/hsa/hsa_ven_amd_loader.h +667 -0
- triton/backends/amd/include/roctracer/ext/prof_protocol.h +107 -0
- triton/backends/amd/include/roctracer/hip_ostream_ops.h +4435 -0
- triton/backends/amd/include/roctracer/hsa_ostream_ops.h +1467 -0
- triton/backends/amd/include/roctracer/hsa_prof_str.h +3027 -0
- triton/backends/amd/include/roctracer/roctracer.h +779 -0
- triton/backends/amd/include/roctracer/roctracer_ext.h +81 -0
- triton/backends/amd/include/roctracer/roctracer_hcc.h +24 -0
- triton/backends/amd/include/roctracer/roctracer_hip.h +37 -0
- triton/backends/amd/include/roctracer/roctracer_hsa.h +112 -0
- triton/backends/amd/include/roctracer/roctracer_plugin.h +137 -0
- triton/backends/amd/include/roctracer/roctracer_roctx.h +67 -0
- triton/backends/amd/include/roctracer/roctx.h +229 -0
- triton/backends/amd/lib/ockl.bc +0 -0
- triton/backends/amd/lib/ocml.bc +0 -0
- triton/backends/compiler.py +304 -0
- triton/backends/driver.py +48 -0
- triton/backends/nvidia/__init__.py +0 -0
- triton/backends/nvidia/bin/ptxas.exe +0 -0
- triton/backends/nvidia/compiler.py +410 -0
- triton/backends/nvidia/driver.c +451 -0
- triton/backends/nvidia/driver.py +524 -0
- triton/backends/nvidia/include/cuda.h +24359 -0
- triton/backends/nvidia/lib/libdevice.10.bc +0 -0
- triton/backends/nvidia/lib/x64/cuda.lib +0 -0
- triton/compiler/__init__.py +4 -0
- triton/compiler/code_generator.py +1303 -0
- triton/compiler/compiler.py +430 -0
- triton/compiler/errors.py +51 -0
- triton/compiler/make_launcher.py +0 -0
- triton/errors.py +5 -0
- triton/language/__init__.py +294 -0
- triton/language/_utils.py +21 -0
- triton/language/core.py +2694 -0
- triton/language/extra/__init__.py +26 -0
- triton/language/extra/cuda/__init__.py +13 -0
- triton/language/extra/cuda/_experimental_tma.py +108 -0
- triton/language/extra/cuda/libdevice.py +1629 -0
- triton/language/extra/cuda/utils.py +109 -0
- triton/language/extra/hip/__init__.py +3 -0
- triton/language/extra/hip/libdevice.py +475 -0
- triton/language/extra/libdevice.py +786 -0
- triton/language/math.py +250 -0
- triton/language/random.py +207 -0
- triton/language/semantic.py +1796 -0
- triton/language/standard.py +452 -0
- triton/runtime/__init__.py +23 -0
- triton/runtime/autotuner.py +408 -0
- triton/runtime/build.py +111 -0
- triton/runtime/cache.py +295 -0
- triton/runtime/driver.py +60 -0
- triton/runtime/errors.py +26 -0
- triton/runtime/interpreter.py +1235 -0
- triton/runtime/jit.py +951 -0
- triton/testing.py +511 -0
- triton/tools/__init__.py +0 -0
- triton/tools/build_extern.py +365 -0
- triton/tools/compile.c +67 -0
- triton/tools/compile.h +14 -0
- triton/tools/compile.py +155 -0
- triton/tools/disasm.py +144 -0
- triton/tools/experimental_descriptor.py +32 -0
- triton/tools/link.py +322 -0
- triton/windows_utils.py +375 -0
- triton_windows-3.2.0.post11.dist-info/METADATA +39 -0
- triton_windows-3.2.0.post11.dist-info/RECORD +154 -0
- triton_windows-3.2.0.post11.dist-info/WHEEL +5 -0
- triton_windows-3.2.0.post11.dist-info/top_level.txt +12 -0
|
@@ -0,0 +1,1796 @@
|
|
|
1
|
+
from __future__ import annotations # remove after python 3.11
|
|
2
|
+
import warnings
|
|
3
|
+
|
|
4
|
+
from typing import List, Optional, Sequence, Tuple, TypeVar
|
|
5
|
+
import numbers
|
|
6
|
+
|
|
7
|
+
from .._C.libtriton import ir
|
|
8
|
+
from . import core as tl
|
|
9
|
+
from . import math
|
|
10
|
+
|
|
11
|
+
T = TypeVar('T')
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class IncompatibleTypeErrorImpl(Exception):
|
|
15
|
+
|
|
16
|
+
def __init__(self, type_a, type_b):
|
|
17
|
+
self.type_a = type_a
|
|
18
|
+
self.type_b = type_b
|
|
19
|
+
self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__()
|
|
20
|
+
super(IncompatibleTypeErrorImpl, self).__init__(self.message)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
# ===----------------------------------------------------------------------===##
|
|
24
|
+
# Programming Model
|
|
25
|
+
# ===----------------------------------------------------------------------===##
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def program_id(axis: int, builder: ir.builder) -> tl.tensor:
|
|
29
|
+
if axis not in (0, 1, 2):
|
|
30
|
+
raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}")
|
|
31
|
+
return tl.tensor(builder.create_get_program_id(axis), tl.int32)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def num_programs(axis: int, builder: ir.builder) -> tl.tensor:
|
|
35
|
+
if axis not in (0, 1, 2):
|
|
36
|
+
raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}")
|
|
37
|
+
return tl.tensor(builder.create_get_num_programs(axis), tl.int32)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
# ===----------------------------------------------------------------------===//
|
|
41
|
+
# Implicit Casting Utilities
|
|
42
|
+
# ===----------------------------------------------------------------------===//
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def integer_promote_impl(a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype:
|
|
46
|
+
a_rank = a_ty.int_bitwidth
|
|
47
|
+
b_rank = b_ty.int_bitwidth
|
|
48
|
+
a_sn = a_ty.int_signedness
|
|
49
|
+
b_sn = b_ty.int_signedness
|
|
50
|
+
# Rules for signedness taken from "Usual arithmetic conversions" on
|
|
51
|
+
# https://en.cppreference.com/w/c/language/conversion.
|
|
52
|
+
if a_sn == b_sn:
|
|
53
|
+
return a_ty if a_rank > b_rank else b_ty
|
|
54
|
+
elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
|
|
55
|
+
return a_ty if a_rank >= b_rank else b_ty
|
|
56
|
+
elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
|
|
57
|
+
return b_ty if b_rank >= a_rank else a_ty
|
|
58
|
+
raise TypeError(f"unexpected signedness {a_sn} and {b_sn}")
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def computation_type_impl(a_ty: tl.dtype, a_is_scalar: bool, b_ty: tl.dtype, b_is_scalar: bool,
|
|
62
|
+
div_or_mod: bool) -> tl.dtype:
|
|
63
|
+
# 0) For scalars we follow semantics similar to PyTorch, namely:
|
|
64
|
+
# - If the scalar is of a lower or equal kind (bool < uint < int < fp),
|
|
65
|
+
# it doesn't participate in the pomotion
|
|
66
|
+
if a_is_scalar != b_is_scalar:
|
|
67
|
+
scalar_ty, tensor_ty = (a_ty, b_ty) if a_is_scalar else (b_ty, a_ty)
|
|
68
|
+
if scalar_ty.kind().value <= tensor_ty.kind().value:
|
|
69
|
+
# Upcast because of 3) and 4) below!
|
|
70
|
+
if div_or_mod and (tensor_ty in (tl.float16, tl.bfloat16)):
|
|
71
|
+
return tl.float32
|
|
72
|
+
return tensor_ty
|
|
73
|
+
|
|
74
|
+
# 1) if one operand is double, the other is implicitly
|
|
75
|
+
# converted to double
|
|
76
|
+
if a_ty.is_fp64() or b_ty.is_fp64():
|
|
77
|
+
return tl.float64
|
|
78
|
+
# 2) if one operand is float, the other is implicitly
|
|
79
|
+
# converted to float
|
|
80
|
+
if a_ty.is_fp32() or b_ty.is_fp32():
|
|
81
|
+
return tl.float32
|
|
82
|
+
# 3 ) if one operand is half, the other is implicitly converted to half
|
|
83
|
+
# unless we're doing / or %, which do not exist natively in PTX for fp16.
|
|
84
|
+
# Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp
|
|
85
|
+
if a_ty.is_fp16() or b_ty.is_fp16():
|
|
86
|
+
if div_or_mod:
|
|
87
|
+
return tl.float32
|
|
88
|
+
else:
|
|
89
|
+
return tl.float16
|
|
90
|
+
# 4) return bf16 only if both operands are of bf16
|
|
91
|
+
if a_ty.is_bf16() or b_ty.is_bf16():
|
|
92
|
+
if div_or_mod:
|
|
93
|
+
return tl.float32
|
|
94
|
+
if a_ty.is_bf16() and b_ty.is_bf16():
|
|
95
|
+
return tl.bfloat16
|
|
96
|
+
return tl.float32
|
|
97
|
+
# 5) return fp16 if operands are different fp8
|
|
98
|
+
if a_ty.is_fp8() and b_ty.is_fp8():
|
|
99
|
+
return a_ty if a_ty == b_ty else tl.float16
|
|
100
|
+
if not a_ty.is_int() or not b_ty.is_int():
|
|
101
|
+
raise TypeError(f"unexpected type {a_ty} and {b_ty}")
|
|
102
|
+
# 6 ) both operands are integer and undergo
|
|
103
|
+
# integer promotion
|
|
104
|
+
if div_or_mod and a_ty.int_signedness != b_ty.int_signedness:
|
|
105
|
+
raise TypeError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() +
|
|
106
|
+
" because they have different signedness;"
|
|
107
|
+
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
|
|
108
|
+
return integer_promote_impl(a_ty, b_ty)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def to_tensor(x, builder, check_type: bool = True):
|
|
112
|
+
if isinstance(x, bool):
|
|
113
|
+
return tl.tensor(builder.get_int1(x), tl.int1)
|
|
114
|
+
# Note: compile-time const integers are represented by unsigned values
|
|
115
|
+
elif isinstance(x, int):
|
|
116
|
+
if -2**31 <= x < 2**31:
|
|
117
|
+
dtype = tl.int32
|
|
118
|
+
elif 2**31 <= x < 2**32:
|
|
119
|
+
dtype = tl.uint32
|
|
120
|
+
elif -2**63 <= x < 2**63:
|
|
121
|
+
dtype = tl.int64
|
|
122
|
+
elif 2**63 <= x < 2**64:
|
|
123
|
+
dtype = tl.uint64
|
|
124
|
+
else:
|
|
125
|
+
raise ValueError(f'Nonrepresentable integer {x}.')
|
|
126
|
+
return full((), x, dtype=dtype, builder=builder)
|
|
127
|
+
elif isinstance(x, float):
|
|
128
|
+
min_float32 = 2**-126
|
|
129
|
+
max_float32 = (2 - 2**-23) * 2**127
|
|
130
|
+
abs_x = __builtins__['abs'](x)
|
|
131
|
+
if abs_x == float("inf") or\
|
|
132
|
+
abs_x == 0.0 or \
|
|
133
|
+
x != x or \
|
|
134
|
+
min_float32 <= abs_x <= max_float32:
|
|
135
|
+
dtype = tl.float32
|
|
136
|
+
else:
|
|
137
|
+
dtype = tl.float64
|
|
138
|
+
return full((), x, dtype=dtype, builder=builder)
|
|
139
|
+
|
|
140
|
+
elif isinstance(x, tl.constexpr):
|
|
141
|
+
return to_tensor(x.value, builder)
|
|
142
|
+
elif isinstance(x, tl.tensor):
|
|
143
|
+
return x
|
|
144
|
+
if check_type:
|
|
145
|
+
raise TypeError(f"cannot convert {x} of type {type(x)} to tensor")
|
|
146
|
+
return x
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
# ===----------------------------------------------------------------------===//
|
|
150
|
+
# Binary Operators
|
|
151
|
+
# ===----------------------------------------------------------------------===//
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def check_ptr_type_impl(type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None:
|
|
155
|
+
if type_a.is_ptr():
|
|
156
|
+
if not allow_ptr_a:
|
|
157
|
+
raise IncompatibleTypeErrorImpl(type_a, type_b)
|
|
158
|
+
# T* + U* with T != U
|
|
159
|
+
if type_b.is_ptr() and (type_a != type_b):
|
|
160
|
+
raise IncompatibleTypeErrorImpl(type_a, type_b)
|
|
161
|
+
# T* + float
|
|
162
|
+
if type_b.is_floating():
|
|
163
|
+
raise IncompatibleTypeErrorImpl(type_a, type_b)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def binary_op_type_checking_impl(lhs: tl.tensor | numbers.Number, rhs: tl.tensor | numbers.Number, builder: ir.builder,
|
|
167
|
+
allow_lhs_ptr=False, allow_rhs_ptr=False, arithmetic_check=True,
|
|
168
|
+
div_or_mod=False) -> Tuple[tl.tensor, tl.tensor]:
|
|
169
|
+
lhs_is_scalar = isinstance(lhs, numbers.Number)
|
|
170
|
+
rhs_is_scalar = isinstance(rhs, numbers.Number)
|
|
171
|
+
if lhs_is_scalar:
|
|
172
|
+
lhs_scalar = lhs
|
|
173
|
+
lhs = to_tensor(lhs, builder)
|
|
174
|
+
if rhs_is_scalar:
|
|
175
|
+
rhs_scalar = rhs
|
|
176
|
+
rhs = to_tensor(rhs, builder)
|
|
177
|
+
|
|
178
|
+
# implicit typecasting
|
|
179
|
+
lhs_sca_ty = lhs.type.scalar
|
|
180
|
+
rhs_sca_ty = rhs.type.scalar
|
|
181
|
+
check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr)
|
|
182
|
+
check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr)
|
|
183
|
+
if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr():
|
|
184
|
+
ret_sca_ty = computation_type_impl(lhs_sca_ty, lhs_is_scalar, rhs_sca_ty, rhs_is_scalar, div_or_mod)
|
|
185
|
+
if (lhs_is_scalar and lhs_scalar < 0 and ret_sca_ty.is_int_unsigned()
|
|
186
|
+
or rhs_is_scalar and rhs_scalar < 0 and ret_sca_ty.is_int_unsigned()):
|
|
187
|
+
raise ValueError("Cannot perform a binary operation between an unsigned tensor and a negative scalar. "
|
|
188
|
+
"Perform a explicit cast on one of them.")
|
|
189
|
+
lhs = full(
|
|
190
|
+
(), lhs_scalar, dtype=ret_sca_ty, builder=builder) if lhs_is_scalar else cast(lhs, ret_sca_ty, builder)
|
|
191
|
+
rhs = full(
|
|
192
|
+
(), rhs_scalar, dtype=ret_sca_ty, builder=builder) if rhs_is_scalar else cast(rhs, ret_sca_ty, builder)
|
|
193
|
+
|
|
194
|
+
# implicit broadcasting
|
|
195
|
+
lhs, rhs = broadcast_impl_value(lhs, rhs, builder)
|
|
196
|
+
return lhs, rhs
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def binary_op_sanitize_overflow_impl(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder, binary_op: callable):
|
|
200
|
+
if lhs.type.scalar.int_bitwidth >= 64 or not builder.options.sanitize_overflow:
|
|
201
|
+
return
|
|
202
|
+
lhs_sca_ty = lhs.type.scalar
|
|
203
|
+
rhs_sca_ty = rhs.type.scalar
|
|
204
|
+
assert lhs_sca_ty == rhs_sca_ty
|
|
205
|
+
assert lhs_sca_ty.is_int()
|
|
206
|
+
lhs = cast(lhs, tl.int64, builder)
|
|
207
|
+
rhs = cast(rhs, tl.int64, builder)
|
|
208
|
+
ret = binary_op(lhs, rhs, False, builder)
|
|
209
|
+
max_value = lhs_sca_ty.get_int_max_value()
|
|
210
|
+
max_value = tl.tensor(builder.get_int64(max_value), tl.int64)
|
|
211
|
+
min_value = lhs_sca_ty.get_int_min_value()
|
|
212
|
+
min_value = tl.tensor(builder.get_int64(min_value), tl.int64)
|
|
213
|
+
cond = and_(less_equal(ret, max_value, builder), greater_equal(ret, min_value, builder), builder)
|
|
214
|
+
msg = f"int{lhs_sca_ty.int_bitwidth} overflow detected for operation {binary_op.__name__}"
|
|
215
|
+
device_assert(cond, msg, builder)
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
def add(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, sanitize_overflow: bool,
|
|
219
|
+
builder: ir.builder) -> tl.tensor:
|
|
220
|
+
input, other = binary_op_type_checking_impl(input, other, builder, True, True)
|
|
221
|
+
input_scalar_ty = input.type.scalar
|
|
222
|
+
other_scalar_ty = other.type.scalar
|
|
223
|
+
if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr():
|
|
224
|
+
raise TypeError("cannot add pointers together")
|
|
225
|
+
|
|
226
|
+
# offset + ptr
|
|
227
|
+
# ptr + offset
|
|
228
|
+
if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr():
|
|
229
|
+
input, other = other, input
|
|
230
|
+
input_scalar_ty = input.type.scalar
|
|
231
|
+
other_scalar_ty = other.type.scalar
|
|
232
|
+
if input_scalar_ty.is_ptr():
|
|
233
|
+
return tl.tensor(builder.create_addptr(input.handle, other.handle), input.type)
|
|
234
|
+
# float + float
|
|
235
|
+
elif input_scalar_ty.is_floating():
|
|
236
|
+
return tl.tensor(builder.create_fadd(input.handle, other.handle), input.type)
|
|
237
|
+
# int + int
|
|
238
|
+
elif input_scalar_ty.is_int():
|
|
239
|
+
if sanitize_overflow:
|
|
240
|
+
binary_op_sanitize_overflow_impl(input, other, builder, add)
|
|
241
|
+
return tl.tensor(builder.create_add(input.handle, other.handle), input.type)
|
|
242
|
+
raise TypeError(f"unexpected type {input_scalar_ty}")
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def sub(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, sanitize_overflow: bool,
|
|
246
|
+
builder: ir.builder) -> tl.tensor:
|
|
247
|
+
input, other = binary_op_type_checking_impl(input, other, builder, True, False)
|
|
248
|
+
scalar_ty = input.type.scalar
|
|
249
|
+
# ptr - offset
|
|
250
|
+
if scalar_ty.is_ptr():
|
|
251
|
+
return tl.tensor(builder.create_addptr(input.handle, minus(other, builder).handle), input.type)
|
|
252
|
+
# float - float
|
|
253
|
+
if scalar_ty.is_floating():
|
|
254
|
+
return tl.tensor(builder.create_fsub(input.handle, other.handle), input.type)
|
|
255
|
+
# int - int
|
|
256
|
+
elif scalar_ty.is_int():
|
|
257
|
+
if sanitize_overflow:
|
|
258
|
+
binary_op_sanitize_overflow_impl(input, other, builder, sub)
|
|
259
|
+
return tl.tensor(builder.create_sub(input.handle, other.handle), input.type)
|
|
260
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
def mul(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, sanitize_overflow: bool,
|
|
264
|
+
builder: ir.builder) -> tl.tensor:
|
|
265
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
266
|
+
scalar_ty = input.type.scalar
|
|
267
|
+
# float * float
|
|
268
|
+
if scalar_ty.is_floating():
|
|
269
|
+
return tl.tensor(builder.create_fmul(input.handle, other.handle), input.type)
|
|
270
|
+
# int * int
|
|
271
|
+
elif scalar_ty.is_int():
|
|
272
|
+
if sanitize_overflow:
|
|
273
|
+
binary_op_sanitize_overflow_impl(input, other, builder, mul)
|
|
274
|
+
return tl.tensor(builder.create_mul(input.handle, other.handle), input.type)
|
|
275
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
def truediv(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, builder: ir.builder) -> tl.tensor:
|
|
279
|
+
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
|
|
280
|
+
input_scalar_ty = input.type.scalar
|
|
281
|
+
other_scalar_ty = other.type.scalar
|
|
282
|
+
# float / int
|
|
283
|
+
if input_scalar_ty.is_floating() and other_scalar_ty.is_int():
|
|
284
|
+
other = cast(other, input_scalar_ty, builder)
|
|
285
|
+
# int / float
|
|
286
|
+
elif input_scalar_ty.is_int() and other_scalar_ty.is_floating():
|
|
287
|
+
input = cast(input, other_scalar_ty, builder)
|
|
288
|
+
# int / int (cast to tl.float32)
|
|
289
|
+
elif input_scalar_ty.is_int() and other_scalar_ty.is_int():
|
|
290
|
+
input = cast(input, tl.float32, builder)
|
|
291
|
+
other = cast(other, tl.float32, builder)
|
|
292
|
+
# float / float (cast to the highest exponent type)
|
|
293
|
+
elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating():
|
|
294
|
+
if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width:
|
|
295
|
+
other = cast(other, input_scalar_ty, builder)
|
|
296
|
+
else:
|
|
297
|
+
input = cast(input, other_scalar_ty, builder)
|
|
298
|
+
# unreachable
|
|
299
|
+
else:
|
|
300
|
+
raise TypeError(f"unexpected type {input_scalar_ty}")
|
|
301
|
+
return tl.tensor(builder.create_fdiv(input.handle, other.handle), input.type)
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
def floordiv(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, builder: ir.builder) -> tl.tensor:
|
|
305
|
+
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
|
|
306
|
+
input_scalar_ty = input.type.scalar
|
|
307
|
+
other_scalar_ty = other.type.scalar
|
|
308
|
+
if input_scalar_ty.is_int() and other_scalar_ty.is_int():
|
|
309
|
+
ret_ty = integer_promote_impl(input_scalar_ty, other_scalar_ty)
|
|
310
|
+
input = cast(input, ret_ty, builder)
|
|
311
|
+
other = cast(other, ret_ty, builder)
|
|
312
|
+
if ret_ty.is_int_signed():
|
|
313
|
+
return tl.tensor(builder.create_sdiv(input.handle, other.handle), input.type)
|
|
314
|
+
else:
|
|
315
|
+
return tl.tensor(builder.create_udiv(input.handle, other.handle), input.type)
|
|
316
|
+
raise TypeError(f"unexpected type {input_scalar_ty}")
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def fdiv(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, ieee_rounding: bool,
|
|
320
|
+
builder: ir.builder) -> tl.tensor:
|
|
321
|
+
input_scalar_ty = input.type.scalar
|
|
322
|
+
other_scalar_ty = other.type.scalar
|
|
323
|
+
if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating():
|
|
324
|
+
raise TypeError("both operands of fdiv must have floating scalar type")
|
|
325
|
+
input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True)
|
|
326
|
+
ret = builder.create_fdiv(input.handle, other.handle)
|
|
327
|
+
return tl.tensor(ret, input.type)
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
def mod(input: tl.tensor | numbers.Number, other: tl.tensor | numbers.Number, builder: ir.builder) -> tl.tensor:
|
|
331
|
+
input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True)
|
|
332
|
+
scalar_ty = input.type.scalar
|
|
333
|
+
other_scalar_ty = other.type.scalar
|
|
334
|
+
# float % float
|
|
335
|
+
if scalar_ty.is_floating():
|
|
336
|
+
# input - input.div(other, rounding_mode="floor") * other
|
|
337
|
+
floor = math.floor(fdiv(input, other, False, builder), _builder=builder)
|
|
338
|
+
ret = sub(input, mul(floor, other, True, builder), True, builder)
|
|
339
|
+
return ret
|
|
340
|
+
# % int
|
|
341
|
+
elif scalar_ty.is_int():
|
|
342
|
+
if scalar_ty.int_signedness != other_scalar_ty.int_signedness:
|
|
343
|
+
raise TypeError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " "
|
|
344
|
+
"because they have different signedness;"
|
|
345
|
+
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
|
|
346
|
+
if scalar_ty.is_int_signed():
|
|
347
|
+
return tl.tensor(builder.create_srem(input.handle, other.handle), input.type)
|
|
348
|
+
else:
|
|
349
|
+
return tl.tensor(builder.create_urem(input.handle, other.handle), input.type)
|
|
350
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
##############
|
|
354
|
+
# other arithmetic ops
|
|
355
|
+
##############
|
|
356
|
+
|
|
357
|
+
|
|
358
|
+
def minimum(x: tl.tensor, y: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder):
|
|
359
|
+
x, y = binary_op_type_checking_impl(x, y, builder)
|
|
360
|
+
dtype = x.dtype
|
|
361
|
+
if dtype.is_floating():
|
|
362
|
+
if propagate_nan == tl.PropagateNan.ALL:
|
|
363
|
+
return tl.tensor(builder.create_minimumf(x.handle, y.handle), x.type)
|
|
364
|
+
elif propagate_nan == tl.PropagateNan.NONE:
|
|
365
|
+
return tl.tensor(builder.create_minnumf(x.handle, y.handle), x.type)
|
|
366
|
+
else:
|
|
367
|
+
raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
|
|
368
|
+
elif dtype.is_int_signed():
|
|
369
|
+
return tl.tensor(builder.create_minsi(x.handle, y.handle), x.type)
|
|
370
|
+
elif dtype.is_int_unsigned():
|
|
371
|
+
return tl.tensor(builder.create_minui(x.handle, y.handle), x.type)
|
|
372
|
+
else:
|
|
373
|
+
raise TypeError(f"Unexpected dtype {dtype}")
|
|
374
|
+
|
|
375
|
+
|
|
376
|
+
def maximum(x: tl.tensor, y: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder):
|
|
377
|
+
x, y = binary_op_type_checking_impl(x, y, builder)
|
|
378
|
+
dtype = x.dtype
|
|
379
|
+
if dtype.is_floating():
|
|
380
|
+
if propagate_nan == tl.PropagateNan.ALL:
|
|
381
|
+
return tl.tensor(builder.create_maximumf(x.handle, y.handle), x.type)
|
|
382
|
+
elif propagate_nan == tl.PropagateNan.NONE:
|
|
383
|
+
return tl.tensor(builder.create_maxnumf(x.handle, y.handle), x.type)
|
|
384
|
+
else:
|
|
385
|
+
raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
|
|
386
|
+
elif dtype.is_int_signed():
|
|
387
|
+
return tl.tensor(builder.create_maxsi(x.handle, y.handle), x.type)
|
|
388
|
+
elif dtype.is_int_unsigned():
|
|
389
|
+
return tl.tensor(builder.create_maxui(x.handle, y.handle), x.type)
|
|
390
|
+
else:
|
|
391
|
+
raise TypeError(f"Unexpected dtype {dtype}")
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
def clamp(x: tl.tensor, min: tl.tensor, max: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder):
|
|
395
|
+
min, max = binary_op_type_checking_impl(min, max, builder)
|
|
396
|
+
x, min = binary_op_type_checking_impl(x, min, builder)
|
|
397
|
+
x, max = binary_op_type_checking_impl(x, max, builder)
|
|
398
|
+
|
|
399
|
+
dtype = x.dtype
|
|
400
|
+
if dtype.is_floating():
|
|
401
|
+
return tl.tensor(builder.create_clampf(x.handle, min.handle, max.handle, propagate_nan), x.type)
|
|
402
|
+
else:
|
|
403
|
+
raise TypeError(f"Unexpected dtype {dtype}. Only floating point clamp is supported")
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
##############
|
|
407
|
+
# bitwise ops
|
|
408
|
+
##############
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def bitwise_op_type_checking_impl(input: tl.tensor, other: tl.tensor,
|
|
412
|
+
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]:
|
|
413
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
414
|
+
input_sca_ty = input.type.scalar
|
|
415
|
+
other_sca_ty = other.type.scalar
|
|
416
|
+
if not input_sca_ty.is_int() or not other_sca_ty.is_int():
|
|
417
|
+
raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty)
|
|
418
|
+
ret_sca_ty = integer_promote_impl(input_sca_ty, other_sca_ty)
|
|
419
|
+
if ret_sca_ty != input_sca_ty:
|
|
420
|
+
input = cast(input, ret_sca_ty, builder)
|
|
421
|
+
if ret_sca_ty != other_sca_ty:
|
|
422
|
+
other = cast(other, ret_sca_ty, builder)
|
|
423
|
+
return input, other
|
|
424
|
+
|
|
425
|
+
|
|
426
|
+
def and_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
427
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
428
|
+
return tl.tensor(builder.create_and(input.handle, other.handle), input.type)
|
|
429
|
+
|
|
430
|
+
|
|
431
|
+
def or_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
432
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
433
|
+
return tl.tensor(builder.create_or(input.handle, other.handle), input.type)
|
|
434
|
+
|
|
435
|
+
|
|
436
|
+
def xor_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
437
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
438
|
+
return tl.tensor(builder.create_xor(input.handle, other.handle), input.type)
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
def logical_and(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
442
|
+
if not input.type.is_int1():
|
|
443
|
+
input = bitcast(input, tl.dtype("int1"), builder)
|
|
444
|
+
if not other.type.is_int1():
|
|
445
|
+
other = bitcast(other, tl.dtype("int1"), builder)
|
|
446
|
+
return and_(input, other, builder)
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
def logical_or(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
450
|
+
if not input.type.is_int1():
|
|
451
|
+
input = bitcast(input, tl.dtype("int1"), builder)
|
|
452
|
+
if not other.type.is_int1():
|
|
453
|
+
other = bitcast(other, tl.dtype("int1"), builder)
|
|
454
|
+
return or_(input, other, builder)
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
def not_(input: tl.tensor, builder: ir.builder):
|
|
458
|
+
if not input.type.is_int1():
|
|
459
|
+
input = bitcast(input, tl.dtype("int1"), builder)
|
|
460
|
+
return invert(input, builder)
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
def lshr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
464
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
465
|
+
return tl.tensor(builder.create_lshr(input.handle, other.handle), input.type)
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
def ashr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
469
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
470
|
+
return tl.tensor(builder.create_ashr(input.handle, other.handle), input.type)
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
def shl(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
474
|
+
input, other = bitwise_op_type_checking_impl(input, other, builder)
|
|
475
|
+
return tl.tensor(builder.create_shl(input.handle, other.handle), input.type)
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
# ===----------------------------------------------------------------------===//
|
|
479
|
+
# Unary Operators
|
|
480
|
+
# ===----------------------------------------------------------------------===//
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
def plus(input: tl.tensor) -> tl.tensor:
|
|
484
|
+
return input
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
def minus(input: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
488
|
+
input_sca_ty = input.type.scalar
|
|
489
|
+
if input_sca_ty.is_ptr():
|
|
490
|
+
raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")")
|
|
491
|
+
_0 = tl.tensor(builder.get_null_value(input_sca_ty.to_ir(builder)), input_sca_ty)
|
|
492
|
+
return sub(_0, input, True, builder)
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
def invert(input: tl.tensor, builder: tl.tensor) -> tl.tensor:
|
|
496
|
+
input_sca_ty = input.type.scalar
|
|
497
|
+
if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
|
|
498
|
+
raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
|
|
499
|
+
_1 = tl.tensor(builder.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty)
|
|
500
|
+
return xor_(input, _1, builder)
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
# ===----------------------------------------------------------------------===//
|
|
504
|
+
# Comparison Operators
|
|
505
|
+
# ===----------------------------------------------------------------------===//
|
|
506
|
+
def _bool_like(v: tl.tensor) -> tl.block_type:
|
|
507
|
+
if not v.type.is_block():
|
|
508
|
+
return tl.int1
|
|
509
|
+
shape = v.type.shape
|
|
510
|
+
return tl.block_type(tl.int1, shape)
|
|
511
|
+
|
|
512
|
+
|
|
513
|
+
def greater_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
514
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
515
|
+
scalar_ty = input.type.scalar
|
|
516
|
+
# float > float
|
|
517
|
+
if scalar_ty.is_floating():
|
|
518
|
+
return tl.tensor(builder.create_fcmpOGT(input.handle, other.handle), _bool_like(input))
|
|
519
|
+
# > int
|
|
520
|
+
elif scalar_ty.is_int():
|
|
521
|
+
if scalar_ty.is_int_signed():
|
|
522
|
+
return tl.tensor(builder.create_icmpSGT(input.handle, other.handle), _bool_like(input))
|
|
523
|
+
else:
|
|
524
|
+
return tl.tensor(builder.create_icmpUGT(input.handle, other.handle), _bool_like(input))
|
|
525
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
526
|
+
|
|
527
|
+
|
|
528
|
+
def greater_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
529
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
530
|
+
scalar_ty = input.type.scalar
|
|
531
|
+
# float >= float
|
|
532
|
+
if scalar_ty.is_floating():
|
|
533
|
+
return tl.tensor(builder.create_fcmpOGE(input.handle, other.handle), _bool_like(input))
|
|
534
|
+
# >= int
|
|
535
|
+
elif scalar_ty.is_int():
|
|
536
|
+
if scalar_ty.is_int_signed():
|
|
537
|
+
return tl.tensor(builder.create_icmpSGE(input.handle, other.handle), _bool_like(input))
|
|
538
|
+
else:
|
|
539
|
+
return tl.tensor(builder.create_icmpUGE(input.handle, other.handle), _bool_like(input))
|
|
540
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
def less_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
544
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
545
|
+
scalar_ty = input.type.scalar
|
|
546
|
+
# float < float
|
|
547
|
+
if scalar_ty.is_floating():
|
|
548
|
+
return tl.tensor(builder.create_fcmpOLT(input.handle, other.handle), _bool_like(input))
|
|
549
|
+
# < int
|
|
550
|
+
elif scalar_ty.is_int():
|
|
551
|
+
if scalar_ty.is_int_signed():
|
|
552
|
+
return tl.tensor(builder.create_icmpSLT(input.handle, other.handle), _bool_like(input))
|
|
553
|
+
else:
|
|
554
|
+
return tl.tensor(builder.create_icmpULT(input.handle, other.handle), _bool_like(input))
|
|
555
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
def less_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
559
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
560
|
+
scalar_ty = input.type.scalar
|
|
561
|
+
# float < float
|
|
562
|
+
if scalar_ty.is_floating():
|
|
563
|
+
return tl.tensor(builder.create_fcmpOLE(input.handle, other.handle), _bool_like(input))
|
|
564
|
+
# < int
|
|
565
|
+
elif scalar_ty.is_int():
|
|
566
|
+
if scalar_ty.is_int_signed():
|
|
567
|
+
return tl.tensor(builder.create_icmpSLE(input.handle, other.handle), _bool_like(input))
|
|
568
|
+
else:
|
|
569
|
+
return tl.tensor(builder.create_icmpULE(input.handle, other.handle), _bool_like(input))
|
|
570
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
571
|
+
|
|
572
|
+
|
|
573
|
+
def equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
574
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
575
|
+
scalar_ty = input.type.scalar
|
|
576
|
+
# float == float
|
|
577
|
+
if scalar_ty.is_floating():
|
|
578
|
+
return tl.tensor(builder.create_fcmpOEQ(input.handle, other.handle), _bool_like(input))
|
|
579
|
+
# == int
|
|
580
|
+
elif scalar_ty.is_int():
|
|
581
|
+
return tl.tensor(builder.create_icmpEQ(input.handle, other.handle), _bool_like(input))
|
|
582
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
583
|
+
|
|
584
|
+
|
|
585
|
+
def not_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
586
|
+
input, other = binary_op_type_checking_impl(input, other, builder)
|
|
587
|
+
scalar_ty = input.type.scalar
|
|
588
|
+
# float == float
|
|
589
|
+
if scalar_ty.is_floating():
|
|
590
|
+
return tl.tensor(builder.create_fcmpUNE(input.handle, other.handle), _bool_like(input))
|
|
591
|
+
# == int
|
|
592
|
+
elif scalar_ty.is_int():
|
|
593
|
+
return tl.tensor(builder.create_icmpNE(input.handle, other.handle), _bool_like(input))
|
|
594
|
+
raise TypeError(f"unexpected type {scalar_ty}")
|
|
595
|
+
|
|
596
|
+
|
|
597
|
+
# ===----------------------------------------------------------------------===//
|
|
598
|
+
# Block Creation
|
|
599
|
+
# ===----------------------------------------------------------------------===//
|
|
600
|
+
|
|
601
|
+
|
|
602
|
+
def arange(start: int, end: int, builder: ir.builder) -> tl.tensor:
|
|
603
|
+
if not isinstance(start, int) or not isinstance(end, int):
|
|
604
|
+
raise ValueError("arange's arguments must be of type tl.constexpr")
|
|
605
|
+
is_start_int64 = bool(start >> 32)
|
|
606
|
+
is_end_int64 = bool(end >> 32)
|
|
607
|
+
if is_start_int64 or is_end_int64:
|
|
608
|
+
raise ValueError("arange must fit in int32")
|
|
609
|
+
if end <= start:
|
|
610
|
+
raise ValueError("arange's end argument must be greater than the start argument")
|
|
611
|
+
range = end - start
|
|
612
|
+
if (range & (range - 1)) != 0:
|
|
613
|
+
raise ValueError("arange's range must be a power of 2")
|
|
614
|
+
shape = [range]
|
|
615
|
+
ret_ty = tl.block_type(tl.int32, shape)
|
|
616
|
+
return tl.tensor(builder.create_make_range(start, end), ret_ty)
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
def full(shape: List[int], value, dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
|
|
620
|
+
if isinstance(value, tl.tensor):
|
|
621
|
+
assert value.numel.value == 1, "only accepts size-1 tensor"
|
|
622
|
+
value = cast(value, dtype, builder)
|
|
623
|
+
else:
|
|
624
|
+
# scalar
|
|
625
|
+
if dtype is None:
|
|
626
|
+
raise ValueError("dtype must be specified when value is not a tensor")
|
|
627
|
+
if value == 0:
|
|
628
|
+
value = builder.get_null_value(dtype.to_ir(builder))
|
|
629
|
+
else:
|
|
630
|
+
get_value_fn = getattr(builder, f"get_{dtype.name}")
|
|
631
|
+
value = get_value_fn(value)
|
|
632
|
+
value = tl.tensor(value, dtype)
|
|
633
|
+
|
|
634
|
+
return splat(value, shape, builder)
|
|
635
|
+
|
|
636
|
+
|
|
637
|
+
# ===----------------------------------------------------------------------===//
|
|
638
|
+
# Shape Manipulation
|
|
639
|
+
# ===----------------------------------------------------------------------===//
|
|
640
|
+
|
|
641
|
+
|
|
642
|
+
def splat(value: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
|
|
643
|
+
assert not value.type.is_block(), "Cannot splat a block tensor"
|
|
644
|
+
if len(shape) == 0:
|
|
645
|
+
return value
|
|
646
|
+
ret_ty = tl.block_type(value.dtype, shape)
|
|
647
|
+
return tl.tensor(builder.create_splat(value.handle, shape), ret_ty)
|
|
648
|
+
|
|
649
|
+
|
|
650
|
+
def reshape(input: tl.tensor, dst_shape: List[int], can_reorder: bool, builder: ir.builder) -> tl.tensor:
|
|
651
|
+
numel = 1
|
|
652
|
+
for s in dst_shape:
|
|
653
|
+
numel *= s
|
|
654
|
+
if input.type.numel != numel:
|
|
655
|
+
raise ValueError("reshape() cannot change total number of elements in tensor")
|
|
656
|
+
ret_ty = tl.block_type(input.type.scalar, dst_shape)
|
|
657
|
+
return tl.tensor(builder.create_reshape(input.handle, dst_shape, can_reorder), ret_ty)
|
|
658
|
+
|
|
659
|
+
|
|
660
|
+
def expand_dims(input: tl.tensor, axis: int, builder: ir.builder) -> tl.tensor:
|
|
661
|
+
dst_shape = [tl._constexpr_to_value(x) for x in input.shape]
|
|
662
|
+
dst_shape.insert(axis, 1)
|
|
663
|
+
|
|
664
|
+
if not input.type.is_block():
|
|
665
|
+
return splat(input, shape=dst_shape, builder=builder)
|
|
666
|
+
|
|
667
|
+
ret_ty = tl.block_type(input.type.scalar, dst_shape)
|
|
668
|
+
return tl.tensor(builder.create_expand_dims(input.handle, axis), ret_ty)
|
|
669
|
+
|
|
670
|
+
|
|
671
|
+
def cat(lhs: tl.tensor, rhs: tl.tensor, can_reorder: bool, builder: ir.builder) -> tl.tensor:
|
|
672
|
+
assert can_reorder, "current implementation of `cat` always may reorder elements"
|
|
673
|
+
assert len(lhs.shape) == 1
|
|
674
|
+
ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]])
|
|
675
|
+
return tl.tensor(builder.create_cat(lhs.handle, rhs.handle), ret_type)
|
|
676
|
+
|
|
677
|
+
|
|
678
|
+
def join(a: tl.tensor, b: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
679
|
+
a, b = broadcast_impl_value(a, b, builder)
|
|
680
|
+
|
|
681
|
+
# The IR can't handle joining two scalars, so upcast them to 1D tensors,
|
|
682
|
+
# then downcast the result.
|
|
683
|
+
was_rank_1 = a.shape == []
|
|
684
|
+
if was_rank_1:
|
|
685
|
+
a = expand_dims(a, 0, builder)
|
|
686
|
+
b = expand_dims(b, 0, builder)
|
|
687
|
+
|
|
688
|
+
if isinstance(a.shape[-1], tl.constexpr):
|
|
689
|
+
two = tl.constexpr(2)
|
|
690
|
+
else:
|
|
691
|
+
two = 2
|
|
692
|
+
new_shape = a.shape + [two]
|
|
693
|
+
|
|
694
|
+
ret_type = tl.block_type(a.type.scalar, new_shape)
|
|
695
|
+
ret = tl.tensor(builder.create_join(a.handle, b.handle), ret_type)
|
|
696
|
+
|
|
697
|
+
if was_rank_1:
|
|
698
|
+
ret = reshape(ret, [2], can_reorder=False, builder=builder)
|
|
699
|
+
|
|
700
|
+
return ret
|
|
701
|
+
|
|
702
|
+
|
|
703
|
+
def split(a: tl.tensor, builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]:
|
|
704
|
+
assert (len(a.shape) > 0)
|
|
705
|
+
assert (tl._constexpr_to_value(a.shape[-1]) == 2)
|
|
706
|
+
|
|
707
|
+
new_shape = a.shape[:-1]
|
|
708
|
+
ret_type = tl.block_type(a.type.scalar, new_shape)
|
|
709
|
+
outLHS, outRHS = builder.create_split(a.handle)
|
|
710
|
+
return (
|
|
711
|
+
tl.tensor(outLHS, ret_type),
|
|
712
|
+
tl.tensor(outRHS, ret_type),
|
|
713
|
+
)
|
|
714
|
+
|
|
715
|
+
|
|
716
|
+
def permute(input: tl.tensor, dims: Tuple[int], builder: ir.builder) -> tl.tensor:
|
|
717
|
+
if len(input.shape) != len(dims):
|
|
718
|
+
raise ValueError("permute dims must have the same length as input shape")
|
|
719
|
+
if sorted(tl._constexpr_to_value(d) for d in dims) != list(range(len(dims))):
|
|
720
|
+
raise ValueError(f"permute dims must be a permutation of 0, 1, ..., n-1, but were {dims}")
|
|
721
|
+
|
|
722
|
+
ret_type = tl.block_type(input.type.scalar, [input.shape[d] for d in dims])
|
|
723
|
+
return tl.tensor(builder.create_trans(input.handle, dims), ret_type)
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
def broadcast_impl_shape(input: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor:
|
|
727
|
+
if not input.type.is_block():
|
|
728
|
+
ret_ty = tl.block_type(input.type, shape)
|
|
729
|
+
return tl.tensor(builder.create_splat(input.handle, shape), ret_ty)
|
|
730
|
+
src_shape = input.type.get_block_shapes()
|
|
731
|
+
if len(src_shape) != len(shape):
|
|
732
|
+
raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}")
|
|
733
|
+
if shape == src_shape:
|
|
734
|
+
return input
|
|
735
|
+
for i, item in enumerate(src_shape):
|
|
736
|
+
if shape[i] != item and item != 1:
|
|
737
|
+
raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
|
|
738
|
+
f" must match the existing size ({item}) at non-singleton dimension"
|
|
739
|
+
f" {i}: {src_shape}, {shape}")
|
|
740
|
+
ret_ty = tl.block_type(input.type.scalar, shape)
|
|
741
|
+
return tl.tensor(builder.create_broadcast(input.handle, shape), ret_ty)
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
def broadcast_impl_value(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
745
|
+
lhs_ty = lhs.type
|
|
746
|
+
rhs_ty = rhs.type
|
|
747
|
+
|
|
748
|
+
# make_shape_compatible(block, scalar)
|
|
749
|
+
if lhs_ty.is_block() and not rhs_ty.is_block():
|
|
750
|
+
rhs_ty = tl.block_type(rhs_ty.scalar, lhs_ty.shape)
|
|
751
|
+
rhs = tl.tensor(builder.create_splat(rhs.handle, lhs_ty.get_block_shapes()), rhs_ty)
|
|
752
|
+
# make_shape_compatible(scalar, block)
|
|
753
|
+
elif not lhs_ty.is_block() and rhs_ty.is_block():
|
|
754
|
+
lhs_ty = tl.block_type(lhs_ty.scalar, rhs_ty.shape)
|
|
755
|
+
lhs = tl.tensor(builder.create_splat(lhs.handle, rhs_ty.get_block_shapes()), lhs_ty)
|
|
756
|
+
# make_shape_compatible(block, block)
|
|
757
|
+
elif lhs_ty.is_block() and rhs_ty.is_block():
|
|
758
|
+
lhs_shape = lhs_ty.get_block_shapes()
|
|
759
|
+
rhs_shape = rhs_ty.get_block_shapes()
|
|
760
|
+
|
|
761
|
+
if len(lhs_shape) < len(rhs_shape):
|
|
762
|
+
# Add new axes to lhs
|
|
763
|
+
for _ in range(len(lhs_shape), len(rhs_shape)):
|
|
764
|
+
lhs = tl.tensor(builder.create_expand_dims(lhs.handle, 0),
|
|
765
|
+
tl.block_type(lhs_ty.scalar, [1] + lhs_shape))
|
|
766
|
+
lhs_ty = lhs.type
|
|
767
|
+
lhs_shape = lhs_ty.get_block_shapes()
|
|
768
|
+
elif len(rhs_shape) < len(lhs_shape):
|
|
769
|
+
# Add new axes to rhs
|
|
770
|
+
for _ in range(len(rhs_shape), len(lhs_shape)):
|
|
771
|
+
rhs = tl.tensor(builder.create_expand_dims(rhs.handle, 0),
|
|
772
|
+
tl.block_type(rhs_ty.scalar, [1] + rhs_shape))
|
|
773
|
+
rhs_ty = rhs.type
|
|
774
|
+
rhs_shape = rhs_ty.get_block_shapes()
|
|
775
|
+
assert len(rhs_shape) == len(lhs_shape)
|
|
776
|
+
|
|
777
|
+
ret_shape = []
|
|
778
|
+
for i, left in enumerate(lhs_shape):
|
|
779
|
+
right = rhs_shape[i]
|
|
780
|
+
if left == 1:
|
|
781
|
+
ret_shape.append(right)
|
|
782
|
+
elif (right == 1) or (right == left):
|
|
783
|
+
ret_shape.append(left)
|
|
784
|
+
else:
|
|
785
|
+
raise ValueError("Cannot make_shape_compatible: incompatible dimensions "
|
|
786
|
+
"at index " + str(i) + ": " + str(left) + " and " + str(right))
|
|
787
|
+
if lhs_shape != ret_shape:
|
|
788
|
+
ret_ty = tl.block_type(lhs_ty.scalar, ret_shape)
|
|
789
|
+
lhs = tl.tensor(builder.create_broadcast(lhs.handle, ret_shape), ret_ty)
|
|
790
|
+
if rhs_shape != ret_shape:
|
|
791
|
+
ret_ty = tl.block_type(rhs_ty.scalar, ret_shape)
|
|
792
|
+
rhs = tl.tensor(builder.create_broadcast(rhs.handle, ret_shape), ret_ty)
|
|
793
|
+
# (scalar, scalar) => returns original blocks
|
|
794
|
+
return lhs, rhs
|
|
795
|
+
|
|
796
|
+
|
|
797
|
+
#######
|
|
798
|
+
# cast
|
|
799
|
+
#######
|
|
800
|
+
|
|
801
|
+
|
|
802
|
+
def _str_to_rounding_mode(rounding_mode: Optional[str]):
|
|
803
|
+
if rounding_mode is None:
|
|
804
|
+
return None
|
|
805
|
+
if rounding_mode == 'rtne':
|
|
806
|
+
return ir.ROUNDING_MODE.RTNE
|
|
807
|
+
if rounding_mode == 'rtz':
|
|
808
|
+
return ir.ROUNDING_MODE.RTZ
|
|
809
|
+
raise ValueError(f"Invalid rounding mode: {rounding_mode}. Supported rounding modes are 'rtne' and 'rtz'.")
|
|
810
|
+
|
|
811
|
+
|
|
812
|
+
def bitcast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor:
|
|
813
|
+
src_ty = input.type
|
|
814
|
+
if src_ty.is_block():
|
|
815
|
+
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
|
|
816
|
+
if src_ty == dst_ty:
|
|
817
|
+
return input
|
|
818
|
+
src_sca_ty = src_ty.scalar
|
|
819
|
+
dst_sca_ty = dst_ty.scalar
|
|
820
|
+
if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr():
|
|
821
|
+
return cast(input, dst_ty, builder)
|
|
822
|
+
# Bitcast
|
|
823
|
+
src_bits = src_sca_ty.primitive_bitwidth
|
|
824
|
+
dst_bits = dst_sca_ty.primitive_bitwidth
|
|
825
|
+
if src_bits != dst_bits:
|
|
826
|
+
raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to "
|
|
827
|
+
"data-type of size " + str(dst_bits))
|
|
828
|
+
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
829
|
+
|
|
830
|
+
|
|
831
|
+
def cast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder,
|
|
832
|
+
fp_downcast_rounding: Optional[str] = None) -> tl.tensor:
|
|
833
|
+
src_ty = input.type
|
|
834
|
+
if isinstance(dst_ty, tl.constexpr):
|
|
835
|
+
dst_ty = dst_ty.value
|
|
836
|
+
if isinstance(fp_downcast_rounding, tl.constexpr):
|
|
837
|
+
fp_downcast_rounding = fp_downcast_rounding.value
|
|
838
|
+
if src_ty.is_block():
|
|
839
|
+
dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes())
|
|
840
|
+
if src_ty == dst_ty:
|
|
841
|
+
return input
|
|
842
|
+
|
|
843
|
+
src_sca_ty = src_ty.scalar
|
|
844
|
+
dst_sca_ty = dst_ty.scalar
|
|
845
|
+
|
|
846
|
+
# For fp downcasting default rounding mode should be RTNE, for all other conversions it should
|
|
847
|
+
# not be set
|
|
848
|
+
fp_downcast_rounding = _str_to_rounding_mode(fp_downcast_rounding)
|
|
849
|
+
use_custom_rounding = False
|
|
850
|
+
if dst_sca_ty.is_floating() and src_sca_ty.is_floating(
|
|
851
|
+
) and dst_sca_ty.primitive_bitwidth < src_sca_ty.primitive_bitwidth:
|
|
852
|
+
if fp_downcast_rounding is None: fp_downcast_rounding = ir.ROUNDING_MODE.RTNE
|
|
853
|
+
elif fp_downcast_rounding != ir.ROUNDING_MODE.RTNE: use_custom_rounding = True
|
|
854
|
+
else:
|
|
855
|
+
if fp_downcast_rounding is not None:
|
|
856
|
+
raise ValueError("fp_downcast_rounding should be set only for truncating fp conversions. "
|
|
857
|
+
"Source scalar type is " + str(src_sca_ty) + " and destination type is " + str(dst_sca_ty))
|
|
858
|
+
|
|
859
|
+
if (src_sca_ty.is_fp8e4b15() or dst_sca_ty.is_fp8e4b15()):
|
|
860
|
+
assert builder.codegen_fns.get(
|
|
861
|
+
"convert_custom_types") is not None, "target doesn't provide conversion for this type."
|
|
862
|
+
return builder.codegen_fns["convert_custom_types"](input, dst_ty, fp_downcast_rounding, _builder=builder)
|
|
863
|
+
# Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64
|
|
864
|
+
# and non-default rounding modes for downcasting
|
|
865
|
+
if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \
|
|
866
|
+
(src_sca_ty.is_floating() and dst_sca_ty.is_fp8()) or \
|
|
867
|
+
use_custom_rounding:
|
|
868
|
+
return tl.tensor(builder.create_fp_to_fp(input.handle, dst_ty.to_ir(builder), fp_downcast_rounding), dst_ty)
|
|
869
|
+
|
|
870
|
+
# bf16 <=> (not fp32)
|
|
871
|
+
if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \
|
|
872
|
+
(src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()):
|
|
873
|
+
return cast(cast(input, tl.float32, builder), dst_sca_ty, builder)
|
|
874
|
+
|
|
875
|
+
# Standard floating types' casting: truncation
|
|
876
|
+
# fp64 => fp32, fp16, bf16
|
|
877
|
+
# fp32 => fp16, bf16
|
|
878
|
+
truncate_fp = src_sca_ty.is_floating() and \
|
|
879
|
+
dst_sca_ty.is_floating() and \
|
|
880
|
+
src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth
|
|
881
|
+
if truncate_fp:
|
|
882
|
+
return tl.tensor(builder.create_fp_trunc(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
883
|
+
|
|
884
|
+
# Standard floating types' casting: extension
|
|
885
|
+
# fp32 => fp64
|
|
886
|
+
# fp16 => fp32, fp64
|
|
887
|
+
# bf16 => fp32, fp64
|
|
888
|
+
ext_fp = src_sca_ty.is_floating() and \
|
|
889
|
+
dst_sca_ty.is_floating() and \
|
|
890
|
+
src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth
|
|
891
|
+
if ext_fp:
|
|
892
|
+
return tl.tensor(builder.create_fp_ext(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
893
|
+
|
|
894
|
+
# Casting between integer types
|
|
895
|
+
if src_sca_ty.is_int() and dst_sca_ty.is_int() and \
|
|
896
|
+
(src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness):
|
|
897
|
+
sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool()
|
|
898
|
+
if dst_sca_ty.is_bool():
|
|
899
|
+
ty = input.dtype.to_ir(builder)
|
|
900
|
+
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
|
|
901
|
+
return not_equal(input, _0, builder)
|
|
902
|
+
else:
|
|
903
|
+
return tl.tensor(builder.create_int_cast(input.handle, dst_ty.to_ir(builder), sign_extend), dst_ty)
|
|
904
|
+
|
|
905
|
+
# Casting standard floating types to integer types
|
|
906
|
+
if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int():
|
|
907
|
+
if dst_sca_ty.is_bool():
|
|
908
|
+
ty = input.dtype.to_ir(builder)
|
|
909
|
+
_0 = tl.tensor(builder.get_null_value(ty), input.dtype)
|
|
910
|
+
return not_equal(input, _0, builder)
|
|
911
|
+
elif dst_sca_ty.is_int_signed():
|
|
912
|
+
return tl.tensor(builder.create_fp_to_si(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
913
|
+
else:
|
|
914
|
+
return tl.tensor(builder.create_fp_to_ui(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
915
|
+
|
|
916
|
+
# Casting integer types to standard floating types
|
|
917
|
+
if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating():
|
|
918
|
+
if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed():
|
|
919
|
+
return tl.tensor(builder.create_ui_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
920
|
+
else:
|
|
921
|
+
return tl.tensor(builder.create_si_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
922
|
+
|
|
923
|
+
# Casting pointer types to integer types
|
|
924
|
+
if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
|
|
925
|
+
bitwidth = dst_sca_ty.int_bitwidth
|
|
926
|
+
if bitwidth == 64:
|
|
927
|
+
return tl.tensor(builder.create_ptr_to_int(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
928
|
+
if bitwidth == 1:
|
|
929
|
+
return not_equal(cast(input, tl.int64, builder), tl.tensor(builder.get_int64(0), tl.int64), builder)
|
|
930
|
+
|
|
931
|
+
# Casting integer types to pointer types
|
|
932
|
+
if src_sca_ty.is_int() and dst_sca_ty.is_ptr():
|
|
933
|
+
return tl.tensor(builder.create_int_to_ptr(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
934
|
+
|
|
935
|
+
# Casting pointer types to pointer types
|
|
936
|
+
if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr():
|
|
937
|
+
return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty)
|
|
938
|
+
|
|
939
|
+
assert False, f'cannot cast {input} to {dst_ty}'
|
|
940
|
+
|
|
941
|
+
|
|
942
|
+
# ===----------------------------------------------------------------------===//
|
|
943
|
+
# Memory Operators
|
|
944
|
+
# ===----------------------------------------------------------------------===//
|
|
945
|
+
|
|
946
|
+
|
|
947
|
+
def _str_to_load_cache_modifier(cache_modifier):
|
|
948
|
+
cache = ir.CACHE_MODIFIER.NONE # default
|
|
949
|
+
if cache_modifier:
|
|
950
|
+
if cache_modifier == ".ca":
|
|
951
|
+
cache = ir.CACHE_MODIFIER.CA
|
|
952
|
+
elif cache_modifier == ".cg":
|
|
953
|
+
cache = ir.CACHE_MODIFIER.CG
|
|
954
|
+
elif cache_modifier == ".cv":
|
|
955
|
+
cache = ir.CACHE_MODIFIER.CV
|
|
956
|
+
else:
|
|
957
|
+
raise ValueError(f"Cache modifier {cache_modifier} not supported")
|
|
958
|
+
return cache
|
|
959
|
+
|
|
960
|
+
|
|
961
|
+
def _str_to_store_cache_modifier(cache_modifier):
|
|
962
|
+
cache = ir.CACHE_MODIFIER.NONE # default
|
|
963
|
+
if cache_modifier:
|
|
964
|
+
if cache_modifier == ".wb":
|
|
965
|
+
cache = ir.CACHE_MODIFIER.WB
|
|
966
|
+
elif cache_modifier == ".cg":
|
|
967
|
+
cache = ir.CACHE_MODIFIER.CG
|
|
968
|
+
elif cache_modifier == ".cs":
|
|
969
|
+
cache = ir.CACHE_MODIFIER.CS
|
|
970
|
+
elif cache_modifier == ".wt":
|
|
971
|
+
cache = ir.CACHE_MODIFIER.WT
|
|
972
|
+
else:
|
|
973
|
+
raise ValueError(f"Cache modifier {cache_modifier} not supported")
|
|
974
|
+
return cache
|
|
975
|
+
|
|
976
|
+
|
|
977
|
+
def _str_to_eviction_policy(eviction_policy):
|
|
978
|
+
eviction = ir.EVICTION_POLICY.NORMAL # default
|
|
979
|
+
if eviction_policy:
|
|
980
|
+
if eviction_policy == "evict_last":
|
|
981
|
+
eviction = ir.EVICTION_POLICY.EVICT_LAST
|
|
982
|
+
elif eviction_policy == "evict_first":
|
|
983
|
+
eviction = ir.EVICTION_POLICY.EVICT_FIRST
|
|
984
|
+
else:
|
|
985
|
+
raise ValueError(f"Eviction policy {eviction_policy} not supported")
|
|
986
|
+
return eviction
|
|
987
|
+
|
|
988
|
+
|
|
989
|
+
def _str_to_padding_option(padding_option):
|
|
990
|
+
padding = None # default
|
|
991
|
+
if padding_option:
|
|
992
|
+
if padding_option == "zero":
|
|
993
|
+
padding = ir.PADDING_OPTION.PAD_ZERO
|
|
994
|
+
elif padding_option == "nan":
|
|
995
|
+
padding = ir.PADDING_OPTION.PAD_NAN
|
|
996
|
+
else:
|
|
997
|
+
raise ValueError(f"Padding option {padding_option} not supported")
|
|
998
|
+
return padding
|
|
999
|
+
|
|
1000
|
+
|
|
1001
|
+
def _str_to_sem(sem_option):
|
|
1002
|
+
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
|
|
1003
|
+
if sem_option:
|
|
1004
|
+
if sem_option == "acquire":
|
|
1005
|
+
sem = ir.MEM_SEMANTIC.ACQUIRE
|
|
1006
|
+
elif sem_option == "release":
|
|
1007
|
+
sem = ir.MEM_SEMANTIC.RELEASE
|
|
1008
|
+
elif sem_option == "acq_rel":
|
|
1009
|
+
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
|
|
1010
|
+
elif sem_option == "relaxed":
|
|
1011
|
+
sem = ir.MEM_SEMANTIC.RELAXED
|
|
1012
|
+
else:
|
|
1013
|
+
raise ValueError(f"Memory semantic {sem_option} not supported")
|
|
1014
|
+
return sem
|
|
1015
|
+
|
|
1016
|
+
|
|
1017
|
+
def _str_to_scope(scope_option):
|
|
1018
|
+
scope = ir.MEM_SYNC_SCOPE.GPU
|
|
1019
|
+
if scope_option:
|
|
1020
|
+
if scope_option == "gpu":
|
|
1021
|
+
scope = ir.MEM_SYNC_SCOPE.GPU
|
|
1022
|
+
elif scope_option == "cta":
|
|
1023
|
+
scope = ir.MEM_SYNC_SCOPE.CTA
|
|
1024
|
+
elif scope_option == "sys":
|
|
1025
|
+
scope = ir.MEM_SYNC_SCOPE.SYSTEM
|
|
1026
|
+
else:
|
|
1027
|
+
raise ValueError(f"Memory semantic {scope_option} not supported")
|
|
1028
|
+
return scope
|
|
1029
|
+
|
|
1030
|
+
|
|
1031
|
+
def _canonicalize_boundary_check(boundary_check, block_shape):
|
|
1032
|
+
if boundary_check:
|
|
1033
|
+
if not hasattr(boundary_check, "__iter__"):
|
|
1034
|
+
boundary_check = [boundary_check]
|
|
1035
|
+
boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check]
|
|
1036
|
+
for dim in boundary_check:
|
|
1037
|
+
assert isinstance(dim, int) and 0 <= dim < len(block_shape)
|
|
1038
|
+
assert len(boundary_check) > 0
|
|
1039
|
+
assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`"
|
|
1040
|
+
return sorted(boundary_check)
|
|
1041
|
+
return ()
|
|
1042
|
+
|
|
1043
|
+
|
|
1044
|
+
def _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
|
|
1045
|
+
# Load by a block pointer: `pointer_type<block_type<>>`
|
|
1046
|
+
# Block pointer can not have `mask` and `other` arguments
|
|
1047
|
+
if mask is not None or other is not None:
|
|
1048
|
+
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
|
|
1049
|
+
|
|
1050
|
+
elt_ty = ptr.type.element_ty.element_ty
|
|
1051
|
+
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
|
|
1052
|
+
if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
|
|
1053
|
+
raise ValueError("Padding option `nan` is not supported for integer block pointers")
|
|
1054
|
+
|
|
1055
|
+
# `dst_ty` is de-referenced type of the pointer type
|
|
1056
|
+
dst_ty = ptr.type.element_ty
|
|
1057
|
+
|
|
1058
|
+
# Check `boundary_check` argument
|
|
1059
|
+
boundary_check = _canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes())
|
|
1060
|
+
|
|
1061
|
+
# Build IR
|
|
1062
|
+
return tl.tensor(
|
|
1063
|
+
builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile), dst_ty)
|
|
1064
|
+
|
|
1065
|
+
|
|
1066
|
+
def _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder):
|
|
1067
|
+
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
|
|
1068
|
+
if not ptr.type.scalar.is_ptr():
|
|
1069
|
+
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`")
|
|
1070
|
+
|
|
1071
|
+
# Check `mask`, `other`, `boundary_check`, and `padding` arguments
|
|
1072
|
+
if mask is None and other is not None:
|
|
1073
|
+
raise ValueError("`other` cannot be provided without `mask`")
|
|
1074
|
+
if padding or boundary_check:
|
|
1075
|
+
raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of"
|
|
1076
|
+
"pointers or loading a scalar. Because the compiler does not know the boundary; please "
|
|
1077
|
+
"use block pointers (defined by `make_block_ptr`) instead")
|
|
1078
|
+
|
|
1079
|
+
# For a pointer of scalar, check the type of `mask` and `other`
|
|
1080
|
+
if not ptr.type.is_block():
|
|
1081
|
+
if mask and mask.type.is_block():
|
|
1082
|
+
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
|
|
1083
|
+
if other and other.type.is_block():
|
|
1084
|
+
raise ValueError("Other argument cannot be block type if pointer argument is not a block")
|
|
1085
|
+
|
|
1086
|
+
# Make `mask` and `other` into the same shape as `ptr`
|
|
1087
|
+
if ptr.type.is_block():
|
|
1088
|
+
if mask is not None:
|
|
1089
|
+
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
|
|
1090
|
+
if other is not None:
|
|
1091
|
+
other = broadcast_impl_shape(other, ptr.type.get_block_shapes(), builder)
|
|
1092
|
+
|
|
1093
|
+
# Get `pointer_type<elt_ty>` and `elt_ty`
|
|
1094
|
+
ptr_ty = ptr.type.scalar
|
|
1095
|
+
elt_ty = ptr_ty.element_ty
|
|
1096
|
+
|
|
1097
|
+
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
|
|
1098
|
+
is_bool = elt_ty == tl.int1
|
|
1099
|
+
if is_bool:
|
|
1100
|
+
elt_ty = tl.int8
|
|
1101
|
+
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
|
|
1102
|
+
ptr = cast(ptr, ptr_ty, builder)
|
|
1103
|
+
|
|
1104
|
+
# Cast `other` into `elt_ty` type
|
|
1105
|
+
if other is not None:
|
|
1106
|
+
other = cast(other, elt_ty, builder)
|
|
1107
|
+
|
|
1108
|
+
# Create loaded result type `dst_ty`
|
|
1109
|
+
if ptr.type.is_block():
|
|
1110
|
+
shape = ptr.type.get_block_shapes()
|
|
1111
|
+
dst_ty = tl.block_type(elt_ty, shape)
|
|
1112
|
+
else:
|
|
1113
|
+
# Load by de-referencing the pointer of scalar
|
|
1114
|
+
dst_ty = elt_ty
|
|
1115
|
+
|
|
1116
|
+
# Build IR
|
|
1117
|
+
if mask is None:
|
|
1118
|
+
ret = tl.tensor(builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty)
|
|
1119
|
+
else:
|
|
1120
|
+
ret = tl.tensor(
|
|
1121
|
+
builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache, eviction,
|
|
1122
|
+
is_volatile), dst_ty)
|
|
1123
|
+
if is_bool:
|
|
1124
|
+
ret = cast(ret, tl.int1, builder)
|
|
1125
|
+
return ret
|
|
1126
|
+
|
|
1127
|
+
|
|
1128
|
+
def load(ptr: tl.tensor, mask: Optional[tl.tensor], other: Optional[tl.tensor], boundary_check: Tuple,
|
|
1129
|
+
padding_option: str, cache_modifier: str, eviction_policy: str, is_volatile: bool,
|
|
1130
|
+
builder: ir.builder) -> tl.tensor:
|
|
1131
|
+
# Cache, eviction and padding options
|
|
1132
|
+
cache = _str_to_load_cache_modifier(cache_modifier)
|
|
1133
|
+
eviction = _str_to_eviction_policy(eviction_policy)
|
|
1134
|
+
padding = _str_to_padding_option(padding_option)
|
|
1135
|
+
|
|
1136
|
+
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
|
|
1137
|
+
# Load by a block pointer: `pointer_type<block_type<>>`
|
|
1138
|
+
return _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
|
|
1139
|
+
else:
|
|
1140
|
+
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
|
|
1141
|
+
return _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
|
|
1142
|
+
|
|
1143
|
+
|
|
1144
|
+
def descriptor_load(desc_ptr: tl.tensor, offsets, cache_modifier: str, eviction_policy: str, type,
|
|
1145
|
+
builder: ir.builder) -> tl.tensor:
|
|
1146
|
+
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
|
|
1147
|
+
x = builder.create_descriptor_load(desc_ptr.handle, offsets, type.to_ir(builder),
|
|
1148
|
+
_str_to_load_cache_modifier(cache_modifier),
|
|
1149
|
+
_str_to_eviction_policy(eviction_policy))
|
|
1150
|
+
return tl.tensor(x, type)
|
|
1151
|
+
|
|
1152
|
+
|
|
1153
|
+
def descriptor_store(desc_ptr: tl.tensor, value: tl.tensor, offsets, builder: ir.builder) -> tl.tensor:
|
|
1154
|
+
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
|
|
1155
|
+
return tl.tensor(builder.create_descriptor_store(desc_ptr.handle, value.handle, offsets), tl.void)
|
|
1156
|
+
|
|
1157
|
+
|
|
1158
|
+
def tensormap_create(
|
|
1159
|
+
desc_ptr: tl.tensor,
|
|
1160
|
+
global_address: tl.tensor,
|
|
1161
|
+
box_dim: List[tl.tensor],
|
|
1162
|
+
global_dim: List[tl.tensor],
|
|
1163
|
+
global_stride: List[tl.tensor],
|
|
1164
|
+
element_stride: List[tl.tensor],
|
|
1165
|
+
elem_type: int,
|
|
1166
|
+
interleave_layout: int,
|
|
1167
|
+
swizzle_mode: int,
|
|
1168
|
+
fill_mode: int,
|
|
1169
|
+
builder: ir.builder,
|
|
1170
|
+
) -> tl.tensor:
|
|
1171
|
+
assert not global_stride or global_stride[0].dtype == tl.int64
|
|
1172
|
+
return tl.tensor(
|
|
1173
|
+
builder.create_tensormap_create(
|
|
1174
|
+
desc_ptr.handle,
|
|
1175
|
+
global_address.handle,
|
|
1176
|
+
[x.handle for x in box_dim],
|
|
1177
|
+
[x.handle for x in global_dim],
|
|
1178
|
+
[x.handle for x in global_stride],
|
|
1179
|
+
[x.handle for x in element_stride],
|
|
1180
|
+
elem_type,
|
|
1181
|
+
interleave_layout,
|
|
1182
|
+
swizzle_mode,
|
|
1183
|
+
fill_mode,
|
|
1184
|
+
),
|
|
1185
|
+
tl.void,
|
|
1186
|
+
)
|
|
1187
|
+
|
|
1188
|
+
|
|
1189
|
+
def tensormap_fenceproxy_acquire(desc_ptr: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
1190
|
+
return tl.tensor(builder.create_tensormap_fenceproxy_acquire(desc_ptr.handle), tl.void)
|
|
1191
|
+
|
|
1192
|
+
|
|
1193
|
+
def _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder):
|
|
1194
|
+
# Store by a block pointer: `pointer_type<block_type<>>`
|
|
1195
|
+
# Block pointers can not have the `mask` argument
|
|
1196
|
+
if mask is not None:
|
|
1197
|
+
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
|
|
1198
|
+
|
|
1199
|
+
# Check same shape and element type
|
|
1200
|
+
block_shape = ptr.type.element_ty.get_block_shapes()
|
|
1201
|
+
if not val.type.is_block():
|
|
1202
|
+
val = broadcast_impl_shape(val, block_shape, builder)
|
|
1203
|
+
assert val.type.is_block(), "Value argument must be block type or a scalar"
|
|
1204
|
+
assert block_shape == val.type.get_block_shapes(
|
|
1205
|
+
), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch"
|
|
1206
|
+
assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch"
|
|
1207
|
+
|
|
1208
|
+
elt_ty = ptr.type.element_ty.element_ty
|
|
1209
|
+
assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`"
|
|
1210
|
+
|
|
1211
|
+
# Check `boundary_check` argument
|
|
1212
|
+
boundary_check = _canonicalize_boundary_check(boundary_check, block_shape)
|
|
1213
|
+
|
|
1214
|
+
# Cast to target data type
|
|
1215
|
+
val = cast(val, elt_ty, builder)
|
|
1216
|
+
|
|
1217
|
+
# Build IR
|
|
1218
|
+
return tl.tensor(builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction),
|
|
1219
|
+
tl.void)
|
|
1220
|
+
|
|
1221
|
+
|
|
1222
|
+
def _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder):
|
|
1223
|
+
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
|
|
1224
|
+
if not ptr.type.scalar.is_ptr():
|
|
1225
|
+
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`")
|
|
1226
|
+
|
|
1227
|
+
# Check `boundary_check` argument
|
|
1228
|
+
if boundary_check:
|
|
1229
|
+
raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a "
|
|
1230
|
+
"scalar. Because the compiler does not know the boundary; please use block pointers "
|
|
1231
|
+
"(defined by `make_block_ptr`) instead")
|
|
1232
|
+
|
|
1233
|
+
# For a pointer of scalar, check the type of `val` and `mask`
|
|
1234
|
+
if not ptr.type.is_block():
|
|
1235
|
+
if val.type.is_block():
|
|
1236
|
+
raise ValueError("Value argument cannot be block type if pointer argument is not a block")
|
|
1237
|
+
if mask and mask.type.is_block():
|
|
1238
|
+
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
|
|
1239
|
+
|
|
1240
|
+
# Make `mask` and `val` into the same shape as `ptr`
|
|
1241
|
+
if ptr.type.is_block():
|
|
1242
|
+
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
|
|
1243
|
+
if mask is not None:
|
|
1244
|
+
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
|
|
1245
|
+
|
|
1246
|
+
ptr_ty = ptr.type.scalar
|
|
1247
|
+
elt_ty = ptr_ty.element_ty
|
|
1248
|
+
|
|
1249
|
+
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
|
|
1250
|
+
if elt_ty == tl.int1:
|
|
1251
|
+
elt_ty = tl.int8
|
|
1252
|
+
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
|
|
1253
|
+
ptr = cast(ptr, ptr_ty, builder)
|
|
1254
|
+
|
|
1255
|
+
# Cast to target data type
|
|
1256
|
+
val = cast(val, elt_ty, builder)
|
|
1257
|
+
|
|
1258
|
+
# Build IR
|
|
1259
|
+
if not mask:
|
|
1260
|
+
return tl.tensor(builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void)
|
|
1261
|
+
if not mask.type.scalar.is_bool():
|
|
1262
|
+
raise ValueError("Mask must have boolean scalar type")
|
|
1263
|
+
return tl.tensor(builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction), tl.void)
|
|
1264
|
+
|
|
1265
|
+
|
|
1266
|
+
def store(ptr: tl.tensor, val: tl.tensor, mask: Optional[tl.tensor], boundary_check, cache_modifier: str,
|
|
1267
|
+
eviction_policy: str, builder: ir.builder) -> tl.tensor:
|
|
1268
|
+
# Cache and eviction options
|
|
1269
|
+
cache = _str_to_store_cache_modifier(cache_modifier)
|
|
1270
|
+
eviction = _str_to_eviction_policy(eviction_policy)
|
|
1271
|
+
|
|
1272
|
+
if ptr.type.is_const() or ptr.type.scalar.is_const():
|
|
1273
|
+
raise ValueError("Cannot store to a constant pointer")
|
|
1274
|
+
|
|
1275
|
+
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
|
|
1276
|
+
# Store by a block pointer: `pointer_type<block_type<>>`
|
|
1277
|
+
return _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder)
|
|
1278
|
+
else:
|
|
1279
|
+
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
|
|
1280
|
+
return _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder)
|
|
1281
|
+
|
|
1282
|
+
|
|
1283
|
+
#########
|
|
1284
|
+
# atomic
|
|
1285
|
+
#########
|
|
1286
|
+
|
|
1287
|
+
|
|
1288
|
+
def atomic_cas(ptr: tl.tensor, cmp: tl.tensor, val: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1289
|
+
sem = _str_to_sem(sem)
|
|
1290
|
+
scope = _str_to_scope(scope)
|
|
1291
|
+
element_ty = ptr.type.scalar.element_ty
|
|
1292
|
+
if element_ty.primitive_bitwidth not in [16, 32, 64]:
|
|
1293
|
+
raise ValueError("atomic_cas only supports elements with width {16, 32, 64}")
|
|
1294
|
+
return tl.tensor(builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type)
|
|
1295
|
+
|
|
1296
|
+
|
|
1297
|
+
def atom_red_typechecking_impl(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, op: str,
|
|
1298
|
+
builder: ir.builder) -> Tuple[tl.tensor, tl.tensor, tl.tensor]:
|
|
1299
|
+
if not ptr.type.scalar.is_ptr():
|
|
1300
|
+
raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__())
|
|
1301
|
+
if ptr.type.is_const() or ptr.type.element_ty.is_const():
|
|
1302
|
+
raise ValueError("Cannot store to a constant pointer")
|
|
1303
|
+
element_ty = ptr.type.scalar.element_ty
|
|
1304
|
+
if element_ty is tl.float16 and op != 'add':
|
|
1305
|
+
raise ValueError("atomic_" + op + " does not support fp16")
|
|
1306
|
+
if element_ty in [tl.int1, tl.int8, tl.int16, tl.bfloat16]:
|
|
1307
|
+
raise ValueError("atomic_" + op + " does not support " + str(element_ty))
|
|
1308
|
+
if ptr.type.is_block():
|
|
1309
|
+
if mask is not None:
|
|
1310
|
+
mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder)
|
|
1311
|
+
if val is not None:
|
|
1312
|
+
val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder)
|
|
1313
|
+
val = cast(val, ptr.type.scalar.element_ty, builder)
|
|
1314
|
+
if not mask:
|
|
1315
|
+
mask_ir = builder.get_int1(True)
|
|
1316
|
+
mask_ty = tl.int1
|
|
1317
|
+
if ptr.type.is_block():
|
|
1318
|
+
mask_ir = builder.create_splat(mask_ir, ptr.type.get_block_shapes())
|
|
1319
|
+
mask_ty = tl.block_type(tl.int1, ptr.type.get_block_shapes())
|
|
1320
|
+
mask = tl.tensor(mask_ir, mask_ty)
|
|
1321
|
+
return ptr, val, mask
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
def atomic_max(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1325
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'max', builder)
|
|
1326
|
+
sem = _str_to_sem(sem)
|
|
1327
|
+
scope = _str_to_scope(scope)
|
|
1328
|
+
sca_ty = val.type.scalar
|
|
1329
|
+
# direct call to atomic_max for integers
|
|
1330
|
+
if sca_ty.is_int():
|
|
1331
|
+
if sca_ty.is_int_signed():
|
|
1332
|
+
return tl.tensor(
|
|
1333
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
|
|
1334
|
+
else:
|
|
1335
|
+
return tl.tensor(
|
|
1336
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
|
|
1337
|
+
# for float
|
|
1338
|
+
# return atomic_smax(i_ptr, i_val) if val >= 0
|
|
1339
|
+
# return atomic_umin(i_ptr, i_val) if val < 0
|
|
1340
|
+
if sca_ty not in {tl.float32, tl.float64}:
|
|
1341
|
+
raise TypeError(f"atomic_max not supported for dtype {sca_ty}")
|
|
1342
|
+
|
|
1343
|
+
zero = full([], 0.0, sca_ty, builder)
|
|
1344
|
+
|
|
1345
|
+
i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
|
|
1346
|
+
i_val = bitcast(val, i_type, builder)
|
|
1347
|
+
i_ptr = bitcast(ptr, tl.pointer_type(i_type, 1), builder)
|
|
1348
|
+
ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
|
|
1349
|
+
ui_val = bitcast(val, ui_type, builder)
|
|
1350
|
+
ui_ptr = bitcast(ptr, tl.pointer_type(ui_type, 1), builder)
|
|
1351
|
+
pos = greater_equal(val, zero, builder)
|
|
1352
|
+
neg = less_than(val, zero, builder)
|
|
1353
|
+
pos_ret = tl.tensor(
|
|
1354
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle,
|
|
1355
|
+
and_(mask, pos, builder).handle, sem, scope), i_val.type)
|
|
1356
|
+
neg_ret = tl.tensor(
|
|
1357
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ui_ptr.handle, ui_val.handle,
|
|
1358
|
+
and_(mask, neg, builder).handle, sem, scope), ui_val.type)
|
|
1359
|
+
ret = where(pos, pos_ret, neg_ret, builder)
|
|
1360
|
+
return bitcast(ret, sca_ty, builder)
|
|
1361
|
+
|
|
1362
|
+
|
|
1363
|
+
def atomic_min(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1364
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'min', builder)
|
|
1365
|
+
sem = _str_to_sem(sem)
|
|
1366
|
+
scope = _str_to_scope(scope)
|
|
1367
|
+
sca_ty = val.type.scalar
|
|
1368
|
+
# direct call to atomic_min for integers
|
|
1369
|
+
if sca_ty.is_int():
|
|
1370
|
+
if sca_ty.is_int_signed():
|
|
1371
|
+
return tl.tensor(
|
|
1372
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
|
|
1373
|
+
else:
|
|
1374
|
+
return tl.tensor(
|
|
1375
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
|
|
1376
|
+
# for float
|
|
1377
|
+
# return atomic_smin(i_ptr, i_val) if val >= 0
|
|
1378
|
+
# return atomic_umax(i_ptr, i_val) if val < 0
|
|
1379
|
+
if sca_ty not in {tl.float32, tl.float64}:
|
|
1380
|
+
raise TypeError(f"atomic_min not supported for dtype {sca_ty}")
|
|
1381
|
+
|
|
1382
|
+
zero = full([], 0.0, sca_ty, builder)
|
|
1383
|
+
|
|
1384
|
+
i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
|
|
1385
|
+
i_val = bitcast(val, i_type, builder)
|
|
1386
|
+
i_ptr = bitcast(ptr, tl.pointer_type(i_type, 1), builder)
|
|
1387
|
+
ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
|
|
1388
|
+
ui_val = bitcast(val, ui_type, builder)
|
|
1389
|
+
ui_ptr = bitcast(ptr, tl.pointer_type(ui_type, 1), builder)
|
|
1390
|
+
pos = greater_equal(val, zero, builder)
|
|
1391
|
+
neg = less_than(val, zero, builder)
|
|
1392
|
+
pos_ret = tl.tensor(
|
|
1393
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle,
|
|
1394
|
+
and_(mask, pos, builder).handle, sem, scope), i_val.type)
|
|
1395
|
+
neg_ret = tl.tensor(
|
|
1396
|
+
builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ui_ptr.handle, ui_val.handle,
|
|
1397
|
+
and_(mask, neg, builder).handle, sem, scope), ui_ptr.type)
|
|
1398
|
+
ret = where(pos, pos_ret, neg_ret, builder)
|
|
1399
|
+
return bitcast(ret, sca_ty, builder)
|
|
1400
|
+
|
|
1401
|
+
|
|
1402
|
+
def atomic_add(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1403
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'add', builder)
|
|
1404
|
+
sem = _str_to_sem(sem)
|
|
1405
|
+
scope = _str_to_scope(scope)
|
|
1406
|
+
sca_ty = val.type.scalar
|
|
1407
|
+
op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD
|
|
1408
|
+
return tl.tensor(builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
|
|
1409
|
+
|
|
1410
|
+
|
|
1411
|
+
def atomic_and(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1412
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'and', builder)
|
|
1413
|
+
sem = _str_to_sem(sem)
|
|
1414
|
+
scope = _str_to_scope(scope)
|
|
1415
|
+
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope),
|
|
1416
|
+
val.type)
|
|
1417
|
+
|
|
1418
|
+
|
|
1419
|
+
def atomic_or(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1420
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'or', builder)
|
|
1421
|
+
sem = _str_to_sem(sem)
|
|
1422
|
+
scope = _str_to_scope(scope)
|
|
1423
|
+
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope),
|
|
1424
|
+
val.type)
|
|
1425
|
+
|
|
1426
|
+
|
|
1427
|
+
def atomic_xor(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor:
|
|
1428
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xor', builder)
|
|
1429
|
+
sem = _str_to_sem(sem)
|
|
1430
|
+
scope = _str_to_scope(scope)
|
|
1431
|
+
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope),
|
|
1432
|
+
val.type)
|
|
1433
|
+
|
|
1434
|
+
|
|
1435
|
+
def atomic_xchg(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str,
|
|
1436
|
+
builder: ir.builder) -> tl.tensor:
|
|
1437
|
+
ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xchg', builder)
|
|
1438
|
+
sem = _str_to_sem(sem)
|
|
1439
|
+
scope = _str_to_scope(scope)
|
|
1440
|
+
return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope),
|
|
1441
|
+
val.type)
|
|
1442
|
+
|
|
1443
|
+
|
|
1444
|
+
# ===----------------------------------------------------------------------===//
|
|
1445
|
+
# Linear Algebra
|
|
1446
|
+
# ===----------------------------------------------------------------------===//
|
|
1447
|
+
|
|
1448
|
+
|
|
1449
|
+
def _str_to_dot_input_precision(input_precision, builder):
|
|
1450
|
+
assert input_precision.lower() in builder.options.allowed_dot_input_precisions, \
|
|
1451
|
+
f"input_precision must be one of {builder.options.allowed_dot_input_precisions}. Got {input_precision}"
|
|
1452
|
+
input_precision = input_precision.upper()
|
|
1453
|
+
if input_precision == "TF32X3":
|
|
1454
|
+
input_precision = "TF32x3"
|
|
1455
|
+
return getattr(ir.INPUT_PRECISION, input_precision)
|
|
1456
|
+
|
|
1457
|
+
|
|
1458
|
+
def dot(lhs: tl.tensor, rhs: tl.tensor, acc: tl.tensor, input_precision: Optional[str], max_num_imprecise_acc: int,
|
|
1459
|
+
out_dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
|
|
1460
|
+
assert lhs.type.is_block() and rhs.type.is_block()
|
|
1461
|
+
|
|
1462
|
+
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
|
|
1463
|
+
# All combinations of supported fp8 x fp8 are permitted
|
|
1464
|
+
pass
|
|
1465
|
+
else:
|
|
1466
|
+
assert lhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16,
|
|
1467
|
+
tl.float32), f"Unsupported lhs dtype {lhs.dtype}"
|
|
1468
|
+
assert rhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16,
|
|
1469
|
+
tl.float32), f"Unsupported rhs dtype {rhs.dtype}"
|
|
1470
|
+
assert lhs.dtype == rhs.dtype, f"Both operands must be same dtype. Got {lhs.dtype} and {rhs.dtype}"
|
|
1471
|
+
|
|
1472
|
+
if lhs.dtype.is_fp8e4b15() or rhs.dtype.is_fp8e4b15():
|
|
1473
|
+
lhs = cast(lhs, tl.float16, builder)
|
|
1474
|
+
rhs = cast(rhs, tl.float16, builder)
|
|
1475
|
+
|
|
1476
|
+
if input_precision is None:
|
|
1477
|
+
input_precision = builder.options.default_dot_input_precision
|
|
1478
|
+
|
|
1479
|
+
input_precision = _str_to_dot_input_precision(input_precision, builder)
|
|
1480
|
+
|
|
1481
|
+
lhs_rank = len(lhs.shape)
|
|
1482
|
+
rhs_rank = len(rhs.shape)
|
|
1483
|
+
assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
|
|
1484
|
+
assert lhs.shape[-1].value == rhs.shape[
|
|
1485
|
+
-2].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[-1].value}) must be equal to first index of second shape ({rhs.shape[-2].value})"
|
|
1486
|
+
assert builder.codegen_fns.get("min_dot_size") is not None, "target doesn't provide lower shape bounds for dot."
|
|
1487
|
+
min_dot_size = builder.codegen_fns["min_dot_size"](lhs.type, rhs.type)
|
|
1488
|
+
assert lhs.shape[-2].value >= min_dot_size[0] and lhs.shape[-1].value >= min_dot_size[2] \
|
|
1489
|
+
and rhs.shape[-1].value >= min_dot_size[1], \
|
|
1490
|
+
f"Input shapes should have M >= {min_dot_size[0]}, N >= {min_dot_size[1]} and K >= {min_dot_size[2]}"
|
|
1491
|
+
if lhs.type.scalar.is_int():
|
|
1492
|
+
assert lhs.type.scalar == tl.int8, "only int8 supported!"
|
|
1493
|
+
_0 = builder.get_int32(0)
|
|
1494
|
+
ret_scalar_ty = tl.int32
|
|
1495
|
+
elif out_dtype.is_bf16():
|
|
1496
|
+
raise ValueError(
|
|
1497
|
+
"out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`")
|
|
1498
|
+
elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16():
|
|
1499
|
+
_0 = builder.get_fp32(0)
|
|
1500
|
+
ret_scalar_ty = tl.float32
|
|
1501
|
+
else:
|
|
1502
|
+
_0 = builder.get_fp16(0) if out_dtype.is_fp16() else builder.get_fp32(0)
|
|
1503
|
+
ret_scalar_ty = out_dtype
|
|
1504
|
+
|
|
1505
|
+
M = lhs.type.shape[-2]
|
|
1506
|
+
N = rhs.type.shape[-1]
|
|
1507
|
+
K = lhs.type.shape[-1]
|
|
1508
|
+
B = lhs.type.shape[0] if lhs_rank == 3 else None
|
|
1509
|
+
ret_ty = tl.block_type(ret_scalar_ty, [B, M, N] if B else [M, N])
|
|
1510
|
+
if acc is None:
|
|
1511
|
+
acc_handle = builder.create_splat(_0, [B, M, N] if B else [M, N])
|
|
1512
|
+
else:
|
|
1513
|
+
acc_handle = acc.handle
|
|
1514
|
+
assert acc.type == ret_ty
|
|
1515
|
+
|
|
1516
|
+
# max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90
|
|
1517
|
+
if max_num_imprecise_acc is None:
|
|
1518
|
+
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
|
|
1519
|
+
max_num_imprecise_acc = builder.options.max_num_imprecise_acc_default
|
|
1520
|
+
else:
|
|
1521
|
+
max_num_imprecise_acc = 0
|
|
1522
|
+
else:
|
|
1523
|
+
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8() and max_num_imprecise_acc > K:
|
|
1524
|
+
raise ValueError(f"max_num_imprecise_acc ({max_num_imprecise_acc}) must be <= K ({K})")
|
|
1525
|
+
|
|
1526
|
+
return tl.tensor(builder.create_dot(lhs.handle, rhs.handle, acc_handle, input_precision, max_num_imprecise_acc),
|
|
1527
|
+
ret_ty)
|
|
1528
|
+
|
|
1529
|
+
|
|
1530
|
+
def _str_to_fp_type(float_format: Optional[str]):
|
|
1531
|
+
if float_format == 'e4m3':
|
|
1532
|
+
return ir.F8F6F4TY.E4M3
|
|
1533
|
+
if float_format == 'e5m2':
|
|
1534
|
+
return ir.F8F6F4TY.E5M2
|
|
1535
|
+
if float_format == 'e2m3':
|
|
1536
|
+
return ir.F8F6F4TY.E2M3
|
|
1537
|
+
if float_format == 'e3m2':
|
|
1538
|
+
return ir.F8F6F4TY.E3M2
|
|
1539
|
+
if float_format == 'e2m1':
|
|
1540
|
+
return ir.F8F6F4TY.E2M1
|
|
1541
|
+
raise ValueError(f"Invalid float format: {float_format}.")
|
|
1542
|
+
|
|
1543
|
+
|
|
1544
|
+
def dot_scaled(lhs: tl.tensor, lhs_scale: tl.tensor, lhs_format, rhs: tl.tensor, rhs_scale: Optional[tl.tensor],
|
|
1545
|
+
rhs_format, acc: tl.tensor | None, out_dtype: tl.dtype, builder: ir.builder) -> tl.tensor:
|
|
1546
|
+
assert lhs.type.is_block() and rhs.type.is_block()
|
|
1547
|
+
#TODO: validate types.
|
|
1548
|
+
lhs_rank = len(lhs.shape)
|
|
1549
|
+
rhs_rank = len(rhs.shape)
|
|
1550
|
+
assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
|
|
1551
|
+
lhs_format_enum = _str_to_fp_type(lhs_format)
|
|
1552
|
+
rhs_format_enum = _str_to_fp_type(rhs_format)
|
|
1553
|
+
assert lhs_format in ("e2m1", "e4m3", "e5m2"), f"NYI: lhs_format {lhs_format}"
|
|
1554
|
+
assert rhs_format in ("e4m3", "e5m2"), f"NYI: rhs_format {rhs_format}"
|
|
1555
|
+
rhs_scale_is_none = isinstance(rhs_scale, tl.constexpr) and rhs_scale.value is None
|
|
1556
|
+
assert rhs_scale_is_none, "NYI: rhs_scale not supported"
|
|
1557
|
+
|
|
1558
|
+
M = lhs.type.shape[-2]
|
|
1559
|
+
K, N = rhs.type.shape[-2:]
|
|
1560
|
+
PACKED = 2 if lhs_format == "e2m1" else 1
|
|
1561
|
+
assert K == PACKED * lhs.type.shape[
|
|
1562
|
+
-1], f"Reduction dimension should pack the same number of elements; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
|
|
1563
|
+
assert K >= 64, f"scaled_dot NYI for K < 64. Got {K=}"
|
|
1564
|
+
B = lhs.type.shape[0] if lhs_rank == 3 else None
|
|
1565
|
+
|
|
1566
|
+
ret_ty = tl.block_type(out_dtype, [B, M, N] if B else [M, N])
|
|
1567
|
+
_0 = builder.get_fp32(0)
|
|
1568
|
+
if acc is None:
|
|
1569
|
+
acc_handle = builder.create_splat(_0, [B, M, N] if B else [M, N])
|
|
1570
|
+
else:
|
|
1571
|
+
acc_handle = acc.handle
|
|
1572
|
+
assert acc.type == ret_ty
|
|
1573
|
+
rhs_scale_handle = None if rhs_scale_is_none else rhs_scale.handle
|
|
1574
|
+
return tl.tensor(
|
|
1575
|
+
builder.create_dot_scaled(lhs.handle, lhs_scale.handle, lhs_format_enum, rhs.handle, rhs_scale_handle,
|
|
1576
|
+
rhs_format_enum, acc_handle), ret_ty)
|
|
1577
|
+
|
|
1578
|
+
|
|
1579
|
+
# ===----------------------------------------------------------------------===//
|
|
1580
|
+
# Indexing
|
|
1581
|
+
# ===----------------------------------------------------------------------===//
|
|
1582
|
+
|
|
1583
|
+
|
|
1584
|
+
def where(condition: tl.tensor, x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor:
|
|
1585
|
+
if condition.dtype != tl.int1:
|
|
1586
|
+
warnings.warn(
|
|
1587
|
+
f"tl.where with a non-boolean condition is deprecated and will error out in a future triton release. Got {condition.dtype}"
|
|
1588
|
+
)
|
|
1589
|
+
condition = cast(condition, tl.int1, builder)
|
|
1590
|
+
x, y = binary_op_type_checking_impl(x, y, builder, True, True)
|
|
1591
|
+
# x, y are broadcasted
|
|
1592
|
+
if condition.type.is_block():
|
|
1593
|
+
condition, x = broadcast_impl_value(condition, x, builder)
|
|
1594
|
+
x, y = broadcast_impl_value(x, y, builder)
|
|
1595
|
+
else:
|
|
1596
|
+
condition, _ = broadcast_impl_value(condition, x, builder)
|
|
1597
|
+
ret_ty = x.type
|
|
1598
|
+
return tl.tensor(builder.create_select(condition.handle, x.handle, y.handle), ret_ty)
|
|
1599
|
+
|
|
1600
|
+
|
|
1601
|
+
# ===----------------------------------------------------------------------===//
|
|
1602
|
+
# Reduction
|
|
1603
|
+
# ===----------------------------------------------------------------------===
|
|
1604
|
+
|
|
1605
|
+
|
|
1606
|
+
def wrap_tensor(x, scalar_ty, ret_shape):
|
|
1607
|
+
if ret_shape:
|
|
1608
|
+
res_ty = tl.block_type(scalar_ty, ret_shape)
|
|
1609
|
+
else:
|
|
1610
|
+
# 0d-tensor -> scalar
|
|
1611
|
+
res_ty = scalar_ty
|
|
1612
|
+
return tl.tensor(x, res_ty)
|
|
1613
|
+
|
|
1614
|
+
|
|
1615
|
+
def reduction(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, builder: ir.builder) -> Tuple[tl.tensor, ...]:
|
|
1616
|
+
if axis is None:
|
|
1617
|
+
inputs = tuple(reshape(t, [t.numel.value], can_reorder=True, builder=builder) for t in inputs)
|
|
1618
|
+
axis = 0
|
|
1619
|
+
# get result shape
|
|
1620
|
+
shape = inputs[0].type.shape
|
|
1621
|
+
rank = len(shape)
|
|
1622
|
+
assert axis < rank, f"reduction axis must be < inputs rank ({rank})"
|
|
1623
|
+
ret_shape = [s for i, s in enumerate(shape) if i != axis]
|
|
1624
|
+
assert all(t.type.shape == shape for t in inputs), "all reduction inputs must have the same shape"
|
|
1625
|
+
|
|
1626
|
+
reduce_op = builder.create_reduce([t.handle for t in inputs], axis)
|
|
1627
|
+
region_builder_fn(reduce_op)
|
|
1628
|
+
reduce_op.verify()
|
|
1629
|
+
|
|
1630
|
+
return tuple(wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar, ret_shape) for i in range(len(inputs)))
|
|
1631
|
+
|
|
1632
|
+
|
|
1633
|
+
# ===----------------------------------------------------------------------===
|
|
1634
|
+
# Associative Scan
|
|
1635
|
+
# ===----------------------------------------------------------------------===
|
|
1636
|
+
|
|
1637
|
+
|
|
1638
|
+
def associative_scan(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, reverse: bool,
|
|
1639
|
+
builder: ir.builder) -> Tuple[tl.tensor, ...]:
|
|
1640
|
+
shape = inputs[0].type.shape
|
|
1641
|
+
rank = len(shape)
|
|
1642
|
+
|
|
1643
|
+
assert -rank <= axis < rank, f"scan axis {axis} must be < inputs rank ({rank})"
|
|
1644
|
+
|
|
1645
|
+
if axis < 0:
|
|
1646
|
+
axis += rank
|
|
1647
|
+
|
|
1648
|
+
for t in inputs:
|
|
1649
|
+
assert t.type.shape == shape, "all scan inputs must have the same shape"
|
|
1650
|
+
|
|
1651
|
+
scan_op = builder.create_scan([t.handle for t in inputs], axis, reverse)
|
|
1652
|
+
region_builder_fn(scan_op)
|
|
1653
|
+
scan_op.verify()
|
|
1654
|
+
|
|
1655
|
+
return tuple(wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar, shape) for i in range(len(inputs)))
|
|
1656
|
+
|
|
1657
|
+
|
|
1658
|
+
# ===----------------------------------------------------------------------===
|
|
1659
|
+
# Histogram
|
|
1660
|
+
# ===----------------------------------------------------------------------===
|
|
1661
|
+
|
|
1662
|
+
|
|
1663
|
+
def histogram(input: tl.tensor, num_bins: int, builder: ir.builder) -> tl.tensor:
|
|
1664
|
+
assert len(input.shape) == 1, "histogram only supports 1D input"
|
|
1665
|
+
assert input.dtype.is_int(), "histogram only supports integer input"
|
|
1666
|
+
return tl.tensor(builder.create_histogram(input.handle, num_bins), tl.block_type(tl.int32, (num_bins, )))
|
|
1667
|
+
|
|
1668
|
+
|
|
1669
|
+
##
|
|
1670
|
+
|
|
1671
|
+
|
|
1672
|
+
def multiple_of(x: tl.tensor, values: List[int]) -> tl.tensor:
|
|
1673
|
+
if max(1, len(x.shape)) != len(values):
|
|
1674
|
+
raise ValueError("Shape of input to multiple_of does not match the length of values")
|
|
1675
|
+
x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context()))
|
|
1676
|
+
return x
|
|
1677
|
+
|
|
1678
|
+
|
|
1679
|
+
def max_contiguous(x: tl.tensor, values: List[int]) -> tl.tensor:
|
|
1680
|
+
if len(x.shape) != len(values):
|
|
1681
|
+
raise ValueError("Shape of input to max_contiguous does not match the length of values")
|
|
1682
|
+
x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context()))
|
|
1683
|
+
return x
|
|
1684
|
+
|
|
1685
|
+
|
|
1686
|
+
def max_constancy(x: tl.tensor, values: List[int]) -> tl.tensor:
|
|
1687
|
+
if len(x.shape) != len(values):
|
|
1688
|
+
raise ValueError("Shape of input to max_constancy does not match the length of values")
|
|
1689
|
+
x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context()))
|
|
1690
|
+
return x
|
|
1691
|
+
|
|
1692
|
+
|
|
1693
|
+
def debug_barrier(builder: ir.builder) -> tl.tensor:
|
|
1694
|
+
return tl.tensor(builder.create_barrier(), tl.void)
|
|
1695
|
+
|
|
1696
|
+
|
|
1697
|
+
def device_print(prefix: str, args: List[tl.tensor], hex: bool, builder: ir.builder) -> tl.tensor:
|
|
1698
|
+
# It makes sense visually for prefix to end in ": "; make it so. Also,
|
|
1699
|
+
# non-empty prefixes should start with " ".
|
|
1700
|
+
if not prefix.endswith(" ") and args:
|
|
1701
|
+
prefix += " "
|
|
1702
|
+
if not prefix.endswith(": ") and args:
|
|
1703
|
+
prefix = prefix[:-1] + ": "
|
|
1704
|
+
if len(prefix) > 2 and not prefix.startswith(" "):
|
|
1705
|
+
prefix = " " + prefix
|
|
1706
|
+
|
|
1707
|
+
new_args = [arg.handle for arg in args]
|
|
1708
|
+
is_signed = [arg.dtype in (tl.int1, tl.int8, tl.int16, tl.int32, tl.int64) for arg in args]
|
|
1709
|
+
return tl.tensor(builder.create_print(prefix, hex, new_args, is_signed), tl.void)
|
|
1710
|
+
|
|
1711
|
+
|
|
1712
|
+
def device_assert(cond: tl.tensor, msg: str, builder: ir.builder) -> tl.tensor:
|
|
1713
|
+
if not builder.options.debug:
|
|
1714
|
+
return
|
|
1715
|
+
return tl.tensor(builder.create_assert(cond.handle, msg), tl.void)
|
|
1716
|
+
|
|
1717
|
+
|
|
1718
|
+
def assume(cond, builder: ir.builder) -> tl.tensor:
|
|
1719
|
+
return tl.tensor(builder.create_assume(cond.handle), tl.void)
|
|
1720
|
+
|
|
1721
|
+
|
|
1722
|
+
def _convert_elem_to_ir_value(builder, elem, require_i64):
|
|
1723
|
+
if isinstance(elem, int):
|
|
1724
|
+
elem = tl.constexpr(elem)
|
|
1725
|
+
if isinstance(elem, tl.constexpr):
|
|
1726
|
+
if require_i64:
|
|
1727
|
+
assert -2**63 <= elem.value < 2**63, f"Block pointers only support 64 bit `shape/strides`, " \
|
|
1728
|
+
f"got a value {elem.value} which is out of the range"
|
|
1729
|
+
return builder.get_int64(elem.value)
|
|
1730
|
+
else:
|
|
1731
|
+
assert -2**31 <= elem.value < 2**31, f"Block pointers only support 32 bit `offsets/block_shape`, " \
|
|
1732
|
+
f"got a value {elem.value} which is out of the range"
|
|
1733
|
+
return builder.get_int32(elem.value)
|
|
1734
|
+
elif isinstance(elem, tl.tensor):
|
|
1735
|
+
assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets"
|
|
1736
|
+
assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets"
|
|
1737
|
+
if elem.dtype != tl.int64 and require_i64:
|
|
1738
|
+
return builder.create_int_cast(elem.handle, builder.get_int64_ty(), elem.dtype.is_int_signed())
|
|
1739
|
+
elif elem.dtype != tl.int32 and not require_i64:
|
|
1740
|
+
assert False, "Block pointers only support 32 bit `offsets/block_shape`, " \
|
|
1741
|
+
"add a `.to(tl.int32)` or use regular indexing for 64 bit support"
|
|
1742
|
+
return elem.handle
|
|
1743
|
+
assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}"
|
|
1744
|
+
|
|
1745
|
+
|
|
1746
|
+
def _convert_to_ir_values(builder, list_like, require_i64=True):
|
|
1747
|
+
if hasattr(list_like, "__iter__"):
|
|
1748
|
+
return [_convert_elem_to_ir_value(builder, elem, require_i64) for elem in list_like]
|
|
1749
|
+
return [_convert_elem_to_ir_value(builder, list_like, require_i64)]
|
|
1750
|
+
|
|
1751
|
+
|
|
1752
|
+
def make_block_ptr(base: tl.tensor, shape, strides, offsets, block_shape, order, builder: ir.builder) -> tl.tensor:
|
|
1753
|
+
# Convert dynamic arguments to IR values
|
|
1754
|
+
# NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t`
|
|
1755
|
+
shape = _convert_to_ir_values(builder, shape)
|
|
1756
|
+
strides = _convert_to_ir_values(builder, strides)
|
|
1757
|
+
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
|
|
1758
|
+
|
|
1759
|
+
# Check `base` type
|
|
1760
|
+
if not base.type.is_ptr() or base.type.element_ty.is_block():
|
|
1761
|
+
raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)")
|
|
1762
|
+
|
|
1763
|
+
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
|
|
1764
|
+
if base.type.element_ty == tl.int1:
|
|
1765
|
+
base = cast(base, tl.pointer_type(tl.int8, base.type.address_space), builder)
|
|
1766
|
+
|
|
1767
|
+
# Check whether `block_shape` is static
|
|
1768
|
+
if not hasattr(block_shape, "__iter__"):
|
|
1769
|
+
block_shape = [block_shape]
|
|
1770
|
+
block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape]
|
|
1771
|
+
assert all(isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape), \
|
|
1772
|
+
"Expected a list of constant integers (`int32_t` range) in `block_shape`"
|
|
1773
|
+
|
|
1774
|
+
# Check `order`
|
|
1775
|
+
if not hasattr(order, "__iter__"):
|
|
1776
|
+
order = [order]
|
|
1777
|
+
order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order]
|
|
1778
|
+
assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order"
|
|
1779
|
+
|
|
1780
|
+
# Must have same length
|
|
1781
|
+
assert all(len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]), \
|
|
1782
|
+
"Expected shape/strides/offsets/block_shape to have the same length"
|
|
1783
|
+
|
|
1784
|
+
# Build value, the type is:
|
|
1785
|
+
# `pointer_type<blocked<shape, element_type>>` in Python
|
|
1786
|
+
# `tt.ptr<tensor<shape, element_type>>` in MLIR
|
|
1787
|
+
handle = builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order)
|
|
1788
|
+
return tl.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape)))
|
|
1789
|
+
|
|
1790
|
+
|
|
1791
|
+
def advance(base: tl.tensor, offsets, builder: ir.builder) -> tl.tensor:
|
|
1792
|
+
# Convert dynamic offsets to IR values
|
|
1793
|
+
offsets = _convert_to_ir_values(builder, offsets, require_i64=False)
|
|
1794
|
+
|
|
1795
|
+
# Advanced block pointer type is the same as before
|
|
1796
|
+
return tl.tensor(builder.create_advance(base.handle, offsets), base.type)
|