transformers 5.0.0rc2__py3-none-any.whl → 5.0.0rc3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1537) hide show
  1. transformers/__init__.py +9 -28
  2. transformers/audio_utils.py +32 -32
  3. transformers/cache_utils.py +15 -124
  4. transformers/cli/chat.py +3 -3
  5. transformers/cli/serve.py +2 -2
  6. transformers/cli/transformers.py +2 -1
  7. transformers/configuration_utils.py +31 -33
  8. transformers/conversion_mapping.py +5 -1
  9. transformers/convert_slow_tokenizer.py +3 -8
  10. transformers/core_model_loading.py +14 -15
  11. transformers/data/processors/glue.py +0 -1
  12. transformers/data/processors/utils.py +0 -1
  13. transformers/data/processors/xnli.py +0 -1
  14. transformers/dependency_versions_table.py +4 -4
  15. transformers/distributed/configuration_utils.py +1 -2
  16. transformers/dynamic_module_utils.py +23 -23
  17. transformers/feature_extraction_sequence_utils.py +19 -23
  18. transformers/feature_extraction_utils.py +14 -14
  19. transformers/generation/candidate_generator.py +1 -2
  20. transformers/generation/configuration_utils.py +54 -39
  21. transformers/generation/continuous_batching/__init__.py +0 -1
  22. transformers/generation/continuous_batching/cache.py +34 -6
  23. transformers/generation/continuous_batching/cache_manager.py +25 -12
  24. transformers/generation/continuous_batching/continuous_api.py +54 -23
  25. transformers/generation/continuous_batching/requests.py +25 -4
  26. transformers/generation/continuous_batching/scheduler.py +117 -49
  27. transformers/generation/logits_process.py +0 -128
  28. transformers/generation/streamers.py +0 -1
  29. transformers/generation/utils.py +16 -26
  30. transformers/generation/watermarking.py +2 -3
  31. transformers/hf_argparser.py +9 -13
  32. transformers/hyperparameter_search.py +1 -2
  33. transformers/image_processing_base.py +9 -9
  34. transformers/image_processing_utils.py +11 -12
  35. transformers/image_processing_utils_fast.py +53 -53
  36. transformers/image_transforms.py +29 -29
  37. transformers/image_utils.py +30 -32
  38. transformers/integrations/awq.py +1 -3
  39. transformers/integrations/deepspeed.py +1 -1
  40. transformers/integrations/eetq.py +0 -1
  41. transformers/integrations/fbgemm_fp8.py +1 -2
  42. transformers/integrations/finegrained_fp8.py +8 -7
  43. transformers/integrations/flash_attention.py +1 -1
  44. transformers/integrations/flex_attention.py +1 -1
  45. transformers/integrations/fp_quant.py +4 -6
  46. transformers/integrations/ggml.py +0 -1
  47. transformers/integrations/integration_utils.py +2 -3
  48. transformers/integrations/mxfp4.py +5 -6
  49. transformers/integrations/quark.py +2 -4
  50. transformers/integrations/torchao.py +4 -6
  51. transformers/loss/loss_lw_detr.py +356 -0
  52. transformers/loss/loss_utils.py +2 -0
  53. transformers/masking_utils.py +47 -51
  54. transformers/model_debugging_utils.py +4 -5
  55. transformers/modelcard.py +14 -192
  56. transformers/modeling_attn_mask_utils.py +19 -19
  57. transformers/modeling_flash_attention_utils.py +27 -27
  58. transformers/modeling_gguf_pytorch_utils.py +5 -5
  59. transformers/modeling_layers.py +21 -22
  60. transformers/modeling_outputs.py +242 -253
  61. transformers/modeling_rope_utils.py +32 -32
  62. transformers/modeling_utils.py +67 -90
  63. transformers/models/__init__.py +4 -0
  64. transformers/models/afmoe/configuration_afmoe.py +26 -29
  65. transformers/models/afmoe/modeling_afmoe.py +30 -33
  66. transformers/models/afmoe/modular_afmoe.py +16 -18
  67. transformers/models/aimv2/configuration_aimv2.py +2 -5
  68. transformers/models/aimv2/modeling_aimv2.py +20 -21
  69. transformers/models/aimv2/modular_aimv2.py +7 -9
  70. transformers/models/albert/configuration_albert.py +0 -1
  71. transformers/models/albert/modeling_albert.py +67 -69
  72. transformers/models/albert/tokenization_albert.py +1 -4
  73. transformers/models/align/configuration_align.py +0 -1
  74. transformers/models/align/modeling_align.py +61 -62
  75. transformers/models/align/processing_align.py +2 -30
  76. transformers/models/altclip/configuration_altclip.py +0 -1
  77. transformers/models/altclip/modeling_altclip.py +76 -77
  78. transformers/models/altclip/processing_altclip.py +2 -15
  79. transformers/models/apertus/__init__.py +0 -1
  80. transformers/models/apertus/configuration_apertus.py +18 -21
  81. transformers/models/apertus/modeling_apertus.py +31 -34
  82. transformers/models/apertus/modular_apertus.py +28 -30
  83. transformers/models/arcee/configuration_arcee.py +20 -23
  84. transformers/models/arcee/modeling_arcee.py +31 -34
  85. transformers/models/arcee/modular_arcee.py +20 -23
  86. transformers/models/aria/configuration_aria.py +20 -23
  87. transformers/models/aria/image_processing_aria.py +25 -27
  88. transformers/models/aria/modeling_aria.py +63 -66
  89. transformers/models/aria/modular_aria.py +78 -85
  90. transformers/models/aria/processing_aria.py +28 -35
  91. transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
  92. transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
  93. transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +6 -8
  94. transformers/models/audioflamingo3/__init__.py +0 -1
  95. transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
  96. transformers/models/audioflamingo3/modeling_audioflamingo3.py +22 -23
  97. transformers/models/audioflamingo3/modular_audioflamingo3.py +12 -17
  98. transformers/models/audioflamingo3/processing_audioflamingo3.py +6 -8
  99. transformers/models/auto/auto_factory.py +4 -5
  100. transformers/models/auto/configuration_auto.py +26 -5
  101. transformers/models/auto/feature_extraction_auto.py +5 -7
  102. transformers/models/auto/image_processing_auto.py +13 -26
  103. transformers/models/auto/modeling_auto.py +18 -199
  104. transformers/models/auto/processing_auto.py +2 -1
  105. transformers/models/auto/tokenization_auto.py +21 -22
  106. transformers/models/auto/video_processing_auto.py +7 -8
  107. transformers/models/autoformer/configuration_autoformer.py +4 -7
  108. transformers/models/autoformer/modeling_autoformer.py +98 -100
  109. transformers/models/aya_vision/configuration_aya_vision.py +0 -1
  110. transformers/models/aya_vision/modeling_aya_vision.py +35 -37
  111. transformers/models/aya_vision/modular_aya_vision.py +26 -29
  112. transformers/models/aya_vision/processing_aya_vision.py +25 -53
  113. transformers/models/bamba/configuration_bamba.py +29 -32
  114. transformers/models/bamba/modeling_bamba.py +60 -64
  115. transformers/models/bamba/modular_bamba.py +51 -55
  116. transformers/models/bark/configuration_bark.py +4 -7
  117. transformers/models/bark/generation_configuration_bark.py +3 -5
  118. transformers/models/bark/modeling_bark.py +40 -55
  119. transformers/models/bark/processing_bark.py +19 -41
  120. transformers/models/bart/configuration_bart.py +0 -1
  121. transformers/models/bart/modeling_bart.py +115 -117
  122. transformers/models/barthez/tokenization_barthez.py +1 -4
  123. transformers/models/bartpho/tokenization_bartpho.py +6 -7
  124. transformers/models/beit/configuration_beit.py +0 -11
  125. transformers/models/beit/image_processing_beit.py +53 -56
  126. transformers/models/beit/image_processing_beit_fast.py +8 -9
  127. transformers/models/beit/modeling_beit.py +51 -53
  128. transformers/models/bert/configuration_bert.py +0 -1
  129. transformers/models/bert/modeling_bert.py +111 -122
  130. transformers/models/bert/tokenization_bert.py +2 -4
  131. transformers/models/bert/tokenization_bert_legacy.py +3 -5
  132. transformers/models/bert_generation/configuration_bert_generation.py +0 -1
  133. transformers/models/bert_generation/modeling_bert_generation.py +47 -49
  134. transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
  135. transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
  136. transformers/models/bertweet/tokenization_bertweet.py +1 -3
  137. transformers/models/big_bird/configuration_big_bird.py +0 -1
  138. transformers/models/big_bird/modeling_big_bird.py +107 -109
  139. transformers/models/big_bird/tokenization_big_bird.py +1 -4
  140. transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +0 -1
  141. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +109 -111
  142. transformers/models/biogpt/configuration_biogpt.py +0 -1
  143. transformers/models/biogpt/modeling_biogpt.py +69 -71
  144. transformers/models/biogpt/modular_biogpt.py +59 -61
  145. transformers/models/biogpt/tokenization_biogpt.py +3 -5
  146. transformers/models/bit/configuration_bit.py +0 -1
  147. transformers/models/bit/image_processing_bit.py +21 -24
  148. transformers/models/bit/image_processing_bit_fast.py +0 -1
  149. transformers/models/bit/modeling_bit.py +9 -11
  150. transformers/models/bitnet/configuration_bitnet.py +18 -21
  151. transformers/models/bitnet/modeling_bitnet.py +31 -34
  152. transformers/models/bitnet/modular_bitnet.py +4 -6
  153. transformers/models/blenderbot/configuration_blenderbot.py +0 -1
  154. transformers/models/blenderbot/modeling_blenderbot.py +64 -95
  155. transformers/models/blenderbot/tokenization_blenderbot.py +0 -1
  156. transformers/models/blenderbot_small/configuration_blenderbot_small.py +0 -1
  157. transformers/models/blenderbot_small/modeling_blenderbot_small.py +66 -68
  158. transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
  159. transformers/models/blip/configuration_blip.py +0 -1
  160. transformers/models/blip/image_processing_blip.py +17 -20
  161. transformers/models/blip/image_processing_blip_fast.py +0 -1
  162. transformers/models/blip/modeling_blip.py +60 -71
  163. transformers/models/blip/modeling_blip_text.py +63 -65
  164. transformers/models/blip/processing_blip.py +5 -36
  165. transformers/models/blip_2/configuration_blip_2.py +0 -1
  166. transformers/models/blip_2/modeling_blip_2.py +70 -71
  167. transformers/models/blip_2/processing_blip_2.py +8 -38
  168. transformers/models/bloom/configuration_bloom.py +0 -1
  169. transformers/models/bloom/modeling_bloom.py +58 -59
  170. transformers/models/blt/configuration_blt.py +71 -74
  171. transformers/models/blt/modeling_blt.py +73 -76
  172. transformers/models/blt/modular_blt.py +57 -59
  173. transformers/models/bridgetower/configuration_bridgetower.py +0 -1
  174. transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
  175. transformers/models/bridgetower/image_processing_bridgetower_fast.py +7 -8
  176. transformers/models/bridgetower/modeling_bridgetower.py +107 -109
  177. transformers/models/bridgetower/processing_bridgetower.py +2 -16
  178. transformers/models/bros/configuration_bros.py +0 -1
  179. transformers/models/bros/modeling_bros.py +78 -80
  180. transformers/models/bros/processing_bros.py +2 -12
  181. transformers/models/byt5/tokenization_byt5.py +4 -6
  182. transformers/models/camembert/configuration_camembert.py +0 -1
  183. transformers/models/camembert/modeling_camembert.py +91 -93
  184. transformers/models/camembert/modular_camembert.py +51 -54
  185. transformers/models/camembert/tokenization_camembert.py +1 -4
  186. transformers/models/canine/configuration_canine.py +0 -1
  187. transformers/models/canine/modeling_canine.py +73 -75
  188. transformers/models/canine/tokenization_canine.py +0 -1
  189. transformers/models/chameleon/configuration_chameleon.py +24 -27
  190. transformers/models/chameleon/image_processing_chameleon.py +21 -24
  191. transformers/models/chameleon/image_processing_chameleon_fast.py +0 -1
  192. transformers/models/chameleon/modeling_chameleon.py +53 -56
  193. transformers/models/chameleon/processing_chameleon.py +16 -41
  194. transformers/models/chinese_clip/configuration_chinese_clip.py +0 -1
  195. transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
  196. transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
  197. transformers/models/chinese_clip/modeling_chinese_clip.py +65 -66
  198. transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
  199. transformers/models/clap/configuration_clap.py +0 -1
  200. transformers/models/clap/feature_extraction_clap.py +9 -10
  201. transformers/models/clap/modeling_clap.py +88 -89
  202. transformers/models/clap/processing_clap.py +2 -15
  203. transformers/models/clip/configuration_clip.py +0 -1
  204. transformers/models/clip/image_processing_clip.py +21 -24
  205. transformers/models/clip/image_processing_clip_fast.py +0 -1
  206. transformers/models/clip/modeling_clip.py +45 -46
  207. transformers/models/clip/processing_clip.py +2 -14
  208. transformers/models/clip/tokenization_clip.py +2 -5
  209. transformers/models/clipseg/configuration_clipseg.py +0 -1
  210. transformers/models/clipseg/modeling_clipseg.py +86 -87
  211. transformers/models/clipseg/processing_clipseg.py +8 -39
  212. transformers/models/clvp/configuration_clvp.py +1 -3
  213. transformers/models/clvp/feature_extraction_clvp.py +7 -10
  214. transformers/models/clvp/modeling_clvp.py +119 -115
  215. transformers/models/clvp/number_normalizer.py +1 -2
  216. transformers/models/clvp/processing_clvp.py +3 -20
  217. transformers/models/clvp/tokenization_clvp.py +0 -1
  218. transformers/models/code_llama/tokenization_code_llama.py +3 -6
  219. transformers/models/codegen/configuration_codegen.py +0 -1
  220. transformers/models/codegen/modeling_codegen.py +48 -48
  221. transformers/models/codegen/tokenization_codegen.py +5 -6
  222. transformers/models/cohere/configuration_cohere.py +20 -23
  223. transformers/models/cohere/modeling_cohere.py +35 -38
  224. transformers/models/cohere/modular_cohere.py +24 -28
  225. transformers/models/cohere/tokenization_cohere.py +5 -6
  226. transformers/models/cohere2/configuration_cohere2.py +21 -24
  227. transformers/models/cohere2/modeling_cohere2.py +34 -37
  228. transformers/models/cohere2/modular_cohere2.py +39 -41
  229. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +6 -7
  230. transformers/models/cohere2_vision/modeling_cohere2_vision.py +28 -30
  231. transformers/models/cohere2_vision/modular_cohere2_vision.py +21 -23
  232. transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
  233. transformers/models/colpali/configuration_colpali.py +0 -1
  234. transformers/models/colpali/modeling_colpali.py +14 -16
  235. transformers/models/colpali/modular_colpali.py +11 -51
  236. transformers/models/colpali/processing_colpali.py +14 -52
  237. transformers/models/colqwen2/modeling_colqwen2.py +20 -22
  238. transformers/models/colqwen2/modular_colqwen2.py +29 -68
  239. transformers/models/colqwen2/processing_colqwen2.py +16 -52
  240. transformers/models/conditional_detr/configuration_conditional_detr.py +0 -1
  241. transformers/models/conditional_detr/image_processing_conditional_detr.py +64 -66
  242. transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +22 -22
  243. transformers/models/conditional_detr/modeling_conditional_detr.py +78 -80
  244. transformers/models/conditional_detr/modular_conditional_detr.py +1 -3
  245. transformers/models/convbert/configuration_convbert.py +0 -1
  246. transformers/models/convbert/modeling_convbert.py +85 -87
  247. transformers/models/convbert/tokenization_convbert.py +0 -1
  248. transformers/models/convnext/configuration_convnext.py +0 -1
  249. transformers/models/convnext/image_processing_convnext.py +18 -21
  250. transformers/models/convnext/image_processing_convnext_fast.py +5 -6
  251. transformers/models/convnext/modeling_convnext.py +5 -8
  252. transformers/models/convnextv2/configuration_convnextv2.py +0 -1
  253. transformers/models/convnextv2/modeling_convnextv2.py +5 -8
  254. transformers/models/cpm/tokenization_cpm.py +6 -7
  255. transformers/models/cpm/tokenization_cpm_fast.py +3 -5
  256. transformers/models/cpmant/configuration_cpmant.py +0 -1
  257. transformers/models/cpmant/modeling_cpmant.py +38 -40
  258. transformers/models/cpmant/tokenization_cpmant.py +1 -3
  259. transformers/models/csm/configuration_csm.py +49 -51
  260. transformers/models/csm/generation_csm.py +13 -14
  261. transformers/models/csm/modeling_csm.py +78 -81
  262. transformers/models/csm/modular_csm.py +56 -58
  263. transformers/models/csm/processing_csm.py +25 -68
  264. transformers/models/ctrl/configuration_ctrl.py +0 -1
  265. transformers/models/ctrl/modeling_ctrl.py +38 -41
  266. transformers/models/ctrl/tokenization_ctrl.py +0 -1
  267. transformers/models/cvt/configuration_cvt.py +0 -1
  268. transformers/models/cvt/modeling_cvt.py +13 -15
  269. transformers/models/cwm/__init__.py +0 -1
  270. transformers/models/cwm/configuration_cwm.py +3 -5
  271. transformers/models/cwm/modeling_cwm.py +32 -34
  272. transformers/models/cwm/modular_cwm.py +10 -12
  273. transformers/models/d_fine/configuration_d_fine.py +0 -1
  274. transformers/models/d_fine/modeling_d_fine.py +81 -82
  275. transformers/models/d_fine/modular_d_fine.py +8 -9
  276. transformers/models/dab_detr/configuration_dab_detr.py +0 -1
  277. transformers/models/dab_detr/modeling_dab_detr.py +68 -70
  278. transformers/models/dac/configuration_dac.py +0 -1
  279. transformers/models/dac/feature_extraction_dac.py +6 -9
  280. transformers/models/dac/modeling_dac.py +21 -23
  281. transformers/models/data2vec/configuration_data2vec_audio.py +0 -1
  282. transformers/models/data2vec/configuration_data2vec_text.py +0 -1
  283. transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
  284. transformers/models/data2vec/modeling_data2vec_audio.py +52 -56
  285. transformers/models/data2vec/modeling_data2vec_text.py +91 -93
  286. transformers/models/data2vec/modeling_data2vec_vision.py +41 -42
  287. transformers/models/data2vec/modular_data2vec_audio.py +6 -1
  288. transformers/models/data2vec/modular_data2vec_text.py +51 -54
  289. transformers/models/dbrx/configuration_dbrx.py +18 -19
  290. transformers/models/dbrx/modeling_dbrx.py +39 -42
  291. transformers/models/dbrx/modular_dbrx.py +31 -33
  292. transformers/models/deberta/configuration_deberta.py +0 -1
  293. transformers/models/deberta/modeling_deberta.py +57 -60
  294. transformers/models/deberta/tokenization_deberta.py +2 -5
  295. transformers/models/deberta_v2/configuration_deberta_v2.py +0 -1
  296. transformers/models/deberta_v2/modeling_deberta_v2.py +63 -65
  297. transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
  298. transformers/models/decision_transformer/configuration_decision_transformer.py +0 -1
  299. transformers/models/decision_transformer/modeling_decision_transformer.py +48 -50
  300. transformers/models/deepseek_v2/configuration_deepseek_v2.py +34 -37
  301. transformers/models/deepseek_v2/modeling_deepseek_v2.py +32 -33
  302. transformers/models/deepseek_v2/modular_deepseek_v2.py +40 -42
  303. transformers/models/deepseek_v3/configuration_deepseek_v3.py +35 -38
  304. transformers/models/deepseek_v3/modeling_deepseek_v3.py +31 -33
  305. transformers/models/deepseek_v3/modular_deepseek_v3.py +4 -5
  306. transformers/models/deepseek_vl/configuration_deepseek_vl.py +2 -3
  307. transformers/models/deepseek_vl/image_processing_deepseek_vl.py +25 -26
  308. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +7 -6
  309. transformers/models/deepseek_vl/modeling_deepseek_vl.py +31 -31
  310. transformers/models/deepseek_vl/modular_deepseek_vl.py +11 -43
  311. transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
  312. transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +3 -5
  313. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +35 -35
  314. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +16 -16
  315. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +33 -33
  316. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +71 -90
  317. transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
  318. transformers/models/deformable_detr/configuration_deformable_detr.py +0 -1
  319. transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
  320. transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +17 -17
  321. transformers/models/deformable_detr/modeling_deformable_detr.py +66 -67
  322. transformers/models/deformable_detr/modular_deformable_detr.py +1 -3
  323. transformers/models/deit/configuration_deit.py +0 -1
  324. transformers/models/deit/image_processing_deit.py +18 -21
  325. transformers/models/deit/image_processing_deit_fast.py +0 -1
  326. transformers/models/deit/modeling_deit.py +16 -18
  327. transformers/models/depth_anything/configuration_depth_anything.py +0 -1
  328. transformers/models/depth_anything/modeling_depth_anything.py +5 -8
  329. transformers/models/depth_pro/configuration_depth_pro.py +0 -1
  330. transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
  331. transformers/models/depth_pro/image_processing_depth_pro_fast.py +6 -7
  332. transformers/models/depth_pro/modeling_depth_pro.py +21 -23
  333. transformers/models/detr/configuration_detr.py +0 -1
  334. transformers/models/detr/image_processing_detr.py +64 -66
  335. transformers/models/detr/image_processing_detr_fast.py +22 -23
  336. transformers/models/detr/modeling_detr.py +70 -72
  337. transformers/models/dia/configuration_dia.py +5 -8
  338. transformers/models/dia/feature_extraction_dia.py +6 -9
  339. transformers/models/dia/generation_dia.py +40 -36
  340. transformers/models/dia/modeling_dia.py +61 -64
  341. transformers/models/dia/modular_dia.py +52 -54
  342. transformers/models/dia/processing_dia.py +39 -29
  343. transformers/models/dia/tokenization_dia.py +3 -6
  344. transformers/models/diffllama/configuration_diffllama.py +20 -23
  345. transformers/models/diffllama/modeling_diffllama.py +42 -45
  346. transformers/models/diffllama/modular_diffllama.py +16 -18
  347. transformers/models/dinat/configuration_dinat.py +0 -1
  348. transformers/models/dinat/modeling_dinat.py +40 -42
  349. transformers/models/dinov2/configuration_dinov2.py +0 -1
  350. transformers/models/dinov2/modeling_dinov2.py +11 -13
  351. transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +1 -1
  352. transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +12 -13
  353. transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +5 -7
  354. transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +4 -7
  355. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +3 -6
  356. transformers/models/dinov3_vit/configuration_dinov3_vit.py +5 -8
  357. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +5 -6
  358. transformers/models/dinov3_vit/modeling_dinov3_vit.py +14 -16
  359. transformers/models/dinov3_vit/modular_dinov3_vit.py +11 -13
  360. transformers/models/distilbert/configuration_distilbert.py +0 -1
  361. transformers/models/distilbert/modeling_distilbert.py +44 -46
  362. transformers/models/distilbert/tokenization_distilbert.py +0 -1
  363. transformers/models/doge/__init__.py +0 -1
  364. transformers/models/doge/configuration_doge.py +25 -28
  365. transformers/models/doge/modeling_doge.py +42 -45
  366. transformers/models/doge/modular_doge.py +57 -58
  367. transformers/models/donut/configuration_donut_swin.py +0 -1
  368. transformers/models/donut/image_processing_donut.py +26 -29
  369. transformers/models/donut/image_processing_donut_fast.py +5 -10
  370. transformers/models/donut/modeling_donut_swin.py +44 -46
  371. transformers/models/donut/processing_donut.py +5 -26
  372. transformers/models/dots1/configuration_dots1.py +27 -29
  373. transformers/models/dots1/modeling_dots1.py +31 -34
  374. transformers/models/dots1/modular_dots1.py +0 -1
  375. transformers/models/dpr/configuration_dpr.py +0 -1
  376. transformers/models/dpr/modeling_dpr.py +37 -39
  377. transformers/models/dpr/tokenization_dpr.py +7 -9
  378. transformers/models/dpr/tokenization_dpr_fast.py +7 -9
  379. transformers/models/dpt/configuration_dpt.py +0 -1
  380. transformers/models/dpt/image_processing_dpt.py +65 -66
  381. transformers/models/dpt/image_processing_dpt_fast.py +13 -14
  382. transformers/models/dpt/modeling_dpt.py +19 -21
  383. transformers/models/dpt/modular_dpt.py +10 -11
  384. transformers/models/edgetam/configuration_edgetam.py +0 -1
  385. transformers/models/edgetam/modeling_edgetam.py +39 -41
  386. transformers/models/edgetam/modular_edgetam.py +2 -6
  387. transformers/models/edgetam_video/__init__.py +0 -1
  388. transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
  389. transformers/models/edgetam_video/modeling_edgetam_video.py +76 -77
  390. transformers/models/edgetam_video/modular_edgetam_video.py +16 -18
  391. transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
  392. transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
  393. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +4 -4
  394. transformers/models/efficientloftr/modeling_efficientloftr.py +27 -29
  395. transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
  396. transformers/models/efficientnet/configuration_efficientnet.py +0 -1
  397. transformers/models/efficientnet/image_processing_efficientnet.py +23 -26
  398. transformers/models/efficientnet/image_processing_efficientnet_fast.py +14 -15
  399. transformers/models/efficientnet/modeling_efficientnet.py +12 -14
  400. transformers/models/electra/configuration_electra.py +0 -1
  401. transformers/models/electra/modeling_electra.py +101 -103
  402. transformers/models/emu3/configuration_emu3.py +5 -7
  403. transformers/models/emu3/image_processing_emu3.py +44 -39
  404. transformers/models/emu3/modeling_emu3.py +59 -62
  405. transformers/models/emu3/modular_emu3.py +32 -34
  406. transformers/models/emu3/processing_emu3.py +18 -43
  407. transformers/models/encodec/configuration_encodec.py +2 -4
  408. transformers/models/encodec/feature_extraction_encodec.py +10 -13
  409. transformers/models/encodec/modeling_encodec.py +25 -29
  410. transformers/models/encoder_decoder/configuration_encoder_decoder.py +0 -1
  411. transformers/models/encoder_decoder/modeling_encoder_decoder.py +17 -19
  412. transformers/models/eomt/configuration_eomt.py +0 -1
  413. transformers/models/eomt/image_processing_eomt.py +53 -55
  414. transformers/models/eomt/image_processing_eomt_fast.py +15 -16
  415. transformers/models/eomt/modeling_eomt.py +16 -18
  416. transformers/models/eomt/modular_eomt.py +11 -13
  417. transformers/models/ernie/configuration_ernie.py +0 -1
  418. transformers/models/ernie/modeling_ernie.py +121 -132
  419. transformers/models/ernie/modular_ernie.py +91 -103
  420. transformers/models/ernie4_5/configuration_ernie4_5.py +18 -20
  421. transformers/models/ernie4_5/modeling_ernie4_5.py +31 -33
  422. transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
  423. transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +27 -29
  424. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +36 -38
  425. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +7 -9
  426. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +0 -1
  427. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +34 -35
  428. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +6 -7
  429. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +84 -87
  430. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +86 -89
  431. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +3 -5
  432. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +17 -18
  433. transformers/models/esm/configuration_esm.py +2 -4
  434. transformers/models/esm/modeling_esm.py +32 -34
  435. transformers/models/esm/modeling_esmfold.py +42 -44
  436. transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
  437. transformers/models/esm/openfold_utils/loss.py +1 -2
  438. transformers/models/esm/openfold_utils/protein.py +13 -13
  439. transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
  440. transformers/models/esm/tokenization_esm.py +2 -4
  441. transformers/models/evolla/configuration_evolla.py +29 -32
  442. transformers/models/evolla/modeling_evolla.py +58 -61
  443. transformers/models/evolla/modular_evolla.py +45 -47
  444. transformers/models/evolla/processing_evolla.py +23 -35
  445. transformers/models/exaone4/configuration_exaone4.py +19 -22
  446. transformers/models/exaone4/modeling_exaone4.py +32 -35
  447. transformers/models/exaone4/modular_exaone4.py +40 -42
  448. transformers/models/falcon/configuration_falcon.py +22 -25
  449. transformers/models/falcon/modeling_falcon.py +73 -76
  450. transformers/models/falcon_h1/configuration_falcon_h1.py +40 -43
  451. transformers/models/falcon_h1/modeling_falcon_h1.py +52 -55
  452. transformers/models/falcon_h1/modular_falcon_h1.py +47 -48
  453. transformers/models/falcon_mamba/configuration_falcon_mamba.py +0 -1
  454. transformers/models/falcon_mamba/modeling_falcon_mamba.py +46 -47
  455. transformers/models/falcon_mamba/modular_falcon_mamba.py +10 -13
  456. transformers/models/fast_vlm/configuration_fast_vlm.py +1 -0
  457. transformers/models/fast_vlm/modeling_fast_vlm.py +36 -36
  458. transformers/models/fast_vlm/modular_fast_vlm.py +2 -3
  459. transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -5
  460. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +45 -47
  461. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -3
  462. transformers/models/flaubert/configuration_flaubert.py +0 -1
  463. transformers/models/flaubert/modeling_flaubert.py +124 -128
  464. transformers/models/flaubert/tokenization_flaubert.py +3 -5
  465. transformers/models/flava/configuration_flava.py +5 -6
  466. transformers/models/flava/image_processing_flava.py +66 -67
  467. transformers/models/flava/image_processing_flava_fast.py +42 -43
  468. transformers/models/flava/modeling_flava.py +108 -107
  469. transformers/models/flava/processing_flava.py +2 -12
  470. transformers/models/flex_olmo/__init__.py +0 -1
  471. transformers/models/flex_olmo/configuration_flex_olmo.py +23 -25
  472. transformers/models/flex_olmo/modeling_flex_olmo.py +37 -39
  473. transformers/models/flex_olmo/modular_flex_olmo.py +35 -37
  474. transformers/models/florence2/configuration_florence2.py +0 -1
  475. transformers/models/florence2/modeling_florence2.py +39 -40
  476. transformers/models/florence2/modular_florence2.py +52 -81
  477. transformers/models/florence2/processing_florence2.py +18 -47
  478. transformers/models/fnet/configuration_fnet.py +0 -1
  479. transformers/models/fnet/modeling_fnet.py +69 -80
  480. transformers/models/fnet/tokenization_fnet.py +0 -1
  481. transformers/models/focalnet/configuration_focalnet.py +0 -1
  482. transformers/models/focalnet/modeling_focalnet.py +39 -41
  483. transformers/models/fsmt/configuration_fsmt.py +0 -1
  484. transformers/models/fsmt/modeling_fsmt.py +47 -48
  485. transformers/models/fsmt/tokenization_fsmt.py +3 -5
  486. transformers/models/funnel/configuration_funnel.py +0 -1
  487. transformers/models/funnel/modeling_funnel.py +91 -93
  488. transformers/models/funnel/tokenization_funnel.py +2 -5
  489. transformers/models/fuyu/configuration_fuyu.py +23 -26
  490. transformers/models/fuyu/image_processing_fuyu.py +29 -31
  491. transformers/models/fuyu/image_processing_fuyu_fast.py +12 -13
  492. transformers/models/fuyu/modeling_fuyu.py +26 -29
  493. transformers/models/fuyu/processing_fuyu.py +9 -36
  494. transformers/models/gemma/configuration_gemma.py +20 -23
  495. transformers/models/gemma/modeling_gemma.py +32 -34
  496. transformers/models/gemma/modular_gemma.py +28 -29
  497. transformers/models/gemma/tokenization_gemma.py +3 -6
  498. transformers/models/gemma2/configuration_gemma2.py +25 -28
  499. transformers/models/gemma2/modeling_gemma2.py +34 -37
  500. transformers/models/gemma2/modular_gemma2.py +55 -57
  501. transformers/models/gemma3/configuration_gemma3.py +28 -29
  502. transformers/models/gemma3/image_processing_gemma3.py +29 -31
  503. transformers/models/gemma3/image_processing_gemma3_fast.py +9 -10
  504. transformers/models/gemma3/modeling_gemma3.py +86 -89
  505. transformers/models/gemma3/modular_gemma3.py +85 -86
  506. transformers/models/gemma3/processing_gemma3.py +5 -5
  507. transformers/models/gemma3n/configuration_gemma3n.py +9 -10
  508. transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
  509. transformers/models/gemma3n/modeling_gemma3n.py +80 -89
  510. transformers/models/gemma3n/modular_gemma3n.py +66 -75
  511. transformers/models/gemma3n/processing_gemma3n.py +12 -26
  512. transformers/models/git/configuration_git.py +0 -1
  513. transformers/models/git/modeling_git.py +84 -86
  514. transformers/models/git/processing_git.py +2 -14
  515. transformers/models/glm/configuration_glm.py +19 -21
  516. transformers/models/glm/modeling_glm.py +32 -35
  517. transformers/models/glm/modular_glm.py +4 -7
  518. transformers/models/glm4/configuration_glm4.py +19 -21
  519. transformers/models/glm4/modeling_glm4.py +35 -37
  520. transformers/models/glm4/modular_glm4.py +8 -10
  521. transformers/models/glm46v/configuration_glm46v.py +0 -1
  522. transformers/models/glm46v/image_processing_glm46v.py +35 -36
  523. transformers/models/glm46v/image_processing_glm46v_fast.py +7 -7
  524. transformers/models/glm46v/modeling_glm46v.py +51 -51
  525. transformers/models/glm46v/modular_glm46v.py +1 -3
  526. transformers/models/glm46v/processing_glm46v.py +7 -41
  527. transformers/models/glm46v/video_processing_glm46v.py +9 -11
  528. transformers/models/glm4_moe/configuration_glm4_moe.py +25 -28
  529. transformers/models/glm4_moe/modeling_glm4_moe.py +32 -35
  530. transformers/models/glm4_moe/modular_glm4_moe.py +26 -29
  531. transformers/models/glm4_moe_lite/__init__.py +28 -0
  532. transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +235 -0
  533. transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
  534. transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +304 -0
  535. transformers/models/glm4v/configuration_glm4v.py +14 -17
  536. transformers/models/glm4v/image_processing_glm4v.py +34 -36
  537. transformers/models/glm4v/image_processing_glm4v_fast.py +6 -7
  538. transformers/models/glm4v/modeling_glm4v.py +133 -151
  539. transformers/models/glm4v/modular_glm4v.py +131 -182
  540. transformers/models/glm4v/processing_glm4v.py +7 -41
  541. transformers/models/glm4v/video_processing_glm4v.py +9 -11
  542. transformers/models/glm4v_moe/configuration_glm4v_moe.py +119 -122
  543. transformers/models/glm4v_moe/modeling_glm4v_moe.py +237 -297
  544. transformers/models/glm4v_moe/modular_glm4v_moe.py +54 -163
  545. transformers/models/glm_image/__init__.py +31 -0
  546. transformers/models/glm_image/configuration_glm_image.py +352 -0
  547. transformers/models/glm_image/image_processing_glm_image.py +503 -0
  548. transformers/models/glm_image/image_processing_glm_image_fast.py +296 -0
  549. transformers/models/glm_image/modeling_glm_image.py +1590 -0
  550. transformers/models/glm_image/modular_glm_image.py +1480 -0
  551. transformers/models/glm_image/processing_glm_image.py +217 -0
  552. transformers/models/glmasr/__init__.py +0 -1
  553. transformers/models/glmasr/configuration_glmasr.py +0 -1
  554. transformers/models/glmasr/modeling_glmasr.py +17 -18
  555. transformers/models/glmasr/modular_glmasr.py +16 -18
  556. transformers/models/glmasr/processing_glmasr.py +7 -8
  557. transformers/models/glpn/configuration_glpn.py +0 -1
  558. transformers/models/glpn/image_processing_glpn.py +11 -12
  559. transformers/models/glpn/image_processing_glpn_fast.py +8 -9
  560. transformers/models/glpn/modeling_glpn.py +10 -12
  561. transformers/models/got_ocr2/configuration_got_ocr2.py +5 -8
  562. transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
  563. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +6 -7
  564. transformers/models/got_ocr2/modeling_got_ocr2.py +40 -42
  565. transformers/models/got_ocr2/modular_got_ocr2.py +31 -34
  566. transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
  567. transformers/models/gpt2/configuration_gpt2.py +0 -1
  568. transformers/models/gpt2/modeling_gpt2.py +106 -108
  569. transformers/models/gpt2/tokenization_gpt2.py +6 -9
  570. transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +0 -1
  571. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +73 -80
  572. transformers/models/gpt_neo/configuration_gpt_neo.py +0 -1
  573. transformers/models/gpt_neo/modeling_gpt_neo.py +63 -64
  574. transformers/models/gpt_neox/configuration_gpt_neox.py +19 -22
  575. transformers/models/gpt_neox/modeling_gpt_neox.py +70 -72
  576. transformers/models/gpt_neox/modular_gpt_neox.py +64 -66
  577. transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
  578. transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +15 -18
  579. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +41 -44
  580. transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
  581. transformers/models/gpt_oss/configuration_gpt_oss.py +21 -24
  582. transformers/models/gpt_oss/modeling_gpt_oss.py +34 -35
  583. transformers/models/gpt_oss/modular_gpt_oss.py +17 -19
  584. transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
  585. transformers/models/gptj/configuration_gptj.py +0 -1
  586. transformers/models/gptj/modeling_gptj.py +82 -81
  587. transformers/models/granite/configuration_granite.py +23 -26
  588. transformers/models/granite/modeling_granite.py +39 -41
  589. transformers/models/granite/modular_granite.py +29 -31
  590. transformers/models/granite_speech/configuration_granite_speech.py +0 -1
  591. transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
  592. transformers/models/granite_speech/modeling_granite_speech.py +21 -23
  593. transformers/models/granite_speech/processing_granite_speech.py +11 -4
  594. transformers/models/granitemoe/configuration_granitemoe.py +26 -29
  595. transformers/models/granitemoe/modeling_granitemoe.py +35 -37
  596. transformers/models/granitemoe/modular_granitemoe.py +21 -23
  597. transformers/models/granitemoehybrid/__init__.py +0 -1
  598. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +38 -41
  599. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +60 -64
  600. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +18 -20
  601. transformers/models/granitemoeshared/configuration_granitemoeshared.py +27 -30
  602. transformers/models/granitemoeshared/modeling_granitemoeshared.py +48 -52
  603. transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
  604. transformers/models/grounding_dino/configuration_grounding_dino.py +0 -1
  605. transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
  606. transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +17 -18
  607. transformers/models/grounding_dino/modeling_grounding_dino.py +94 -96
  608. transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
  609. transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
  610. transformers/models/groupvit/configuration_groupvit.py +0 -1
  611. transformers/models/groupvit/modeling_groupvit.py +69 -70
  612. transformers/models/helium/configuration_helium.py +20 -22
  613. transformers/models/helium/modeling_helium.py +33 -36
  614. transformers/models/helium/modular_helium.py +3 -7
  615. transformers/models/herbert/tokenization_herbert.py +4 -6
  616. transformers/models/hgnet_v2/configuration_hgnet_v2.py +0 -1
  617. transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -9
  618. transformers/models/hgnet_v2/modular_hgnet_v2.py +6 -9
  619. transformers/models/hiera/configuration_hiera.py +0 -1
  620. transformers/models/hiera/modeling_hiera.py +60 -62
  621. transformers/models/hubert/configuration_hubert.py +0 -1
  622. transformers/models/hubert/modeling_hubert.py +35 -37
  623. transformers/models/hubert/modular_hubert.py +8 -11
  624. transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +21 -24
  625. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +30 -33
  626. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +3 -5
  627. transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +25 -28
  628. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +32 -35
  629. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +5 -7
  630. transformers/models/ibert/configuration_ibert.py +0 -1
  631. transformers/models/ibert/modeling_ibert.py +60 -62
  632. transformers/models/ibert/quant_modules.py +0 -1
  633. transformers/models/idefics/configuration_idefics.py +0 -1
  634. transformers/models/idefics/image_processing_idefics.py +13 -15
  635. transformers/models/idefics/modeling_idefics.py +60 -61
  636. transformers/models/idefics/perceiver.py +1 -3
  637. transformers/models/idefics/processing_idefics.py +32 -48
  638. transformers/models/idefics/vision.py +22 -24
  639. transformers/models/idefics2/configuration_idefics2.py +0 -1
  640. transformers/models/idefics2/image_processing_idefics2.py +31 -32
  641. transformers/models/idefics2/image_processing_idefics2_fast.py +7 -8
  642. transformers/models/idefics2/modeling_idefics2.py +56 -58
  643. transformers/models/idefics2/processing_idefics2.py +10 -68
  644. transformers/models/idefics3/configuration_idefics3.py +0 -1
  645. transformers/models/idefics3/image_processing_idefics3.py +42 -43
  646. transformers/models/idefics3/image_processing_idefics3_fast.py +11 -12
  647. transformers/models/idefics3/modeling_idefics3.py +52 -54
  648. transformers/models/idefics3/processing_idefics3.py +15 -69
  649. transformers/models/ijepa/configuration_ijepa.py +0 -1
  650. transformers/models/ijepa/modeling_ijepa.py +10 -11
  651. transformers/models/ijepa/modular_ijepa.py +5 -7
  652. transformers/models/imagegpt/configuration_imagegpt.py +0 -1
  653. transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
  654. transformers/models/imagegpt/image_processing_imagegpt_fast.py +8 -9
  655. transformers/models/imagegpt/modeling_imagegpt.py +57 -58
  656. transformers/models/informer/configuration_informer.py +6 -9
  657. transformers/models/informer/modeling_informer.py +84 -86
  658. transformers/models/informer/modular_informer.py +13 -16
  659. transformers/models/instructblip/configuration_instructblip.py +0 -1
  660. transformers/models/instructblip/modeling_instructblip.py +43 -44
  661. transformers/models/instructblip/processing_instructblip.py +10 -36
  662. transformers/models/instructblipvideo/configuration_instructblipvideo.py +0 -1
  663. transformers/models/instructblipvideo/modeling_instructblipvideo.py +55 -55
  664. transformers/models/instructblipvideo/modular_instructblipvideo.py +34 -36
  665. transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
  666. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +4 -5
  667. transformers/models/internvl/configuration_internvl.py +0 -1
  668. transformers/models/internvl/modeling_internvl.py +41 -43
  669. transformers/models/internvl/modular_internvl.py +19 -21
  670. transformers/models/internvl/processing_internvl.py +12 -45
  671. transformers/models/internvl/video_processing_internvl.py +8 -9
  672. transformers/models/jais2/configuration_jais2.py +20 -22
  673. transformers/models/jais2/modeling_jais2.py +32 -34
  674. transformers/models/jais2/modular_jais2.py +20 -22
  675. transformers/models/jamba/configuration_jamba.py +0 -1
  676. transformers/models/jamba/modeling_jamba.py +43 -46
  677. transformers/models/jamba/modular_jamba.py +37 -38
  678. transformers/models/janus/configuration_janus.py +0 -1
  679. transformers/models/janus/image_processing_janus.py +35 -37
  680. transformers/models/janus/image_processing_janus_fast.py +12 -13
  681. transformers/models/janus/modeling_janus.py +41 -43
  682. transformers/models/janus/modular_janus.py +60 -63
  683. transformers/models/janus/processing_janus.py +17 -43
  684. transformers/models/jetmoe/configuration_jetmoe.py +20 -23
  685. transformers/models/jetmoe/modeling_jetmoe.py +39 -42
  686. transformers/models/jetmoe/modular_jetmoe.py +30 -33
  687. transformers/models/kosmos2/configuration_kosmos2.py +0 -1
  688. transformers/models/kosmos2/modeling_kosmos2.py +145 -146
  689. transformers/models/kosmos2/processing_kosmos2.py +40 -55
  690. transformers/models/kosmos2_5/__init__.py +0 -1
  691. transformers/models/kosmos2_5/configuration_kosmos2_5.py +0 -1
  692. transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
  693. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -11
  694. transformers/models/kosmos2_5/modeling_kosmos2_5.py +108 -109
  695. transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
  696. transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +23 -25
  697. transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
  698. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +59 -66
  699. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +19 -21
  700. transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
  701. transformers/models/lasr/configuration_lasr.py +1 -3
  702. transformers/models/lasr/feature_extraction_lasr.py +10 -12
  703. transformers/models/lasr/modeling_lasr.py +18 -21
  704. transformers/models/lasr/modular_lasr.py +8 -10
  705. transformers/models/lasr/processing_lasr.py +12 -6
  706. transformers/models/lasr/tokenization_lasr.py +2 -4
  707. transformers/models/layoutlm/configuration_layoutlm.py +0 -1
  708. transformers/models/layoutlm/modeling_layoutlm.py +67 -69
  709. transformers/models/layoutlmv2/configuration_layoutlmv2.py +0 -1
  710. transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
  711. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +5 -6
  712. transformers/models/layoutlmv2/modeling_layoutlmv2.py +48 -50
  713. transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
  714. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +63 -74
  715. transformers/models/layoutlmv3/configuration_layoutlmv3.py +0 -1
  716. transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
  717. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +7 -8
  718. transformers/models/layoutlmv3/modeling_layoutlmv3.py +49 -51
  719. transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
  720. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
  721. transformers/models/layoutxlm/configuration_layoutxlm.py +0 -1
  722. transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
  723. transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
  724. transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
  725. transformers/models/led/configuration_led.py +1 -4
  726. transformers/models/led/modeling_led.py +113 -267
  727. transformers/models/levit/configuration_levit.py +0 -1
  728. transformers/models/levit/image_processing_levit.py +19 -21
  729. transformers/models/levit/image_processing_levit_fast.py +0 -1
  730. transformers/models/levit/modeling_levit.py +17 -19
  731. transformers/models/lfm2/configuration_lfm2.py +22 -23
  732. transformers/models/lfm2/modeling_lfm2.py +42 -44
  733. transformers/models/lfm2/modular_lfm2.py +29 -29
  734. transformers/models/lfm2_moe/__init__.py +0 -1
  735. transformers/models/lfm2_moe/configuration_lfm2_moe.py +1 -2
  736. transformers/models/lfm2_moe/modeling_lfm2_moe.py +44 -45
  737. transformers/models/lfm2_moe/modular_lfm2_moe.py +8 -9
  738. transformers/models/lfm2_vl/configuration_lfm2_vl.py +0 -1
  739. transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +34 -5
  740. transformers/models/lfm2_vl/modeling_lfm2_vl.py +31 -33
  741. transformers/models/lfm2_vl/modular_lfm2_vl.py +24 -27
  742. transformers/models/lfm2_vl/processing_lfm2_vl.py +14 -34
  743. transformers/models/lightglue/image_processing_lightglue.py +16 -15
  744. transformers/models/lightglue/image_processing_lightglue_fast.py +4 -4
  745. transformers/models/lightglue/modeling_lightglue.py +28 -30
  746. transformers/models/lightglue/modular_lightglue.py +28 -28
  747. transformers/models/lighton_ocr/__init__.py +28 -0
  748. transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
  749. transformers/models/lighton_ocr/modeling_lighton_ocr.py +460 -0
  750. transformers/models/lighton_ocr/modular_lighton_ocr.py +403 -0
  751. transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
  752. transformers/models/lilt/configuration_lilt.py +0 -1
  753. transformers/models/lilt/modeling_lilt.py +53 -55
  754. transformers/models/llama/configuration_llama.py +21 -24
  755. transformers/models/llama/modeling_llama.py +31 -34
  756. transformers/models/llama/tokenization_llama.py +2 -4
  757. transformers/models/llama4/configuration_llama4.py +20 -22
  758. transformers/models/llama4/image_processing_llama4_fast.py +8 -9
  759. transformers/models/llama4/modeling_llama4.py +70 -71
  760. transformers/models/llama4/processing_llama4.py +33 -57
  761. transformers/models/llava/configuration_llava.py +0 -1
  762. transformers/models/llava/image_processing_llava.py +25 -28
  763. transformers/models/llava/image_processing_llava_fast.py +6 -7
  764. transformers/models/llava/modeling_llava.py +35 -37
  765. transformers/models/llava/processing_llava.py +18 -51
  766. transformers/models/llava_next/configuration_llava_next.py +0 -1
  767. transformers/models/llava_next/image_processing_llava_next.py +43 -45
  768. transformers/models/llava_next/image_processing_llava_next_fast.py +5 -6
  769. transformers/models/llava_next/modeling_llava_next.py +42 -44
  770. transformers/models/llava_next/processing_llava_next.py +18 -47
  771. transformers/models/llava_next_video/configuration_llava_next_video.py +0 -1
  772. transformers/models/llava_next_video/modeling_llava_next_video.py +53 -55
  773. transformers/models/llava_next_video/modular_llava_next_video.py +44 -46
  774. transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
  775. transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
  776. transformers/models/llava_onevision/configuration_llava_onevision.py +0 -1
  777. transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
  778. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +6 -7
  779. transformers/models/llava_onevision/modeling_llava_onevision.py +60 -62
  780. transformers/models/llava_onevision/modular_llava_onevision.py +51 -52
  781. transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
  782. transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
  783. transformers/models/longcat_flash/__init__.py +0 -1
  784. transformers/models/longcat_flash/configuration_longcat_flash.py +32 -35
  785. transformers/models/longcat_flash/modeling_longcat_flash.py +30 -31
  786. transformers/models/longcat_flash/modular_longcat_flash.py +17 -19
  787. transformers/models/longformer/configuration_longformer.py +1 -4
  788. transformers/models/longformer/modeling_longformer.py +99 -101
  789. transformers/models/longt5/configuration_longt5.py +0 -1
  790. transformers/models/longt5/modeling_longt5.py +43 -44
  791. transformers/models/luke/configuration_luke.py +0 -1
  792. transformers/models/luke/modeling_luke.py +179 -181
  793. transformers/models/luke/tokenization_luke.py +99 -105
  794. transformers/models/lw_detr/__init__.py +27 -0
  795. transformers/models/lw_detr/configuration_lw_detr.py +374 -0
  796. transformers/models/lw_detr/modeling_lw_detr.py +1698 -0
  797. transformers/models/lw_detr/modular_lw_detr.py +1611 -0
  798. transformers/models/lxmert/configuration_lxmert.py +0 -1
  799. transformers/models/lxmert/modeling_lxmert.py +63 -74
  800. transformers/models/m2m_100/configuration_m2m_100.py +0 -1
  801. transformers/models/m2m_100/modeling_m2m_100.py +69 -71
  802. transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
  803. transformers/models/mamba/configuration_mamba.py +0 -1
  804. transformers/models/mamba/modeling_mamba.py +43 -44
  805. transformers/models/mamba2/configuration_mamba2.py +0 -1
  806. transformers/models/mamba2/modeling_mamba2.py +44 -46
  807. transformers/models/marian/configuration_marian.py +0 -1
  808. transformers/models/marian/modeling_marian.py +84 -86
  809. transformers/models/marian/tokenization_marian.py +6 -6
  810. transformers/models/markuplm/configuration_markuplm.py +0 -1
  811. transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
  812. transformers/models/markuplm/modeling_markuplm.py +60 -62
  813. transformers/models/markuplm/processing_markuplm.py +31 -38
  814. transformers/models/markuplm/tokenization_markuplm.py +67 -77
  815. transformers/models/mask2former/configuration_mask2former.py +4 -7
  816. transformers/models/mask2former/image_processing_mask2former.py +84 -85
  817. transformers/models/mask2former/image_processing_mask2former_fast.py +29 -29
  818. transformers/models/mask2former/modeling_mask2former.py +90 -92
  819. transformers/models/mask2former/modular_mask2former.py +6 -8
  820. transformers/models/maskformer/configuration_maskformer.py +5 -8
  821. transformers/models/maskformer/configuration_maskformer_swin.py +0 -1
  822. transformers/models/maskformer/image_processing_maskformer.py +84 -85
  823. transformers/models/maskformer/image_processing_maskformer_fast.py +28 -29
  824. transformers/models/maskformer/modeling_maskformer.py +56 -58
  825. transformers/models/maskformer/modeling_maskformer_swin.py +18 -20
  826. transformers/models/mbart/configuration_mbart.py +0 -1
  827. transformers/models/mbart/modeling_mbart.py +111 -113
  828. transformers/models/mbart/tokenization_mbart.py +2 -4
  829. transformers/models/mbart50/tokenization_mbart50.py +3 -5
  830. transformers/models/megatron_bert/configuration_megatron_bert.py +0 -1
  831. transformers/models/megatron_bert/modeling_megatron_bert.py +139 -150
  832. transformers/models/metaclip_2/modeling_metaclip_2.py +46 -46
  833. transformers/models/metaclip_2/modular_metaclip_2.py +19 -21
  834. transformers/models/mgp_str/configuration_mgp_str.py +0 -1
  835. transformers/models/mgp_str/modeling_mgp_str.py +14 -16
  836. transformers/models/mgp_str/processing_mgp_str.py +3 -20
  837. transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
  838. transformers/models/mimi/configuration_mimi.py +38 -40
  839. transformers/models/mimi/modeling_mimi.py +76 -79
  840. transformers/models/minimax/__init__.py +0 -1
  841. transformers/models/minimax/configuration_minimax.py +32 -36
  842. transformers/models/minimax/modeling_minimax.py +41 -44
  843. transformers/models/minimax/modular_minimax.py +50 -53
  844. transformers/models/minimax_m2/__init__.py +28 -0
  845. transformers/models/minimax_m2/configuration_minimax_m2.py +211 -0
  846. transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
  847. transformers/models/minimax_m2/modular_minimax_m2.py +369 -0
  848. transformers/models/ministral/configuration_ministral.py +20 -22
  849. transformers/models/ministral/modeling_ministral.py +31 -33
  850. transformers/models/ministral/modular_ministral.py +27 -29
  851. transformers/models/ministral3/configuration_ministral3.py +19 -22
  852. transformers/models/ministral3/modeling_ministral3.py +31 -33
  853. transformers/models/ministral3/modular_ministral3.py +4 -5
  854. transformers/models/mistral/configuration_mistral.py +19 -22
  855. transformers/models/mistral/modeling_mistral.py +31 -33
  856. transformers/models/mistral/modular_mistral.py +11 -12
  857. transformers/models/mistral3/configuration_mistral3.py +0 -1
  858. transformers/models/mistral3/modeling_mistral3.py +43 -42
  859. transformers/models/mistral3/modular_mistral3.py +35 -35
  860. transformers/models/mixtral/configuration_mixtral.py +24 -27
  861. transformers/models/mixtral/modeling_mixtral.py +35 -38
  862. transformers/models/mixtral/modular_mixtral.py +26 -29
  863. transformers/models/mlcd/configuration_mlcd.py +0 -1
  864. transformers/models/mlcd/modeling_mlcd.py +10 -12
  865. transformers/models/mlcd/modular_mlcd.py +9 -11
  866. transformers/models/mllama/configuration_mllama.py +5 -8
  867. transformers/models/mllama/image_processing_mllama.py +23 -25
  868. transformers/models/mllama/image_processing_mllama_fast.py +5 -6
  869. transformers/models/mllama/modeling_mllama.py +81 -84
  870. transformers/models/mllama/processing_mllama.py +6 -55
  871. transformers/models/mluke/tokenization_mluke.py +97 -103
  872. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +0 -1
  873. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +94 -96
  874. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +0 -1
  875. transformers/models/mobilebert/configuration_mobilebert.py +0 -1
  876. transformers/models/mobilebert/modeling_mobilebert.py +75 -85
  877. transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
  878. transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
  879. transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
  880. transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
  881. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
  882. transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
  883. transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
  884. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +10 -11
  885. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +17 -20
  886. transformers/models/mobilevit/configuration_mobilevit.py +0 -1
  887. transformers/models/mobilevit/image_processing_mobilevit.py +41 -44
  888. transformers/models/mobilevit/image_processing_mobilevit_fast.py +8 -9
  889. transformers/models/mobilevit/modeling_mobilevit.py +17 -19
  890. transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
  891. transformers/models/mobilevitv2/modeling_mobilevitv2.py +17 -20
  892. transformers/models/modernbert/configuration_modernbert.py +34 -34
  893. transformers/models/modernbert/modeling_modernbert.py +123 -125
  894. transformers/models/modernbert/modular_modernbert.py +155 -155
  895. transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +30 -32
  896. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +45 -47
  897. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +69 -70
  898. transformers/models/moonshine/configuration_moonshine.py +22 -24
  899. transformers/models/moonshine/modeling_moonshine.py +63 -65
  900. transformers/models/moonshine/modular_moonshine.py +72 -73
  901. transformers/models/moshi/configuration_moshi.py +18 -21
  902. transformers/models/moshi/modeling_moshi.py +130 -133
  903. transformers/models/mpnet/configuration_mpnet.py +0 -1
  904. transformers/models/mpnet/modeling_mpnet.py +55 -57
  905. transformers/models/mpnet/tokenization_mpnet.py +1 -4
  906. transformers/models/mpt/configuration_mpt.py +1 -9
  907. transformers/models/mpt/modeling_mpt.py +58 -60
  908. transformers/models/mra/configuration_mra.py +0 -1
  909. transformers/models/mra/modeling_mra.py +54 -56
  910. transformers/models/mt5/configuration_mt5.py +0 -1
  911. transformers/models/mt5/modeling_mt5.py +75 -77
  912. transformers/models/musicgen/configuration_musicgen.py +0 -1
  913. transformers/models/musicgen/modeling_musicgen.py +108 -111
  914. transformers/models/musicgen/processing_musicgen.py +3 -21
  915. transformers/models/musicgen_melody/configuration_musicgen_melody.py +0 -1
  916. transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
  917. transformers/models/musicgen_melody/modeling_musicgen_melody.py +106 -109
  918. transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
  919. transformers/models/mvp/configuration_mvp.py +0 -1
  920. transformers/models/mvp/modeling_mvp.py +115 -119
  921. transformers/models/myt5/tokenization_myt5.py +8 -10
  922. transformers/models/nanochat/configuration_nanochat.py +0 -1
  923. transformers/models/nanochat/modeling_nanochat.py +32 -35
  924. transformers/models/nanochat/modular_nanochat.py +12 -14
  925. transformers/models/nemotron/configuration_nemotron.py +20 -23
  926. transformers/models/nemotron/modeling_nemotron.py +49 -52
  927. transformers/models/nllb/tokenization_nllb.py +7 -9
  928. transformers/models/nllb_moe/configuration_nllb_moe.py +0 -1
  929. transformers/models/nllb_moe/modeling_nllb_moe.py +67 -69
  930. transformers/models/nougat/image_processing_nougat.py +29 -32
  931. transformers/models/nougat/image_processing_nougat_fast.py +4 -5
  932. transformers/models/nougat/processing_nougat.py +37 -39
  933. transformers/models/nougat/tokenization_nougat.py +5 -7
  934. transformers/models/nystromformer/configuration_nystromformer.py +0 -1
  935. transformers/models/nystromformer/modeling_nystromformer.py +61 -63
  936. transformers/models/olmo/configuration_olmo.py +18 -21
  937. transformers/models/olmo/modeling_olmo.py +31 -34
  938. transformers/models/olmo/modular_olmo.py +5 -9
  939. transformers/models/olmo2/configuration_olmo2.py +18 -21
  940. transformers/models/olmo2/modeling_olmo2.py +32 -35
  941. transformers/models/olmo2/modular_olmo2.py +29 -31
  942. transformers/models/olmo3/__init__.py +0 -1
  943. transformers/models/olmo3/configuration_olmo3.py +20 -23
  944. transformers/models/olmo3/modeling_olmo3.py +31 -34
  945. transformers/models/olmo3/modular_olmo3.py +31 -33
  946. transformers/models/olmoe/configuration_olmoe.py +24 -26
  947. transformers/models/olmoe/modeling_olmoe.py +37 -39
  948. transformers/models/olmoe/modular_olmoe.py +12 -13
  949. transformers/models/omdet_turbo/configuration_omdet_turbo.py +0 -1
  950. transformers/models/omdet_turbo/modeling_omdet_turbo.py +38 -40
  951. transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
  952. transformers/models/oneformer/configuration_oneformer.py +4 -7
  953. transformers/models/oneformer/image_processing_oneformer.py +83 -84
  954. transformers/models/oneformer/image_processing_oneformer_fast.py +33 -34
  955. transformers/models/oneformer/modeling_oneformer.py +123 -124
  956. transformers/models/oneformer/processing_oneformer.py +28 -43
  957. transformers/models/openai/configuration_openai.py +0 -1
  958. transformers/models/openai/modeling_openai.py +50 -51
  959. transformers/models/openai/tokenization_openai.py +2 -5
  960. transformers/models/opt/configuration_opt.py +0 -1
  961. transformers/models/opt/modeling_opt.py +74 -75
  962. transformers/models/ovis2/__init__.py +0 -1
  963. transformers/models/ovis2/configuration_ovis2.py +0 -1
  964. transformers/models/ovis2/image_processing_ovis2.py +22 -24
  965. transformers/models/ovis2/image_processing_ovis2_fast.py +6 -7
  966. transformers/models/ovis2/modeling_ovis2.py +43 -45
  967. transformers/models/ovis2/modular_ovis2.py +30 -32
  968. transformers/models/ovis2/processing_ovis2.py +12 -40
  969. transformers/models/owlv2/configuration_owlv2.py +0 -1
  970. transformers/models/owlv2/image_processing_owlv2.py +20 -21
  971. transformers/models/owlv2/image_processing_owlv2_fast.py +7 -8
  972. transformers/models/owlv2/modeling_owlv2.py +82 -87
  973. transformers/models/owlv2/modular_owlv2.py +6 -7
  974. transformers/models/owlv2/processing_owlv2.py +20 -49
  975. transformers/models/owlvit/configuration_owlvit.py +0 -1
  976. transformers/models/owlvit/image_processing_owlvit.py +21 -22
  977. transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
  978. transformers/models/owlvit/modeling_owlvit.py +81 -86
  979. transformers/models/owlvit/processing_owlvit.py +20 -48
  980. transformers/models/paddleocr_vl/__init__.py +0 -1
  981. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +19 -19
  982. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +34 -35
  983. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
  984. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +76 -76
  985. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +68 -68
  986. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
  987. transformers/models/paligemma/configuration_paligemma.py +0 -1
  988. transformers/models/paligemma/modeling_paligemma.py +51 -53
  989. transformers/models/paligemma/processing_paligemma.py +13 -66
  990. transformers/models/parakeet/configuration_parakeet.py +1 -4
  991. transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
  992. transformers/models/parakeet/modeling_parakeet.py +18 -22
  993. transformers/models/parakeet/modular_parakeet.py +16 -18
  994. transformers/models/parakeet/processing_parakeet.py +12 -5
  995. transformers/models/parakeet/tokenization_parakeet.py +2 -4
  996. transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
  997. transformers/models/patchtsmixer/modeling_patchtsmixer.py +60 -62
  998. transformers/models/patchtst/configuration_patchtst.py +6 -9
  999. transformers/models/patchtst/modeling_patchtst.py +72 -74
  1000. transformers/models/pe_audio/__init__.py +0 -1
  1001. transformers/models/pe_audio/configuration_pe_audio.py +14 -16
  1002. transformers/models/pe_audio/feature_extraction_pe_audio.py +6 -8
  1003. transformers/models/pe_audio/modeling_pe_audio.py +26 -27
  1004. transformers/models/pe_audio/modular_pe_audio.py +16 -17
  1005. transformers/models/pe_audio/processing_pe_audio.py +0 -1
  1006. transformers/models/pe_audio_video/__init__.py +0 -1
  1007. transformers/models/pe_audio_video/configuration_pe_audio_video.py +15 -17
  1008. transformers/models/pe_audio_video/modeling_pe_audio_video.py +60 -61
  1009. transformers/models/pe_audio_video/modular_pe_audio_video.py +52 -53
  1010. transformers/models/pe_audio_video/processing_pe_audio_video.py +0 -1
  1011. transformers/models/pe_video/__init__.py +0 -1
  1012. transformers/models/pe_video/configuration_pe_video.py +14 -16
  1013. transformers/models/pe_video/modeling_pe_video.py +21 -22
  1014. transformers/models/pe_video/modular_pe_video.py +11 -12
  1015. transformers/models/pe_video/video_processing_pe_video.py +2 -4
  1016. transformers/models/pegasus/configuration_pegasus.py +0 -1
  1017. transformers/models/pegasus/modeling_pegasus.py +63 -65
  1018. transformers/models/pegasus/tokenization_pegasus.py +1 -4
  1019. transformers/models/pegasus_x/configuration_pegasus_x.py +0 -1
  1020. transformers/models/pegasus_x/modeling_pegasus_x.py +50 -52
  1021. transformers/models/perceiver/configuration_perceiver.py +0 -1
  1022. transformers/models/perceiver/image_processing_perceiver.py +22 -25
  1023. transformers/models/perceiver/image_processing_perceiver_fast.py +5 -6
  1024. transformers/models/perceiver/modeling_perceiver.py +135 -136
  1025. transformers/models/perceiver/tokenization_perceiver.py +3 -6
  1026. transformers/models/perception_lm/configuration_perception_lm.py +0 -1
  1027. transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -9
  1028. transformers/models/perception_lm/modeling_perception_lm.py +38 -40
  1029. transformers/models/perception_lm/modular_perception_lm.py +31 -33
  1030. transformers/models/perception_lm/processing_perception_lm.py +13 -47
  1031. transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
  1032. transformers/models/persimmon/configuration_persimmon.py +18 -21
  1033. transformers/models/persimmon/modeling_persimmon.py +39 -42
  1034. transformers/models/phi/configuration_phi.py +19 -22
  1035. transformers/models/phi/modeling_phi.py +35 -37
  1036. transformers/models/phi/modular_phi.py +23 -23
  1037. transformers/models/phi3/configuration_phi3.py +23 -26
  1038. transformers/models/phi3/modeling_phi3.py +33 -36
  1039. transformers/models/phi3/modular_phi3.py +13 -17
  1040. transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +25 -26
  1041. transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
  1042. transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +7 -7
  1043. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +54 -56
  1044. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +59 -60
  1045. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -42
  1046. transformers/models/phimoe/configuration_phimoe.py +26 -29
  1047. transformers/models/phimoe/modeling_phimoe.py +35 -38
  1048. transformers/models/phimoe/modular_phimoe.py +0 -1
  1049. transformers/models/phobert/tokenization_phobert.py +4 -6
  1050. transformers/models/pix2struct/configuration_pix2struct.py +0 -1
  1051. transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
  1052. transformers/models/pix2struct/image_processing_pix2struct_fast.py +7 -10
  1053. transformers/models/pix2struct/modeling_pix2struct.py +42 -45
  1054. transformers/models/pix2struct/processing_pix2struct.py +5 -26
  1055. transformers/models/pixio/__init__.py +0 -1
  1056. transformers/models/pixio/configuration_pixio.py +0 -1
  1057. transformers/models/pixio/modeling_pixio.py +7 -9
  1058. transformers/models/pixio/modular_pixio.py +3 -6
  1059. transformers/models/pixtral/configuration_pixtral.py +11 -14
  1060. transformers/models/pixtral/image_processing_pixtral.py +26 -28
  1061. transformers/models/pixtral/image_processing_pixtral_fast.py +5 -6
  1062. transformers/models/pixtral/modeling_pixtral.py +22 -25
  1063. transformers/models/pixtral/processing_pixtral.py +18 -52
  1064. transformers/models/plbart/configuration_plbart.py +0 -1
  1065. transformers/models/plbart/modeling_plbart.py +100 -102
  1066. transformers/models/plbart/modular_plbart.py +30 -32
  1067. transformers/models/plbart/tokenization_plbart.py +4 -5
  1068. transformers/models/poolformer/configuration_poolformer.py +0 -1
  1069. transformers/models/poolformer/image_processing_poolformer.py +21 -24
  1070. transformers/models/poolformer/image_processing_poolformer_fast.py +6 -7
  1071. transformers/models/poolformer/modeling_poolformer.py +10 -12
  1072. transformers/models/pop2piano/configuration_pop2piano.py +0 -1
  1073. transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
  1074. transformers/models/pop2piano/modeling_pop2piano.py +22 -23
  1075. transformers/models/pop2piano/processing_pop2piano.py +25 -33
  1076. transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
  1077. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +1 -0
  1078. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
  1079. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +14 -15
  1080. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +9 -10
  1081. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +9 -10
  1082. transformers/models/prophetnet/configuration_prophetnet.py +26 -28
  1083. transformers/models/prophetnet/modeling_prophetnet.py +109 -130
  1084. transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
  1085. transformers/models/pvt/configuration_pvt.py +0 -1
  1086. transformers/models/pvt/image_processing_pvt.py +17 -20
  1087. transformers/models/pvt/image_processing_pvt_fast.py +0 -1
  1088. transformers/models/pvt/modeling_pvt.py +19 -21
  1089. transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
  1090. transformers/models/pvt_v2/modeling_pvt_v2.py +21 -23
  1091. transformers/models/qwen2/configuration_qwen2.py +18 -21
  1092. transformers/models/qwen2/modeling_qwen2.py +31 -33
  1093. transformers/models/qwen2/modular_qwen2.py +11 -12
  1094. transformers/models/qwen2/tokenization_qwen2.py +2 -5
  1095. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +20 -23
  1096. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +135 -128
  1097. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +116 -109
  1098. transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
  1099. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +22 -25
  1100. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +94 -96
  1101. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +46 -85
  1102. transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
  1103. transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
  1104. transformers/models/qwen2_audio/modeling_qwen2_audio.py +27 -29
  1105. transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
  1106. transformers/models/qwen2_moe/configuration_qwen2_moe.py +28 -31
  1107. transformers/models/qwen2_moe/modeling_qwen2_moe.py +36 -39
  1108. transformers/models/qwen2_moe/modular_qwen2_moe.py +7 -10
  1109. transformers/models/qwen2_vl/configuration_qwen2_vl.py +22 -24
  1110. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +38 -40
  1111. transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +8 -9
  1112. transformers/models/qwen2_vl/modeling_qwen2_vl.py +91 -92
  1113. transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
  1114. transformers/models/qwen2_vl/video_processing_qwen2_vl.py +35 -13
  1115. transformers/models/qwen3/configuration_qwen3.py +20 -23
  1116. transformers/models/qwen3/modeling_qwen3.py +31 -34
  1117. transformers/models/qwen3/modular_qwen3.py +4 -6
  1118. transformers/models/qwen3_moe/configuration_qwen3_moe.py +25 -28
  1119. transformers/models/qwen3_moe/modeling_qwen3_moe.py +36 -39
  1120. transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
  1121. transformers/models/qwen3_next/configuration_qwen3_next.py +31 -34
  1122. transformers/models/qwen3_next/modeling_qwen3_next.py +39 -42
  1123. transformers/models/qwen3_next/modular_qwen3_next.py +33 -34
  1124. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +85 -88
  1125. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +107 -110
  1126. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +122 -148
  1127. transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
  1128. transformers/models/qwen3_vl/configuration_qwen3_vl.py +16 -19
  1129. transformers/models/qwen3_vl/modeling_qwen3_vl.py +74 -77
  1130. transformers/models/qwen3_vl/modular_qwen3_vl.py +68 -105
  1131. transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
  1132. transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
  1133. transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +21 -25
  1134. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +80 -83
  1135. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +33 -36
  1136. transformers/models/rag/configuration_rag.py +0 -1
  1137. transformers/models/rag/modeling_rag.py +116 -118
  1138. transformers/models/rag/retrieval_rag.py +2 -4
  1139. transformers/models/rag/tokenization_rag.py +0 -50
  1140. transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +21 -24
  1141. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +31 -34
  1142. transformers/models/reformer/configuration_reformer.py +0 -1
  1143. transformers/models/reformer/modeling_reformer.py +67 -68
  1144. transformers/models/reformer/tokenization_reformer.py +3 -6
  1145. transformers/models/regnet/configuration_regnet.py +0 -1
  1146. transformers/models/regnet/modeling_regnet.py +7 -9
  1147. transformers/models/rembert/configuration_rembert.py +0 -1
  1148. transformers/models/rembert/modeling_rembert.py +108 -110
  1149. transformers/models/rembert/tokenization_rembert.py +1 -4
  1150. transformers/models/resnet/configuration_resnet.py +0 -1
  1151. transformers/models/resnet/modeling_resnet.py +8 -10
  1152. transformers/models/roberta/configuration_roberta.py +0 -1
  1153. transformers/models/roberta/modeling_roberta.py +91 -93
  1154. transformers/models/roberta/modular_roberta.py +55 -58
  1155. transformers/models/roberta/tokenization_roberta.py +2 -5
  1156. transformers/models/roberta/tokenization_roberta_old.py +2 -4
  1157. transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +0 -1
  1158. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +91 -93
  1159. transformers/models/roc_bert/configuration_roc_bert.py +0 -1
  1160. transformers/models/roc_bert/modeling_roc_bert.py +119 -121
  1161. transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
  1162. transformers/models/roformer/configuration_roformer.py +0 -1
  1163. transformers/models/roformer/modeling_roformer.py +79 -81
  1164. transformers/models/roformer/tokenization_roformer.py +3 -6
  1165. transformers/models/roformer/tokenization_utils.py +0 -1
  1166. transformers/models/rt_detr/configuration_rt_detr.py +0 -1
  1167. transformers/models/rt_detr/configuration_rt_detr_resnet.py +0 -1
  1168. transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
  1169. transformers/models/rt_detr/image_processing_rt_detr_fast.py +15 -15
  1170. transformers/models/rt_detr/modeling_rt_detr.py +80 -82
  1171. transformers/models/rt_detr/modeling_rt_detr_resnet.py +2 -4
  1172. transformers/models/rt_detr/modular_rt_detr.py +14 -14
  1173. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +0 -1
  1174. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +79 -81
  1175. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +2 -4
  1176. transformers/models/rwkv/configuration_rwkv.py +0 -1
  1177. transformers/models/rwkv/modeling_rwkv.py +29 -31
  1178. transformers/models/sam/configuration_sam.py +0 -1
  1179. transformers/models/sam/image_processing_sam.py +59 -60
  1180. transformers/models/sam/image_processing_sam_fast.py +21 -22
  1181. transformers/models/sam/modeling_sam.py +33 -35
  1182. transformers/models/sam/processing_sam.py +39 -27
  1183. transformers/models/sam2/configuration_sam2.py +0 -1
  1184. transformers/models/sam2/image_processing_sam2_fast.py +14 -15
  1185. transformers/models/sam2/modeling_sam2.py +45 -47
  1186. transformers/models/sam2/modular_sam2.py +43 -44
  1187. transformers/models/sam2/processing_sam2.py +31 -47
  1188. transformers/models/sam2_video/configuration_sam2_video.py +0 -1
  1189. transformers/models/sam2_video/modeling_sam2_video.py +69 -70
  1190. transformers/models/sam2_video/modular_sam2_video.py +60 -79
  1191. transformers/models/sam2_video/processing_sam2_video.py +49 -66
  1192. transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
  1193. transformers/models/sam3/configuration_sam3.py +0 -1
  1194. transformers/models/sam3/image_processing_sam3_fast.py +17 -20
  1195. transformers/models/sam3/modeling_sam3.py +54 -56
  1196. transformers/models/sam3/modular_sam3.py +3 -8
  1197. transformers/models/sam3/processing_sam3.py +29 -48
  1198. transformers/models/sam3_tracker/__init__.py +0 -1
  1199. transformers/models/sam3_tracker/configuration_sam3_tracker.py +0 -1
  1200. transformers/models/sam3_tracker/modeling_sam3_tracker.py +34 -36
  1201. transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -1
  1202. transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -47
  1203. transformers/models/sam3_tracker_video/__init__.py +0 -1
  1204. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +0 -1
  1205. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +70 -70
  1206. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +2 -4
  1207. transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
  1208. transformers/models/sam3_video/configuration_sam3_video.py +0 -1
  1209. transformers/models/sam3_video/modeling_sam3_video.py +29 -31
  1210. transformers/models/sam3_video/processing_sam3_video.py +25 -45
  1211. transformers/models/sam_hq/__init__.py +1 -1
  1212. transformers/models/sam_hq/configuration_sam_hq.py +0 -1
  1213. transformers/models/sam_hq/modeling_sam_hq.py +39 -41
  1214. transformers/models/sam_hq/modular_sam_hq.py +17 -19
  1215. transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +39 -28
  1216. transformers/models/seamless_m4t/configuration_seamless_m4t.py +0 -1
  1217. transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
  1218. transformers/models/seamless_m4t/modeling_seamless_m4t.py +180 -182
  1219. transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
  1220. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
  1221. transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +0 -1
  1222. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +193 -195
  1223. transformers/models/seed_oss/configuration_seed_oss.py +23 -25
  1224. transformers/models/seed_oss/modeling_seed_oss.py +30 -32
  1225. transformers/models/seed_oss/modular_seed_oss.py +3 -4
  1226. transformers/models/segformer/configuration_segformer.py +0 -10
  1227. transformers/models/segformer/image_processing_segformer.py +39 -42
  1228. transformers/models/segformer/image_processing_segformer_fast.py +7 -8
  1229. transformers/models/segformer/modeling_segformer.py +24 -26
  1230. transformers/models/segformer/modular_segformer.py +5 -6
  1231. transformers/models/seggpt/configuration_seggpt.py +0 -1
  1232. transformers/models/seggpt/image_processing_seggpt.py +38 -41
  1233. transformers/models/seggpt/modeling_seggpt.py +28 -30
  1234. transformers/models/sew/configuration_sew.py +0 -1
  1235. transformers/models/sew/modeling_sew.py +33 -35
  1236. transformers/models/sew/modular_sew.py +10 -12
  1237. transformers/models/sew_d/configuration_sew_d.py +0 -1
  1238. transformers/models/sew_d/modeling_sew_d.py +28 -30
  1239. transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
  1240. transformers/models/shieldgemma2/modeling_shieldgemma2.py +15 -17
  1241. transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
  1242. transformers/models/siglip/configuration_siglip.py +0 -1
  1243. transformers/models/siglip/image_processing_siglip.py +17 -20
  1244. transformers/models/siglip/image_processing_siglip_fast.py +0 -1
  1245. transformers/models/siglip/modeling_siglip.py +38 -39
  1246. transformers/models/siglip/processing_siglip.py +2 -14
  1247. transformers/models/siglip/tokenization_siglip.py +6 -7
  1248. transformers/models/siglip2/configuration_siglip2.py +1 -1
  1249. transformers/models/siglip2/image_processing_siglip2.py +15 -16
  1250. transformers/models/siglip2/image_processing_siglip2_fast.py +4 -5
  1251. transformers/models/siglip2/modeling_siglip2.py +54 -54
  1252. transformers/models/siglip2/modular_siglip2.py +23 -25
  1253. transformers/models/siglip2/processing_siglip2.py +2 -14
  1254. transformers/models/smollm3/configuration_smollm3.py +23 -26
  1255. transformers/models/smollm3/modeling_smollm3.py +31 -34
  1256. transformers/models/smollm3/modular_smollm3.py +27 -29
  1257. transformers/models/smolvlm/configuration_smolvlm.py +1 -1
  1258. transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
  1259. transformers/models/smolvlm/image_processing_smolvlm_fast.py +12 -12
  1260. transformers/models/smolvlm/modeling_smolvlm.py +51 -52
  1261. transformers/models/smolvlm/modular_smolvlm.py +15 -17
  1262. transformers/models/smolvlm/processing_smolvlm.py +15 -76
  1263. transformers/models/smolvlm/video_processing_smolvlm.py +7 -8
  1264. transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
  1265. transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +20 -23
  1266. transformers/models/speech_to_text/configuration_speech_to_text.py +0 -1
  1267. transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
  1268. transformers/models/speech_to_text/modeling_speech_to_text.py +52 -54
  1269. transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
  1270. transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
  1271. transformers/models/speecht5/configuration_speecht5.py +0 -1
  1272. transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
  1273. transformers/models/speecht5/modeling_speecht5.py +172 -174
  1274. transformers/models/speecht5/number_normalizer.py +0 -1
  1275. transformers/models/speecht5/processing_speecht5.py +3 -37
  1276. transformers/models/speecht5/tokenization_speecht5.py +4 -5
  1277. transformers/models/splinter/configuration_splinter.py +0 -1
  1278. transformers/models/splinter/modeling_splinter.py +54 -56
  1279. transformers/models/splinter/tokenization_splinter.py +2 -4
  1280. transformers/models/squeezebert/configuration_squeezebert.py +0 -1
  1281. transformers/models/squeezebert/modeling_squeezebert.py +60 -62
  1282. transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
  1283. transformers/models/stablelm/configuration_stablelm.py +20 -23
  1284. transformers/models/stablelm/modeling_stablelm.py +39 -42
  1285. transformers/models/starcoder2/configuration_starcoder2.py +19 -22
  1286. transformers/models/starcoder2/modeling_starcoder2.py +33 -36
  1287. transformers/models/starcoder2/modular_starcoder2.py +13 -15
  1288. transformers/models/superglue/configuration_superglue.py +3 -3
  1289. transformers/models/superglue/image_processing_superglue.py +15 -15
  1290. transformers/models/superglue/image_processing_superglue_fast.py +4 -5
  1291. transformers/models/superglue/modeling_superglue.py +32 -33
  1292. transformers/models/superpoint/image_processing_superpoint.py +15 -15
  1293. transformers/models/superpoint/image_processing_superpoint_fast.py +4 -5
  1294. transformers/models/superpoint/modeling_superpoint.py +13 -14
  1295. transformers/models/swiftformer/configuration_swiftformer.py +0 -1
  1296. transformers/models/swiftformer/modeling_swiftformer.py +12 -14
  1297. transformers/models/swin/configuration_swin.py +0 -1
  1298. transformers/models/swin/modeling_swin.py +58 -70
  1299. transformers/models/swin2sr/configuration_swin2sr.py +0 -1
  1300. transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
  1301. transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -5
  1302. transformers/models/swin2sr/modeling_swin2sr.py +26 -28
  1303. transformers/models/swinv2/configuration_swinv2.py +0 -1
  1304. transformers/models/swinv2/modeling_swinv2.py +55 -67
  1305. transformers/models/switch_transformers/configuration_switch_transformers.py +0 -1
  1306. transformers/models/switch_transformers/modeling_switch_transformers.py +32 -33
  1307. transformers/models/switch_transformers/modular_switch_transformers.py +29 -30
  1308. transformers/models/t5/configuration_t5.py +0 -1
  1309. transformers/models/t5/modeling_t5.py +75 -77
  1310. transformers/models/t5/tokenization_t5.py +1 -3
  1311. transformers/models/t5gemma/configuration_t5gemma.py +33 -34
  1312. transformers/models/t5gemma/modeling_t5gemma.py +96 -99
  1313. transformers/models/t5gemma/modular_t5gemma.py +117 -118
  1314. transformers/models/t5gemma2/configuration_t5gemma2.py +53 -54
  1315. transformers/models/t5gemma2/modeling_t5gemma2.py +96 -99
  1316. transformers/models/t5gemma2/modular_t5gemma2.py +134 -135
  1317. transformers/models/table_transformer/configuration_table_transformer.py +0 -1
  1318. transformers/models/table_transformer/modeling_table_transformer.py +46 -48
  1319. transformers/models/tapas/configuration_tapas.py +0 -1
  1320. transformers/models/tapas/modeling_tapas.py +64 -66
  1321. transformers/models/tapas/tokenization_tapas.py +115 -153
  1322. transformers/models/textnet/configuration_textnet.py +0 -1
  1323. transformers/models/textnet/image_processing_textnet.py +22 -25
  1324. transformers/models/textnet/image_processing_textnet_fast.py +5 -6
  1325. transformers/models/textnet/modeling_textnet.py +13 -14
  1326. transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
  1327. transformers/models/time_series_transformer/modeling_time_series_transformer.py +79 -81
  1328. transformers/models/timesfm/configuration_timesfm.py +0 -1
  1329. transformers/models/timesfm/modeling_timesfm.py +17 -19
  1330. transformers/models/timesfm/modular_timesfm.py +16 -18
  1331. transformers/models/timesformer/configuration_timesformer.py +0 -1
  1332. transformers/models/timesformer/modeling_timesformer.py +13 -16
  1333. transformers/models/timm_backbone/configuration_timm_backbone.py +0 -1
  1334. transformers/models/timm_backbone/modeling_timm_backbone.py +4 -6
  1335. transformers/models/timm_wrapper/configuration_timm_wrapper.py +2 -3
  1336. transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
  1337. transformers/models/timm_wrapper/modeling_timm_wrapper.py +13 -15
  1338. transformers/models/trocr/configuration_trocr.py +0 -1
  1339. transformers/models/trocr/modeling_trocr.py +38 -40
  1340. transformers/models/trocr/processing_trocr.py +5 -25
  1341. transformers/models/tvp/configuration_tvp.py +0 -1
  1342. transformers/models/tvp/image_processing_tvp.py +50 -52
  1343. transformers/models/tvp/image_processing_tvp_fast.py +9 -10
  1344. transformers/models/tvp/modeling_tvp.py +25 -27
  1345. transformers/models/tvp/processing_tvp.py +2 -14
  1346. transformers/models/udop/configuration_udop.py +0 -1
  1347. transformers/models/udop/modeling_udop.py +63 -66
  1348. transformers/models/udop/processing_udop.py +7 -26
  1349. transformers/models/udop/tokenization_udop.py +80 -93
  1350. transformers/models/umt5/configuration_umt5.py +0 -1
  1351. transformers/models/umt5/modeling_umt5.py +80 -81
  1352. transformers/models/unispeech/configuration_unispeech.py +0 -1
  1353. transformers/models/unispeech/modeling_unispeech.py +47 -49
  1354. transformers/models/unispeech/modular_unispeech.py +20 -22
  1355. transformers/models/unispeech_sat/configuration_unispeech_sat.py +0 -1
  1356. transformers/models/unispeech_sat/modeling_unispeech_sat.py +63 -65
  1357. transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
  1358. transformers/models/univnet/feature_extraction_univnet.py +14 -14
  1359. transformers/models/univnet/modeling_univnet.py +7 -8
  1360. transformers/models/upernet/configuration_upernet.py +0 -1
  1361. transformers/models/upernet/modeling_upernet.py +10 -13
  1362. transformers/models/vaultgemma/__init__.py +0 -1
  1363. transformers/models/vaultgemma/configuration_vaultgemma.py +24 -26
  1364. transformers/models/vaultgemma/modeling_vaultgemma.py +34 -36
  1365. transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
  1366. transformers/models/video_llama_3/image_processing_video_llama_3.py +40 -40
  1367. transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +8 -8
  1368. transformers/models/video_llama_3/modeling_video_llama_3.py +66 -66
  1369. transformers/models/video_llama_3/modular_video_llama_3.py +101 -112
  1370. transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
  1371. transformers/models/video_llama_3/video_processing_video_llama_3.py +18 -18
  1372. transformers/models/video_llava/configuration_video_llava.py +0 -1
  1373. transformers/models/video_llava/image_processing_video_llava.py +35 -38
  1374. transformers/models/video_llava/modeling_video_llava.py +52 -54
  1375. transformers/models/video_llava/processing_video_llava.py +38 -78
  1376. transformers/models/video_llava/video_processing_video_llava.py +0 -1
  1377. transformers/models/videomae/configuration_videomae.py +0 -1
  1378. transformers/models/videomae/image_processing_videomae.py +31 -34
  1379. transformers/models/videomae/modeling_videomae.py +13 -15
  1380. transformers/models/videomae/video_processing_videomae.py +0 -1
  1381. transformers/models/vilt/configuration_vilt.py +0 -1
  1382. transformers/models/vilt/image_processing_vilt.py +29 -30
  1383. transformers/models/vilt/image_processing_vilt_fast.py +9 -10
  1384. transformers/models/vilt/modeling_vilt.py +76 -78
  1385. transformers/models/vilt/processing_vilt.py +2 -14
  1386. transformers/models/vipllava/configuration_vipllava.py +0 -1
  1387. transformers/models/vipllava/modeling_vipllava.py +38 -39
  1388. transformers/models/vipllava/modular_vipllava.py +30 -32
  1389. transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
  1390. transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +18 -21
  1391. transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
  1392. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +18 -21
  1393. transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
  1394. transformers/models/visual_bert/configuration_visual_bert.py +0 -1
  1395. transformers/models/visual_bert/modeling_visual_bert.py +90 -92
  1396. transformers/models/vit/configuration_vit.py +0 -1
  1397. transformers/models/vit/image_processing_vit.py +19 -22
  1398. transformers/models/vit/image_processing_vit_fast.py +0 -1
  1399. transformers/models/vit/modeling_vit.py +13 -15
  1400. transformers/models/vit_mae/configuration_vit_mae.py +0 -1
  1401. transformers/models/vit_mae/modeling_vit_mae.py +21 -23
  1402. transformers/models/vit_msn/configuration_vit_msn.py +0 -1
  1403. transformers/models/vit_msn/modeling_vit_msn.py +10 -12
  1404. transformers/models/vitdet/configuration_vitdet.py +0 -1
  1405. transformers/models/vitdet/modeling_vitdet.py +12 -14
  1406. transformers/models/vitmatte/configuration_vitmatte.py +1 -4
  1407. transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
  1408. transformers/models/vitmatte/image_processing_vitmatte_fast.py +14 -15
  1409. transformers/models/vitmatte/modeling_vitmatte.py +9 -11
  1410. transformers/models/vitpose/configuration_vitpose.py +3 -6
  1411. transformers/models/vitpose/image_processing_vitpose.py +24 -25
  1412. transformers/models/vitpose/image_processing_vitpose_fast.py +9 -10
  1413. transformers/models/vitpose/modeling_vitpose.py +10 -12
  1414. transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +0 -1
  1415. transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +8 -10
  1416. transformers/models/vits/configuration_vits.py +0 -1
  1417. transformers/models/vits/modeling_vits.py +34 -35
  1418. transformers/models/vits/tokenization_vits.py +3 -4
  1419. transformers/models/vivit/configuration_vivit.py +0 -1
  1420. transformers/models/vivit/image_processing_vivit.py +36 -39
  1421. transformers/models/vivit/modeling_vivit.py +5 -7
  1422. transformers/models/vjepa2/__init__.py +0 -1
  1423. transformers/models/vjepa2/configuration_vjepa2.py +0 -1
  1424. transformers/models/vjepa2/modeling_vjepa2.py +30 -32
  1425. transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
  1426. transformers/models/voxtral/__init__.py +0 -1
  1427. transformers/models/voxtral/configuration_voxtral.py +0 -1
  1428. transformers/models/voxtral/modeling_voxtral.py +17 -25
  1429. transformers/models/voxtral/modular_voxtral.py +10 -19
  1430. transformers/models/voxtral/processing_voxtral.py +25 -48
  1431. transformers/models/wav2vec2/configuration_wav2vec2.py +0 -1
  1432. transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
  1433. transformers/models/wav2vec2/modeling_wav2vec2.py +67 -122
  1434. transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
  1435. transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
  1436. transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +0 -1
  1437. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +49 -52
  1438. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +45 -48
  1439. transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
  1440. transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +0 -1
  1441. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +62 -65
  1442. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +15 -18
  1443. transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
  1444. transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
  1445. transformers/models/wavlm/configuration_wavlm.py +0 -1
  1446. transformers/models/wavlm/modeling_wavlm.py +45 -48
  1447. transformers/models/wavlm/modular_wavlm.py +4 -5
  1448. transformers/models/whisper/configuration_whisper.py +0 -1
  1449. transformers/models/whisper/english_normalizer.py +3 -4
  1450. transformers/models/whisper/feature_extraction_whisper.py +9 -24
  1451. transformers/models/whisper/generation_whisper.py +26 -48
  1452. transformers/models/whisper/modeling_whisper.py +68 -70
  1453. transformers/models/whisper/processing_whisper.py +3 -20
  1454. transformers/models/whisper/tokenization_whisper.py +9 -30
  1455. transformers/models/x_clip/configuration_x_clip.py +0 -1
  1456. transformers/models/x_clip/modeling_x_clip.py +68 -69
  1457. transformers/models/x_clip/processing_x_clip.py +2 -14
  1458. transformers/models/xcodec/configuration_xcodec.py +4 -6
  1459. transformers/models/xcodec/modeling_xcodec.py +15 -17
  1460. transformers/models/xglm/configuration_xglm.py +0 -1
  1461. transformers/models/xglm/modeling_xglm.py +49 -55
  1462. transformers/models/xglm/tokenization_xglm.py +1 -4
  1463. transformers/models/xlm/configuration_xlm.py +0 -1
  1464. transformers/models/xlm/modeling_xlm.py +126 -130
  1465. transformers/models/xlm/tokenization_xlm.py +3 -5
  1466. transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -1
  1467. transformers/models/xlm_roberta/modeling_xlm_roberta.py +90 -92
  1468. transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
  1469. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
  1470. transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +0 -1
  1471. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +91 -93
  1472. transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
  1473. transformers/models/xlnet/configuration_xlnet.py +0 -11
  1474. transformers/models/xlnet/modeling_xlnet.py +149 -162
  1475. transformers/models/xlnet/tokenization_xlnet.py +1 -4
  1476. transformers/models/xlstm/configuration_xlstm.py +3 -5
  1477. transformers/models/xlstm/modeling_xlstm.py +62 -65
  1478. transformers/models/xmod/configuration_xmod.py +0 -1
  1479. transformers/models/xmod/modeling_xmod.py +98 -100
  1480. transformers/models/yolos/configuration_yolos.py +0 -1
  1481. transformers/models/yolos/image_processing_yolos.py +60 -62
  1482. transformers/models/yolos/image_processing_yolos_fast.py +18 -18
  1483. transformers/models/yolos/modeling_yolos.py +12 -14
  1484. transformers/models/yolos/modular_yolos.py +2 -4
  1485. transformers/models/yoso/configuration_yoso.py +0 -1
  1486. transformers/models/yoso/modeling_yoso.py +60 -62
  1487. transformers/models/zamba/configuration_zamba.py +0 -1
  1488. transformers/models/zamba/modeling_zamba.py +68 -69
  1489. transformers/models/zamba2/configuration_zamba2.py +36 -37
  1490. transformers/models/zamba2/modeling_zamba2.py +84 -87
  1491. transformers/models/zamba2/modular_zamba2.py +43 -45
  1492. transformers/models/zoedepth/configuration_zoedepth.py +0 -1
  1493. transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
  1494. transformers/models/zoedepth/image_processing_zoedepth_fast.py +11 -12
  1495. transformers/models/zoedepth/modeling_zoedepth.py +14 -16
  1496. transformers/pipelines/__init__.py +50 -49
  1497. transformers/pipelines/any_to_any.py +14 -22
  1498. transformers/pipelines/audio_utils.py +1 -2
  1499. transformers/pipelines/base.py +12 -16
  1500. transformers/pipelines/deprecated/__init__.py +0 -1
  1501. transformers/pipelines/image_text_to_text.py +0 -1
  1502. transformers/pipelines/image_to_text.py +4 -44
  1503. transformers/pipelines/question_answering.py +4 -43
  1504. transformers/pipelines/text_classification.py +1 -14
  1505. transformers/pipelines/token_classification.py +1 -22
  1506. transformers/pipelines/video_classification.py +1 -9
  1507. transformers/pipelines/zero_shot_audio_classification.py +0 -1
  1508. transformers/pipelines/zero_shot_classification.py +0 -6
  1509. transformers/pipelines/zero_shot_image_classification.py +0 -7
  1510. transformers/processing_utils.py +95 -95
  1511. transformers/quantizers/base.py +10 -0
  1512. transformers/quantizers/quantizer_quark.py +0 -1
  1513. transformers/quantizers/quantizer_torchao.py +3 -3
  1514. transformers/testing_utils.py +3 -37
  1515. transformers/tokenization_mistral_common.py +554 -903
  1516. transformers/tokenization_utils_base.py +109 -122
  1517. transformers/tokenization_utils_sentencepiece.py +5 -6
  1518. transformers/tokenization_utils_tokenizers.py +5 -5
  1519. transformers/trainer.py +6 -9
  1520. transformers/trainer_jit_checkpoint.py +1 -2
  1521. transformers/training_args.py +3 -3
  1522. transformers/utils/attention_visualizer.py +1 -1
  1523. transformers/utils/auto_docstring.py +564 -12
  1524. transformers/utils/doc.py +1 -1
  1525. transformers/utils/dummy_pt_objects.py +0 -42
  1526. transformers/utils/generic.py +1 -1
  1527. transformers/utils/loading_report.py +3 -3
  1528. transformers/utils/quantization_config.py +8 -10
  1529. transformers/video_processing_utils.py +19 -20
  1530. transformers/video_utils.py +18 -22
  1531. {transformers-5.0.0rc2.dist-info → transformers-5.0.0rc3.dist-info}/METADATA +19 -19
  1532. transformers-5.0.0rc3.dist-info/RECORD +2067 -0
  1533. transformers-5.0.0rc2.dist-info/RECORD +0 -2042
  1534. {transformers-5.0.0rc2.dist-info → transformers-5.0.0rc3.dist-info}/WHEEL +0 -0
  1535. {transformers-5.0.0rc2.dist-info → transformers-5.0.0rc3.dist-info}/entry_points.txt +0 -0
  1536. {transformers-5.0.0rc2.dist-info → transformers-5.0.0rc3.dist-info}/licenses/LICENSE +0 -0
  1537. {transformers-5.0.0rc2.dist-info → transformers-5.0.0rc3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1698 @@
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/lw_detr/modular_lw_detr.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_lw_detr.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # Copyright 2026 The HuggingFace Inc. team. All rights reserved.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import collections.abc
21
+ import math
22
+ import warnings
23
+ from collections.abc import Callable
24
+ from dataclasses import dataclass
25
+ from typing import Any
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ from torch import Tensor, nn
30
+
31
+ from ... import initialization as init
32
+ from ...activations import ACT2CLS, ACT2FN
33
+ from ...integrations import use_kernel_forward_from_hub
34
+ from ...modeling_layers import GradientCheckpointingLayer
35
+ from ...modeling_outputs import BackboneOutput
36
+ from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
37
+ from ...processing_utils import Unpack
38
+ from ...pytorch_utils import meshgrid
39
+ from ...utils import ModelOutput, TransformersKwargs, auto_docstring
40
+ from ...utils.backbone_utils import BackboneMixin
41
+ from ...utils.generic import check_model_inputs
42
+ from .configuration_lw_detr import LwDetrConfig, LwDetrViTConfig
43
+
44
+
45
+ def eager_attention_forward(
46
+ module: nn.Module,
47
+ query: torch.Tensor,
48
+ key: torch.Tensor,
49
+ value: torch.Tensor,
50
+ attention_mask: torch.Tensor | None,
51
+ scaling: float,
52
+ dropout: float = 0.0,
53
+ **kwargs: Unpack[TransformersKwargs],
54
+ ):
55
+ key_states = repeat_kv(key, module.num_key_value_groups)
56
+ value_states = repeat_kv(value, module.num_key_value_groups)
57
+
58
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
59
+ if attention_mask is not None:
60
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
61
+ attn_weights = attn_weights + causal_mask
62
+
63
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
64
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
65
+ attn_output = torch.matmul(attn_weights, value_states)
66
+ attn_output = attn_output.transpose(1, 2).contiguous()
67
+
68
+ return attn_output, attn_weights
69
+
70
+
71
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
72
+ """
73
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
74
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
75
+ """
76
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
77
+ if n_rep == 1:
78
+ return hidden_states
79
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
80
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
81
+
82
+
83
+ class LwDetrViTSelfAttention(nn.Module):
84
+ def __init__(self, config: LwDetrViTConfig):
85
+ super().__init__()
86
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
87
+ raise ValueError(
88
+ f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
89
+ f"heads {config.num_attention_heads}."
90
+ )
91
+
92
+ self.config = config
93
+ self.num_attention_heads = config.num_attention_heads
94
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
95
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
96
+ self.dropout_prob = config.dropout_prob
97
+ self.scaling = self.attention_head_size**-0.5
98
+ self.is_causal = False
99
+
100
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
101
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
102
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
103
+ self.num_key_value_groups = 1
104
+
105
+ def forward(
106
+ self,
107
+ hidden_states: torch.Tensor,
108
+ **kwargs: Unpack[TransformersKwargs],
109
+ ) -> tuple[torch.Tensor, torch.Tensor]:
110
+ batch_size = hidden_states.shape[0]
111
+ new_shape = batch_size, -1, self.num_attention_heads, self.attention_head_size
112
+
113
+ key_layer = self.key(hidden_states).view(*new_shape).transpose(1, 2)
114
+ value_layer = self.value(hidden_states).view(*new_shape).transpose(1, 2)
115
+ query_layer = self.query(hidden_states).view(*new_shape).transpose(1, 2)
116
+
117
+ attention_interface: Callable = eager_attention_forward
118
+ if self.config._attn_implementation != "eager":
119
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
120
+
121
+ context_layer, attention_probs = attention_interface(
122
+ self,
123
+ query_layer,
124
+ key_layer,
125
+ value_layer,
126
+ None,
127
+ is_causal=self.is_causal,
128
+ scaling=self.scaling,
129
+ dropout=0.0 if not self.training else self.dropout_prob,
130
+ **kwargs,
131
+ )
132
+
133
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
134
+ context_layer = context_layer.reshape(new_context_layer_shape)
135
+
136
+ return context_layer, attention_probs
137
+
138
+
139
+ class LwDetrViTAttention(nn.Module):
140
+ def __init__(self, config: LwDetrViTConfig):
141
+ """
142
+ Args:
143
+ config (`LwDetrViTConfig`):
144
+ Model configuration.
145
+ """
146
+ super().__init__()
147
+ self.attention = LwDetrViTSelfAttention(config)
148
+ self.output = nn.Linear(config.hidden_size, config.hidden_size)
149
+
150
+ def forward(
151
+ self,
152
+ hidden_states: torch.Tensor,
153
+ **kwargs: Unpack[TransformersKwargs],
154
+ ) -> torch.Tensor:
155
+ self_attn_output, _ = self.attention(hidden_states, **kwargs)
156
+ output = self.output(self_attn_output)
157
+ return output
158
+
159
+
160
+ class LwDetrViTMlp(nn.Module):
161
+ def __init__(self, config, in_features: int, hidden_features: int) -> None:
162
+ super().__init__()
163
+ self.fc1 = nn.Linear(in_features, hidden_features)
164
+ self.act = ACT2FN[config.hidden_act]
165
+ self.fc2 = nn.Linear(hidden_features, in_features)
166
+ self.drop = nn.Dropout(config.dropout_prob)
167
+
168
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
169
+ x = self.fc1(x)
170
+ x = self.act(x)
171
+ x = self.drop(x)
172
+ x = self.fc2(x)
173
+ x = self.drop(x)
174
+
175
+ return x
176
+
177
+
178
+ class LwDetrViTLayer(GradientCheckpointingLayer):
179
+ def __init__(
180
+ self,
181
+ config: LwDetrViTConfig,
182
+ layer_idx,
183
+ ) -> None:
184
+ super().__init__()
185
+
186
+ dim = config.hidden_size
187
+ self.attention = LwDetrViTAttention(config)
188
+ self.intermediate = LwDetrViTMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
189
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
190
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
191
+
192
+ self.gamma_1 = nn.Parameter(torch.Tensor(dim), requires_grad=True)
193
+ self.gamma_2 = nn.Parameter(torch.Tensor(dim), requires_grad=True)
194
+
195
+ self.window = layer_idx in config.window_block_indices
196
+ self.num_windows = config.num_windows
197
+
198
+ def forward(
199
+ self,
200
+ hidden_states: torch.Tensor,
201
+ **kwargs: Unpack[TransformersKwargs],
202
+ ) -> torch.Tensor:
203
+ batch_size, seq_len, channels = hidden_states.shape
204
+ hidden_states_norm = self.layernorm_before(hidden_states)
205
+
206
+ if not self.window:
207
+ hidden_states_norm = hidden_states_norm.reshape(
208
+ batch_size // self.num_windows, self.num_windows * seq_len, channels
209
+ )
210
+
211
+ attention_output = self.attention(hidden_states_norm, **kwargs)
212
+ attention_output = attention_output * self.gamma_1
213
+
214
+ if not self.window:
215
+ attention_output = attention_output.reshape(batch_size, seq_len, channels)
216
+
217
+ hidden_states = hidden_states + attention_output
218
+
219
+ layer_output = self.layernorm_after(hidden_states)
220
+ layer_output = self.intermediate(layer_output)
221
+ layer_output = layer_output * self.gamma_2
222
+
223
+ hidden_states = hidden_states + layer_output
224
+
225
+ return hidden_states
226
+
227
+
228
+ class LwDetrViTEncoder(nn.Module):
229
+ def __init__(self, config: LwDetrViTConfig) -> None:
230
+ super().__init__()
231
+ self.config = config
232
+ self.layer = nn.ModuleList([LwDetrViTLayer(config, i) for i in range(config.num_hidden_layers)])
233
+ self.gradient_checkpointing = False
234
+
235
+ def forward(
236
+ self,
237
+ hidden_states: torch.Tensor,
238
+ **kwargs: Unpack[TransformersKwargs],
239
+ ) -> list[torch.Tensor]:
240
+ list_hidden_states = [hidden_states]
241
+ for i, layer_module in enumerate(self.layer):
242
+ hidden_states = layer_module(hidden_states, **kwargs)
243
+ list_hidden_states.append(hidden_states)
244
+ return list_hidden_states
245
+
246
+
247
+ class LwDetrViTEmbeddings(nn.Module):
248
+ """
249
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
250
+ `hidden_states` (patch embeddings) to be consumed by a Transformer.
251
+ """
252
+
253
+ def __init__(self, config):
254
+ super().__init__()
255
+ image_size, patch_size = config.pretrain_image_size, config.patch_size
256
+ num_channels, hidden_size = config.num_channels, config.hidden_size
257
+
258
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
259
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
260
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
261
+ self.image_size = image_size
262
+ self.patch_size = patch_size
263
+ self.num_channels = num_channels
264
+ self.num_patches = num_patches
265
+
266
+ if config.use_absolute_position_embeddings:
267
+ # Initialize absolute positional embedding with pretrain image size.
268
+ num_positions = num_patches + 1
269
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
270
+ else:
271
+ self.position_embeddings = None
272
+
273
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
274
+
275
+ def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
276
+ """
277
+ Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
278
+ original embeddings.
279
+
280
+ Args:
281
+ abs_pos_embeddings (`torch.Tensor`):
282
+ Absolute positional embeddings with (1, num_position, num_channels).
283
+ has_cls_token (`bool`):
284
+ If true, has 1 embedding in abs_pos_embeddings for cls token.
285
+ height (`int`):
286
+ Height of input image tokens.
287
+ width (`int`):
288
+ Width of input image tokens.
289
+
290
+ Returns:
291
+ Absolute positional embeddings after processing with shape (1, height, width, num_channels)
292
+ """
293
+ if has_cls_token:
294
+ abs_pos_embeddings = abs_pos_embeddings[:, 1:]
295
+ num_position = abs_pos_embeddings.shape[1]
296
+ size = int(math.sqrt(num_position)) # This is a constant and can be recorded as such in the ONNX export.
297
+ if size * size != num_position:
298
+ raise ValueError("Absolute position embeddings must be a square number.")
299
+
300
+ if torch.jit.is_tracing() or (size != height or size != width):
301
+ # nn.functional.interpolate is a noop in case size == height and size == width - we need to always capture this path with jit.trace.
302
+ new_abs_pos_embeddings = nn.functional.interpolate(
303
+ abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
304
+ size=(height, width),
305
+ mode="bicubic",
306
+ align_corners=False,
307
+ )
308
+
309
+ return new_abs_pos_embeddings.permute(0, 2, 3, 1)
310
+ else:
311
+ return abs_pos_embeddings.reshape(1, height, width, -1)
312
+
313
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
314
+ num_channels = pixel_values.shape[1]
315
+ if num_channels != self.num_channels:
316
+ raise ValueError(
317
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
318
+ f" Expected {self.num_channels} but got {num_channels}."
319
+ )
320
+ embeddings = self.projection(pixel_values)
321
+
322
+ if self.position_embeddings is not None:
323
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
324
+ embeddings = embeddings.permute(0, 2, 3, 1)
325
+ # add position embeddings
326
+ embeddings = embeddings + self.get_absolute_positions(
327
+ self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
328
+ )
329
+ # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
330
+ embeddings = embeddings.permute(0, 3, 1, 2)
331
+
332
+ return embeddings
333
+
334
+
335
+ @auto_docstring
336
+ class LwDetrViTPreTrainedModel(PreTrainedModel):
337
+ config: LwDetrViTConfig
338
+ base_model_prefix = "lw_detr_vit"
339
+ main_input_name = "pixel_values"
340
+ input_modalities = ("image",)
341
+ supports_gradient_checkpointing = True
342
+ _no_split_modules = ["LwDetrViTEmbeddings", "LwDetrViTLayer"]
343
+ _supports_sdpa = True
344
+ _supports_flash_attn = True
345
+ _supports_flex_attn = True
346
+ _supports_attention_backend = True
347
+ _can_record_outputs = {
348
+ "hidden_states": LwDetrViTLayer,
349
+ "attentions": LwDetrViTSelfAttention,
350
+ }
351
+
352
+ @torch.no_grad()
353
+ def _init_weights(self, module) -> None:
354
+ """Initialize the weights"""
355
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
356
+ init.trunc_normal_(module.weight, mean=0.0, std=self.config.initializer_range)
357
+ if module.bias is not None:
358
+ init.zeros_(module.bias)
359
+ elif isinstance(module, nn.LayerNorm):
360
+ init.zeros_(module.bias)
361
+ init.ones_(module.weight)
362
+ elif isinstance(module, LwDetrViTEmbeddings):
363
+ init.trunc_normal_(module.position_embeddings, mean=0.0, std=self.config.initializer_range)
364
+ if isinstance(module, LwDetrViTLayer):
365
+ nn.init.constant_(module.gamma_1, self.config.cae_init_values)
366
+ nn.init.constant_(module.gamma_2, self.config.cae_init_values)
367
+
368
+
369
+ @auto_docstring()
370
+ class LwDetrViTBackbone(LwDetrViTPreTrainedModel, BackboneMixin):
371
+ def __init__(self, config):
372
+ super().__init__(config)
373
+ super()._init_backbone(config)
374
+
375
+ self.embeddings = LwDetrViTEmbeddings(config)
376
+ self.encoder = LwDetrViTEncoder(config)
377
+ self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
378
+
379
+ # initialize weights and apply final processing
380
+ self.post_init()
381
+
382
+ def get_input_embeddings(self) -> LwDetrViTEmbeddings:
383
+ return self.embeddings.projection
384
+
385
+ @check_model_inputs
386
+ @auto_docstring
387
+ def forward(self, pixel_values: torch.Tensor, **kwargs: Unpack[TransformersKwargs]) -> BackboneOutput:
388
+ r"""
389
+ Examples:
390
+
391
+ ```python
392
+ >>> from transformers import LwDetrViTConfig, LwDetrViTBackbone
393
+ >>> import torch
394
+
395
+ >>> config = LwDetrViTConfig()
396
+ >>> model = LwDetrViTBackbone(config)
397
+
398
+ >>> pixel_values = torch.randn(1, 3, 224, 224)
399
+
400
+ >>> with torch.no_grad():
401
+ ... outputs = model(pixel_values)
402
+
403
+ >>> feature_maps = outputs.feature_maps
404
+ >>> list(feature_maps[-1].shape)
405
+ [1, 768, 14, 14]
406
+ ```"""
407
+ embedding_output = self.embeddings(pixel_values)
408
+
409
+ batch_size, channels, height, width = embedding_output.shape
410
+ # (batch_size, channels, height, width) -> (batch_size, height, width, channels)
411
+ hidden_states = embedding_output.permute(0, 2, 3, 1)
412
+
413
+ window_height = height // self.config.num_windows_side
414
+ window_width = width // self.config.num_windows_side
415
+ # (batch_size, height, width, channels) -> (batch_size*num_windows_side**2, window_height*window_width, channels)
416
+ hidden_states = (
417
+ hidden_states.reshape(
418
+ batch_size,
419
+ self.config.num_windows_side,
420
+ window_height,
421
+ self.config.num_windows_side,
422
+ window_width,
423
+ channels,
424
+ )
425
+ .permute(0, 1, 3, 2, 4, 5)
426
+ .reshape(batch_size * self.config.num_windows_side**2, window_height * window_width, channels)
427
+ )
428
+
429
+ hidden_states = self.encoder(hidden_states, **kwargs)
430
+
431
+ feature_maps = ()
432
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
433
+ if stage in self.out_features:
434
+ hidden_state = (
435
+ hidden_state.reshape(
436
+ batch_size,
437
+ self.config.num_windows_side,
438
+ self.config.num_windows_side,
439
+ window_height,
440
+ window_width,
441
+ channels,
442
+ )
443
+ .permute(0, 5, 1, 3, 2, 4)
444
+ .reshape(batch_size, channels, height, width)
445
+ )
446
+ feature_maps += (hidden_state,)
447
+
448
+ return BackboneOutput(feature_maps=feature_maps)
449
+
450
+
451
+ class LwDetrConvNormLayer(nn.Module):
452
+ def __init__(
453
+ self,
454
+ config: LwDetrConfig,
455
+ in_channels: int,
456
+ out_channels: int,
457
+ kernel_size: int,
458
+ stride: int,
459
+ activation: str | None = None,
460
+ ):
461
+ super().__init__()
462
+ self.conv = nn.Conv2d(
463
+ in_channels,
464
+ out_channels,
465
+ kernel_size,
466
+ stride,
467
+ padding=kernel_size // 2,
468
+ bias=False,
469
+ )
470
+ self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
471
+ self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
472
+
473
+ def forward(self, hidden_state):
474
+ hidden_state = self.conv(hidden_state)
475
+ hidden_state = self.norm(hidden_state)
476
+ hidden_state = self.activation(hidden_state)
477
+ return hidden_state
478
+
479
+
480
+ class LwDetrRepVggBlock(nn.Module):
481
+ def __init__(self, config: LwDetrConfig):
482
+ super().__init__()
483
+ hidden_channels = int(config.d_model * config.hidden_expansion)
484
+ self.conv1 = LwDetrConvNormLayer(
485
+ config, hidden_channels, hidden_channels, 3, 1, activation=config.activation_function
486
+ )
487
+ self.conv2 = LwDetrConvNormLayer(
488
+ config, hidden_channels, hidden_channels, 3, 1, activation=config.activation_function
489
+ )
490
+
491
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
492
+ y = self.conv1(x)
493
+ y = self.conv2(y)
494
+ return y
495
+
496
+
497
+ class LwDetrC2FLayer(nn.Module):
498
+ # Inspired by RTDetrCSPRepLayer
499
+ def __init__(self, config: LwDetrConfig, in_channels: int):
500
+ super().__init__()
501
+ num_blocks = config.c2f_num_blocks
502
+ activation = config.activation_function
503
+ out_channels = config.d_model
504
+
505
+ self.hidden_channels = int(out_channels * config.hidden_expansion)
506
+
507
+ conv1_out_channels = 2 * self.hidden_channels
508
+ self.conv1 = LwDetrConvNormLayer(config, in_channels, conv1_out_channels, 1, 1, activation=activation)
509
+
510
+ conv2_in_channels = (2 + num_blocks) * self.hidden_channels
511
+ self.conv2 = LwDetrConvNormLayer(config, conv2_in_channels, out_channels, 1, 1, activation=activation)
512
+
513
+ self.bottlenecks = nn.ModuleList(LwDetrRepVggBlock(config) for _ in range(num_blocks))
514
+
515
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
516
+ hidden_states = self.conv1(hidden_states)
517
+ all_hidden_states = list(hidden_states.split(self.hidden_channels, 1))
518
+ hidden_states = all_hidden_states[-1]
519
+
520
+ for bottleneck in self.bottlenecks:
521
+ hidden_states = bottleneck(hidden_states)
522
+ all_hidden_states.append(hidden_states)
523
+
524
+ hidden_states = torch.cat(all_hidden_states, 1)
525
+ hidden_states = self.conv2(hidden_states)
526
+ return hidden_states
527
+
528
+
529
+ class LwDetrLayerNorm(nn.LayerNorm):
530
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
531
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
532
+ width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
533
+ """
534
+
535
+ def __init__(self, normalized_shape, *, eps=1e-6, data_format="channels_last", **kwargs):
536
+ super().__init__(normalized_shape, eps=eps, **kwargs)
537
+ if data_format not in ["channels_last", "channels_first"]:
538
+ raise NotImplementedError(f"Unsupported data format: {data_format}")
539
+ self.data_format = data_format
540
+
541
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
542
+ """
543
+ Args:
544
+ features: Tensor of shape (batch_size, channels, height, width) OR (batch_size, height, width, channels)
545
+ """
546
+ if self.data_format == "channels_first":
547
+ features = features.permute(0, 2, 3, 1)
548
+ features = super().forward(features)
549
+ features = features.permute(0, 3, 1, 2)
550
+ else:
551
+ features = super().forward(features)
552
+ return features
553
+
554
+
555
+ class LwDetrSamplingLayer(nn.Module):
556
+ def __init__(self, config: LwDetrConfig, channel_size: int, scale: float):
557
+ super().__init__()
558
+
559
+ self.scale = scale
560
+ self.channel_size = channel_size
561
+
562
+ layers = []
563
+ if scale == 2.0:
564
+ if channel_size > 512:
565
+ layers.append(LwDetrConvNormLayer(config, channel_size, channel_size // 2, 1, 1, activation="relu"))
566
+ layers.append(nn.ConvTranspose2d(channel_size // 2, channel_size // 4, kernel_size=2, stride=2))
567
+ else:
568
+ layers.append(nn.ConvTranspose2d(channel_size, channel_size // 2, 2, 2))
569
+ elif scale == 0.5:
570
+ layers.append(LwDetrConvNormLayer(config, channel_size, channel_size, 3, 2, activation="relu"))
571
+ self.layers = nn.ModuleList(layers)
572
+
573
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
574
+ for layer in self.layers:
575
+ hidden_states = layer(hidden_states)
576
+ return hidden_states
577
+
578
+
579
+ class LwDetrScaleProjector(nn.Module):
580
+ def __init__(self, config: LwDetrConfig, scale: float):
581
+ super().__init__()
582
+
583
+ intermediate_dims = [config.backbone_config.hidden_size] * len(config.backbone_config.out_indices)
584
+ sampling_layers = []
585
+ for channel_size in intermediate_dims:
586
+ sampling_layers.append(LwDetrSamplingLayer(config, channel_size, scale))
587
+ self.sampling_layers = nn.ModuleList(sampling_layers)
588
+
589
+ intermediate_dim = intermediate_dims[-1]
590
+ if scale == 2.0:
591
+ if intermediate_dim > 512:
592
+ intermediate_dim = intermediate_dim // 4
593
+ else:
594
+ intermediate_dim = intermediate_dim // 2
595
+ projector_input_dim = intermediate_dim * len(intermediate_dims)
596
+
597
+ self.projector_layer = LwDetrC2FLayer(config, projector_input_dim)
598
+ self.layer_norm = LwDetrLayerNorm(config.d_model, data_format="channels_first")
599
+
600
+ def forward(self, hidden_states_tuple: tuple[torch.Tensor]) -> torch.Tensor:
601
+ sampled_hidden_states = []
602
+ for sampling_layer, hidden_states in zip(self.sampling_layers, hidden_states_tuple):
603
+ hidden_states = sampling_layer(hidden_states)
604
+ sampled_hidden_states.append(hidden_states)
605
+ hidden_states = torch.cat(sampled_hidden_states, dim=1)
606
+ hidden_states = self.projector_layer(hidden_states)
607
+ hidden_states = self.layer_norm(hidden_states)
608
+ return hidden_states
609
+
610
+
611
+ class LwDetrMultiScaleProjector(nn.Module):
612
+ def __init__(self, config: LwDetrConfig):
613
+ super().__init__()
614
+
615
+ self.config = config
616
+ scale_factors = config.projector_scale_factors
617
+
618
+ self.scale_layers = nn.ModuleList([LwDetrScaleProjector(config, scale) for scale in scale_factors])
619
+
620
+ def forward(self, hidden_states: tuple[torch.Tensor]) -> list[torch.Tensor]:
621
+ output_hidden_states = []
622
+ for scale_layer in self.scale_layers:
623
+ output_hidden_states.append(scale_layer(hidden_states))
624
+ return output_hidden_states
625
+
626
+
627
+ class LwDetrConvEncoder(nn.Module):
628
+ def __init__(self, config: LwDetrConfig):
629
+ super().__init__()
630
+ self.backbone = LwDetrViTBackbone(config.backbone_config)
631
+ self.projector = LwDetrMultiScaleProjector(config)
632
+
633
+ def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
634
+ # send pixel_values through the model to get list of feature maps
635
+ features = self.backbone(pixel_values).feature_maps
636
+ features = self.projector(features)
637
+ out = []
638
+ for feature_map in features:
639
+ # downsample pixel_mask to match shape of corresponding feature_map
640
+ mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
641
+ out.append((feature_map, mask))
642
+ return out
643
+
644
+
645
+ class LwDetrAttention(nn.Module):
646
+ def __init__(self, config: LwDetrConfig, layer_idx: int):
647
+ super().__init__()
648
+ self.config = config
649
+ self.layer_idx = layer_idx
650
+ self.head_dim = getattr(config, "head_dim", config.d_model // config.decoder_self_attention_heads)
651
+ self.scaling = self.head_dim**-0.5
652
+ self.attention_dropout = config.attention_dropout
653
+ self.is_causal = False
654
+ self.num_key_value_groups = 1
655
+
656
+ self.q_proj = nn.Linear(
657
+ config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
658
+ )
659
+ self.k_proj = nn.Linear(
660
+ config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
661
+ )
662
+ self.v_proj = nn.Linear(
663
+ config.d_model, config.decoder_self_attention_heads * self.head_dim, bias=config.attention_bias
664
+ )
665
+ self.o_proj = nn.Linear(
666
+ config.decoder_self_attention_heads * self.head_dim, config.d_model, bias=config.attention_bias
667
+ )
668
+
669
+ def forward(
670
+ self,
671
+ hidden_states: torch.Tensor,
672
+ position_embeddings: torch.Tensor | None = None,
673
+ **kwargs: Unpack[TransformersKwargs],
674
+ ) -> tuple[torch.Tensor, torch.Tensor]:
675
+ batch_size, seq_len, _ = hidden_states.shape
676
+ input_shape = hidden_states.shape[:-1]
677
+ hidden_shape = (*input_shape, -1, self.head_dim)
678
+
679
+ hidden_states_original = hidden_states
680
+ if position_embeddings is not None:
681
+ hidden_states = hidden_states if position_embeddings is None else hidden_states + position_embeddings
682
+
683
+ if self.training:
684
+ # at training, we use group detr technique to add more supervision by using multiple weight-sharing decoders at once for faster convergence
685
+ # at inference, we only use one decoder
686
+ hidden_states_original = torch.cat(
687
+ hidden_states_original.split(seq_len // self.config.group_detr, dim=1), dim=0
688
+ )
689
+ hidden_states = torch.cat(hidden_states.split(seq_len // self.config.group_detr, dim=1), dim=0)
690
+
691
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
692
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
693
+ value_states = self.v_proj(hidden_states_original).view(hidden_shape).transpose(1, 2)
694
+
695
+ attention_interface: Callable = eager_attention_forward
696
+ if self.config._attn_implementation != "eager":
697
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
698
+
699
+ attn_output, attn_weights = attention_interface(
700
+ self,
701
+ query_states,
702
+ key_states,
703
+ value_states,
704
+ attention_mask=None,
705
+ dropout=0.0 if not self.training else self.attention_dropout,
706
+ scaling=self.scaling,
707
+ **kwargs,
708
+ )
709
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
710
+ attn_output = self.o_proj(attn_output)
711
+
712
+ if self.training:
713
+ attn_output = torch.cat(torch.split(attn_output, batch_size, dim=0), dim=1)
714
+
715
+ return attn_output, attn_weights
716
+
717
+
718
+ @use_kernel_forward_from_hub("MultiScaleDeformableAttention")
719
+ class MultiScaleDeformableAttention(nn.Module):
720
+ def forward(
721
+ self,
722
+ value: Tensor,
723
+ value_spatial_shapes: Tensor,
724
+ value_spatial_shapes_list: list[tuple],
725
+ level_start_index: Tensor,
726
+ sampling_locations: Tensor,
727
+ attention_weights: Tensor,
728
+ im2col_step: int,
729
+ ):
730
+ batch_size, _, num_heads, hidden_dim = value.shape
731
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
732
+ value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
733
+ sampling_grids = 2 * sampling_locations - 1
734
+ sampling_value_list = []
735
+ for level_id, (height, width) in enumerate(value_spatial_shapes_list):
736
+ # batch_size, height*width, num_heads, hidden_dim
737
+ # -> batch_size, height*width, num_heads*hidden_dim
738
+ # -> batch_size, num_heads*hidden_dim, height*width
739
+ # -> batch_size*num_heads, hidden_dim, height, width
740
+ value_l_ = (
741
+ value_list[level_id]
742
+ .flatten(2)
743
+ .transpose(1, 2)
744
+ .reshape(batch_size * num_heads, hidden_dim, height, width)
745
+ )
746
+ # batch_size, num_queries, num_heads, num_points, 2
747
+ # -> batch_size, num_heads, num_queries, num_points, 2
748
+ # -> batch_size*num_heads, num_queries, num_points, 2
749
+ sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
750
+ # batch_size*num_heads, hidden_dim, num_queries, num_points
751
+ sampling_value_l_ = nn.functional.grid_sample(
752
+ value_l_,
753
+ sampling_grid_l_,
754
+ mode="bilinear",
755
+ padding_mode="zeros",
756
+ align_corners=False,
757
+ )
758
+ sampling_value_list.append(sampling_value_l_)
759
+ # (batch_size, num_queries, num_heads, num_levels, num_points)
760
+ # -> (batch_size, num_heads, num_queries, num_levels, num_points)
761
+ # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
762
+ attention_weights = attention_weights.transpose(1, 2).reshape(
763
+ batch_size * num_heads, 1, num_queries, num_levels * num_points
764
+ )
765
+ output = (
766
+ (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
767
+ .sum(-1)
768
+ .view(batch_size, num_heads * hidden_dim, num_queries)
769
+ )
770
+ return output.transpose(1, 2).contiguous()
771
+
772
+
773
+ class LwDetrMultiscaleDeformableAttention(nn.Module):
774
+ """
775
+ Multiscale deformable attention as proposed in Deformable DETR.
776
+ """
777
+
778
+ def __init__(self, config: LwDetrConfig, num_heads: int, n_points: int):
779
+ super().__init__()
780
+
781
+ self.attn = MultiScaleDeformableAttention()
782
+
783
+ if config.d_model % num_heads != 0:
784
+ raise ValueError(
785
+ f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
786
+ )
787
+ dim_per_head = config.d_model // num_heads
788
+ # check if dim_per_head is power of 2
789
+ if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
790
+ warnings.warn(
791
+ "You'd better set embed_dim (d_model) in LwDetrMultiscaleDeformableAttention to make the"
792
+ " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
793
+ " implementation."
794
+ )
795
+
796
+ self.im2col_step = 64
797
+
798
+ self.d_model = config.d_model
799
+ self.n_levels = config.num_feature_levels
800
+ self.n_heads = num_heads
801
+ self.n_points = n_points
802
+
803
+ self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
804
+ self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
805
+ self.value_proj = nn.Linear(config.d_model, config.d_model)
806
+ self.output_proj = nn.Linear(config.d_model, config.d_model)
807
+
808
+ self.disable_custom_kernels = config.disable_custom_kernels
809
+
810
+ def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Tensor | None):
811
+ return tensor if position_embeddings is None else tensor + position_embeddings
812
+
813
+ def forward(
814
+ self,
815
+ hidden_states: torch.Tensor,
816
+ attention_mask: torch.Tensor | None = None,
817
+ encoder_hidden_states=None,
818
+ encoder_attention_mask=None,
819
+ position_embeddings: torch.Tensor | None = None,
820
+ reference_points=None,
821
+ spatial_shapes=None,
822
+ spatial_shapes_list=None,
823
+ level_start_index=None,
824
+ **kwargs: Unpack[TransformersKwargs],
825
+ ):
826
+ # add position embeddings to the hidden states before projecting to queries and keys
827
+ if position_embeddings is not None:
828
+ hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
829
+
830
+ batch_size, num_queries, _ = hidden_states.shape
831
+ batch_size, sequence_length, _ = encoder_hidden_states.shape
832
+ total_elements = sum(height * width for height, width in spatial_shapes_list)
833
+ if total_elements != sequence_length:
834
+ raise ValueError(
835
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
836
+ )
837
+
838
+ value = self.value_proj(encoder_hidden_states)
839
+ if attention_mask is not None:
840
+ # we invert the attention_mask
841
+ value = value.masked_fill(~attention_mask[..., None], float(0))
842
+ value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
843
+ sampling_offsets = self.sampling_offsets(hidden_states).view(
844
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
845
+ )
846
+ attention_weights = self.attention_weights(hidden_states).view(
847
+ batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
848
+ )
849
+ attention_weights = F.softmax(attention_weights, -1).view(
850
+ batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
851
+ )
852
+ # batch_size, num_queries, n_heads, n_levels, n_points, 2
853
+ num_coordinates = reference_points.shape[-1]
854
+ if num_coordinates == 2:
855
+ offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
856
+ sampling_locations = (
857
+ reference_points[:, :, None, :, None, :]
858
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
859
+ )
860
+ elif num_coordinates == 4:
861
+ sampling_locations = (
862
+ reference_points[:, :, None, :, None, :2]
863
+ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
864
+ )
865
+ else:
866
+ raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
867
+
868
+ output = self.attn(
869
+ value,
870
+ spatial_shapes,
871
+ spatial_shapes_list,
872
+ level_start_index,
873
+ sampling_locations,
874
+ attention_weights,
875
+ self.im2col_step,
876
+ )
877
+
878
+ output = self.output_proj(output)
879
+
880
+ return output, attention_weights
881
+
882
+
883
+ class LwDetrMLP(nn.Module):
884
+ def __init__(self, config: LwDetrConfig):
885
+ super().__init__()
886
+ self.dropout = config.dropout
887
+ self.activation_fn = ACT2FN[config.decoder_activation_function]
888
+ self.fc1 = nn.Linear(config.d_model, config.decoder_ffn_dim)
889
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, config.d_model)
890
+
891
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
892
+ residual = hidden_states
893
+ hidden_states = self.fc1(hidden_states)
894
+ hidden_states = self.activation_fn(hidden_states)
895
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
896
+ hidden_states = self.fc2(hidden_states)
897
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
898
+ hidden_states = residual + hidden_states
899
+ return hidden_states
900
+
901
+
902
+ class LwDetrDecoderLayer(GradientCheckpointingLayer):
903
+ def __init__(self, config: LwDetrConfig, layer_idx: int):
904
+ nn.Module.__init__(self)
905
+
906
+ # self-attention
907
+ self.self_attn = LwDetrAttention(config, layer_idx=layer_idx)
908
+ self.dropout = config.dropout
909
+ self.activation_fn = ACT2FN[config.decoder_activation_function]
910
+ self.activation_dropout = config.activation_dropout
911
+ self.self_attn_layer_norm = nn.LayerNorm(config.d_model)
912
+
913
+ # cross-attention
914
+ self.cross_attn = LwDetrMultiscaleDeformableAttention(
915
+ config,
916
+ num_heads=config.decoder_cross_attention_heads,
917
+ n_points=config.decoder_n_points,
918
+ )
919
+ self.cross_attn_layer_norm = nn.LayerNorm(config.d_model)
920
+
921
+ # mlp
922
+ self.mlp = LwDetrMLP(config)
923
+ self.layer_norm = nn.LayerNorm(config.d_model)
924
+
925
+ def forward(
926
+ self,
927
+ hidden_states: torch.Tensor,
928
+ position_embeddings: torch.Tensor | None = None,
929
+ reference_points=None,
930
+ spatial_shapes=None,
931
+ spatial_shapes_list=None,
932
+ level_start_index=None,
933
+ encoder_hidden_states: torch.Tensor | None = None,
934
+ encoder_attention_mask: torch.Tensor | None = None,
935
+ **kwargs: Unpack[TransformersKwargs],
936
+ ):
937
+ self_attention_output, self_attn_weights = self.self_attn(
938
+ hidden_states, position_embeddings=position_embeddings, **kwargs
939
+ )
940
+
941
+ self_attention_output = nn.functional.dropout(self_attention_output, p=self.dropout, training=self.training)
942
+ hidden_states = hidden_states + self_attention_output
943
+ hidden_states = self.self_attn_layer_norm(hidden_states)
944
+
945
+ cross_attention_output, cross_attn_weights = self.cross_attn(
946
+ hidden_states=hidden_states,
947
+ attention_mask=encoder_attention_mask,
948
+ encoder_hidden_states=encoder_hidden_states,
949
+ encoder_attention_mask=encoder_attention_mask,
950
+ position_embeddings=position_embeddings,
951
+ reference_points=reference_points,
952
+ spatial_shapes=spatial_shapes,
953
+ spatial_shapes_list=spatial_shapes_list,
954
+ level_start_index=level_start_index,
955
+ **kwargs,
956
+ )
957
+ cross_attention_output = nn.functional.dropout(cross_attention_output, p=self.dropout, training=self.training)
958
+ hidden_states = hidden_states + cross_attention_output
959
+ hidden_states = self.cross_attn_layer_norm(hidden_states)
960
+
961
+ hidden_states = self.mlp(hidden_states)
962
+ hidden_states = self.layer_norm(hidden_states)
963
+
964
+ return hidden_states
965
+
966
+
967
+ @auto_docstring
968
+ class LwDetrPreTrainedModel(PreTrainedModel):
969
+ config: LwDetrConfig
970
+ base_model_prefix = "model"
971
+ main_input_name = "pixel_values"
972
+ _no_split_modules = [
973
+ r"LwDetrConvEncoder",
974
+ r"LwDetrDecoderLayer",
975
+ ]
976
+ _supports_sdpa = True
977
+ _supports_flash_attn = True
978
+ _supports_flex_attn = True
979
+ _supports_attention_backend = True
980
+ _can_record_outputs = {
981
+ "attentions": [LwDetrAttention, LwDetrMultiscaleDeformableAttention],
982
+ "hidden_states": [LwDetrDecoderLayer],
983
+ }
984
+
985
+ @torch.no_grad()
986
+ def _init_weights(self, module):
987
+ super()._init_weights(module)
988
+
989
+ if isinstance(module, LwDetrMultiscaleDeformableAttention):
990
+ init.constant_(module.sampling_offsets.weight, 0.0)
991
+ thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
992
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
993
+ grid_init = (
994
+ (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
995
+ .view(module.n_heads, 1, 1, 2)
996
+ .repeat(1, module.n_levels, module.n_points, 1)
997
+ )
998
+ for i in range(module.n_points):
999
+ grid_init[:, :, i, :] *= i + 1
1000
+
1001
+ init.copy_(module.sampling_offsets.bias, grid_init.view(-1))
1002
+ init.constant_(module.attention_weights.weight, 0.0)
1003
+ init.constant_(module.attention_weights.bias, 0.0)
1004
+ init.xavier_uniform_(module.value_proj.weight)
1005
+ init.constant_(module.value_proj.bias, 0.0)
1006
+ init.xavier_uniform_(module.output_proj.weight)
1007
+ init.constant_(module.output_proj.bias, 0.0)
1008
+ if hasattr(module, "level_embed"):
1009
+ init.normal_(module.level_embed)
1010
+ if hasattr(module, "refpoint_embed") and module.refpoint_embed is not None:
1011
+ init.constant_(module.refpoint_embed.weight, 0)
1012
+ if hasattr(module, "class_embed") and module.class_embed is not None:
1013
+ prior_prob = 0.01
1014
+ bias_value = -math.log((1 - prior_prob) / prior_prob)
1015
+ init.constant_(module.class_embed.bias, bias_value)
1016
+ if hasattr(module, "bbox_embed") and module.bbox_embed is not None:
1017
+ init.constant_(module.bbox_embed.layers[-1].weight, 0)
1018
+ init.constant_(module.bbox_embed.layers[-1].bias, 0)
1019
+
1020
+
1021
+ @dataclass
1022
+ @auto_docstring(
1023
+ custom_intro="""
1024
+ Base class for outputs of the LwDetrDecoder. This class adds two attributes to
1025
+ BaseModelOutputWithCrossAttentions, namely:
1026
+ - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
1027
+ - a stacked tensor of intermediate reference points.
1028
+ """
1029
+ )
1030
+ class LwDetrDecoderOutput(ModelOutput):
1031
+ r"""
1032
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
1033
+ Stacked intermediate hidden states (output of each layer of the decoder).
1034
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
1035
+ Stacked intermediate reference points (reference points of each layer of the decoder).
1036
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
1037
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
1038
+ sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
1039
+ used to compute the weighted average in the cross-attention heads.
1040
+ """
1041
+
1042
+ last_hidden_state: torch.FloatTensor | None = None
1043
+ intermediate_hidden_states: torch.FloatTensor | None = None
1044
+ intermediate_reference_points: torch.FloatTensor | None = None
1045
+ hidden_states: tuple[torch.FloatTensor] | None = None
1046
+ attentions: tuple[torch.FloatTensor] | None = None
1047
+ cross_attentions: tuple[torch.FloatTensor] | None = None
1048
+
1049
+
1050
+ # function to generate sine positional embedding for 4d coordinates
1051
+ def gen_sine_position_embeddings(pos_tensor, hidden_size=256):
1052
+ """
1053
+ This function computes position embeddings using sine and cosine functions from the input positional tensor,
1054
+ which has a shape of (batch_size, num_queries, 4).
1055
+ The last dimension of `pos_tensor` represents the following coordinates:
1056
+ - 0: x-coord
1057
+ - 1: y-coord
1058
+ - 2: width
1059
+ - 3: height
1060
+
1061
+ The output shape is (batch_size, num_queries, 512), where final dim (hidden_size*2 = 512) is the total embedding dimension
1062
+ achieved by concatenating the sine and cosine values for each coordinate.
1063
+ """
1064
+ scale = 2 * math.pi
1065
+ dim = hidden_size // 2
1066
+ dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device)
1067
+ dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim)
1068
+ x_embed = pos_tensor[:, :, 0] * scale
1069
+ y_embed = pos_tensor[:, :, 1] * scale
1070
+ pos_x = x_embed[:, :, None] / dim_t
1071
+ pos_y = y_embed[:, :, None] / dim_t
1072
+ pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
1073
+ pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
1074
+ if pos_tensor.size(-1) == 4:
1075
+ w_embed = pos_tensor[:, :, 2] * scale
1076
+ pos_w = w_embed[:, :, None] / dim_t
1077
+ pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
1078
+
1079
+ h_embed = pos_tensor[:, :, 3] * scale
1080
+ pos_h = h_embed[:, :, None] / dim_t
1081
+ pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
1082
+
1083
+ pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
1084
+ else:
1085
+ raise ValueError(f"Unknown pos_tensor shape(-1):{pos_tensor.size(-1)}")
1086
+ return pos.to(pos_tensor.dtype)
1087
+
1088
+
1089
+ class LwDetrDecoder(LwDetrPreTrainedModel):
1090
+ """
1091
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DeformableDetrDecoderLayer`].
1092
+
1093
+ The decoder updates the query embeddings through multiple self-attention and deformable cross-attention layers.
1094
+
1095
+ Some tweaks for LwDetr:
1096
+
1097
+ - it uses group detr technique at training for faster convergence.
1098
+
1099
+ Args:
1100
+ config: LwDetrConfig
1101
+ """
1102
+
1103
+ def __init__(self, config: LwDetrConfig):
1104
+ super().__init__(config)
1105
+ self.dropout = config.dropout
1106
+ self.layers = nn.ModuleList([LwDetrDecoderLayer(config, i) for i in range(config.decoder_layers)])
1107
+ self.layernorm = nn.LayerNorm(config.d_model)
1108
+
1109
+ self.gradient_checkpointing = False
1110
+
1111
+ self.ref_point_head = LwDetrMLPPredictionHead(2 * config.d_model, config.d_model, config.d_model, num_layers=2)
1112
+
1113
+ self.post_init()
1114
+
1115
+ def get_reference(self, reference_points, valid_ratios):
1116
+ # batch_size, num_queries, batch_size, 4
1117
+ obj_center = reference_points[..., :4]
1118
+
1119
+ # batch_size, num_queries, num_levels, 4
1120
+ reference_points_inputs = obj_center[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
1121
+
1122
+ # batch_size, num_queries, d_model * 2
1123
+ query_sine_embed = gen_sine_position_embeddings(reference_points_inputs[:, :, 0, :], self.config.d_model)
1124
+
1125
+ # batch_size, num_queries, d_model
1126
+ query_pos = self.ref_point_head(query_sine_embed)
1127
+ return reference_points_inputs, query_pos
1128
+
1129
+ def forward(
1130
+ self,
1131
+ inputs_embeds: torch.Tensor | None = None,
1132
+ reference_points: torch.Tensor | None = None,
1133
+ spatial_shapes: torch.Tensor | None = None,
1134
+ spatial_shapes_list: torch.Tensor | None = None,
1135
+ level_start_index: torch.Tensor | None = None,
1136
+ valid_ratios: torch.Tensor | None = None,
1137
+ encoder_hidden_states: torch.Tensor | None = None,
1138
+ encoder_attention_mask: torch.Tensor | None = None,
1139
+ **kwargs: Unpack[TransformersKwargs],
1140
+ ):
1141
+ intermediate = ()
1142
+ intermediate_reference_points = (reference_points,)
1143
+
1144
+ if inputs_embeds is not None:
1145
+ hidden_states = inputs_embeds
1146
+
1147
+ reference_points_inputs, query_pos = self.get_reference(reference_points, valid_ratios)
1148
+
1149
+ for idx, decoder_layer in enumerate(self.layers):
1150
+ hidden_states = decoder_layer(
1151
+ hidden_states,
1152
+ encoder_hidden_states=encoder_hidden_states,
1153
+ encoder_attention_mask=encoder_attention_mask,
1154
+ position_embeddings=query_pos,
1155
+ reference_points=reference_points_inputs,
1156
+ spatial_shapes=spatial_shapes,
1157
+ spatial_shapes_list=spatial_shapes_list,
1158
+ level_start_index=level_start_index,
1159
+ **kwargs,
1160
+ )
1161
+ intermediate_hidden_states = self.layernorm(hidden_states)
1162
+ intermediate += (intermediate_hidden_states,)
1163
+
1164
+ intermediate = torch.stack(intermediate)
1165
+ last_hidden_state = intermediate[-1]
1166
+ intermediate_reference_points = torch.stack(intermediate_reference_points)
1167
+
1168
+ return LwDetrDecoderOutput(
1169
+ last_hidden_state=last_hidden_state,
1170
+ intermediate_hidden_states=intermediate,
1171
+ intermediate_reference_points=intermediate_reference_points,
1172
+ )
1173
+
1174
+
1175
+ @dataclass
1176
+ @auto_docstring(
1177
+ custom_intro="""
1178
+ Base class for outputs of the LwDetr backbone-decoder model.
1179
+ """
1180
+ )
1181
+ class LwDetrModelOutput(ModelOutput):
1182
+ r"""
1183
+ init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
1184
+ Initial reference points sent through the Transformer decoder.
1185
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
1186
+ Stacked intermediate hidden states (output of each layer of the decoder).
1187
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
1188
+ Stacked intermediate reference points (reference points of each layer of the decoder).
1189
+ enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
1190
+ Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
1191
+ picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
1192
+ foreground and background).
1193
+ enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
1194
+ Logits of predicted bounding boxes coordinates in the first stage.
1195
+ """
1196
+
1197
+ init_reference_points: torch.FloatTensor | None = None
1198
+ last_hidden_state: torch.FloatTensor | None = None
1199
+ intermediate_hidden_states: torch.FloatTensor | None = None
1200
+ intermediate_reference_points: torch.FloatTensor | None = None
1201
+ enc_outputs_class: torch.FloatTensor | None = None
1202
+ enc_outputs_coord_logits: torch.FloatTensor | None = None
1203
+
1204
+
1205
+ def refine_bboxes(reference_points, deltas):
1206
+ reference_points = reference_points.to(deltas.device)
1207
+ new_reference_points_cxcy = deltas[..., :2] * reference_points[..., 2:] + reference_points[..., :2]
1208
+ new_reference_points_wh = deltas[..., 2:].exp() * reference_points[..., 2:]
1209
+ new_reference_points = torch.cat((new_reference_points_cxcy, new_reference_points_wh), -1)
1210
+ return new_reference_points
1211
+
1212
+
1213
+ @auto_docstring(
1214
+ custom_intro="""
1215
+ The bare LW Detr Model (consisting of a backbone and decoder Transformer) outputting raw
1216
+ hidden-states without any specific head on top.
1217
+ """
1218
+ )
1219
+ class LwDetrModel(LwDetrPreTrainedModel):
1220
+ def __init__(self, config: LwDetrConfig):
1221
+ super().__init__(config)
1222
+
1223
+ # Create backbone + positional encoding
1224
+ self.backbone = LwDetrConvEncoder(config)
1225
+
1226
+ self.group_detr = config.group_detr
1227
+ self.num_queries = config.num_queries
1228
+ hidden_dim = config.d_model
1229
+ self.reference_point_embed = nn.Embedding(self.num_queries * self.group_detr, 4)
1230
+ self.query_feat = nn.Embedding(self.num_queries * self.group_detr, hidden_dim)
1231
+
1232
+ self.decoder = LwDetrDecoder(config)
1233
+
1234
+ self.enc_output = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(self.group_detr)])
1235
+ self.enc_output_norm = nn.ModuleList([nn.LayerNorm(hidden_dim) for _ in range(self.group_detr)])
1236
+ # Should normally be None and then instantiated in the ForObjectDetection class
1237
+ self.enc_out_bbox_embed = nn.ModuleList(
1238
+ [LwDetrMLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3) for _ in range(self.group_detr)]
1239
+ )
1240
+ self.enc_out_class_embed = nn.ModuleList(
1241
+ [nn.Linear(config.d_model, config.num_labels) for _ in range(self.group_detr)]
1242
+ )
1243
+
1244
+ self.post_init()
1245
+
1246
+ def freeze_backbone(self):
1247
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
1248
+ param.requires_grad_(False)
1249
+
1250
+ def unfreeze_backbone(self):
1251
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
1252
+ param.requires_grad_(True)
1253
+
1254
+ def get_valid_ratio(self, mask, dtype=torch.float32):
1255
+ """Get the valid ratio of all feature maps."""
1256
+
1257
+ _, height, width = mask.shape
1258
+ valid_height = torch.sum(mask[:, :, 0], 1)
1259
+ valid_width = torch.sum(mask[:, 0, :], 1)
1260
+ valid_ratio_height = valid_height.to(dtype) / height
1261
+ valid_ratio_width = valid_width.to(dtype) / width
1262
+ valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
1263
+ return valid_ratio
1264
+
1265
+ def get_proposal_pos_embed(self, proposals):
1266
+ """Get the position embedding of the proposals."""
1267
+
1268
+ num_pos_feats = self.config.d_model // 2
1269
+ temperature = 10000
1270
+ scale = 2 * math.pi
1271
+
1272
+ dim_t = torch.arange(num_pos_feats, dtype=proposals.dtype, device=proposals.device)
1273
+ dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
1274
+ # batch_size, num_queries, 4
1275
+ proposals = proposals.sigmoid() * scale
1276
+ # batch_size, num_queries, 4, 128
1277
+ pos = proposals[:, :, :, None] / dim_t
1278
+ # batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
1279
+ pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
1280
+ return pos
1281
+
1282
+ def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
1283
+ """Generate the encoder output proposals from encoded enc_output.
1284
+
1285
+ Args:
1286
+ enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
1287
+ padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
1288
+ spatial_shapes (list[tuple[int, int]]): Spatial shapes of the feature maps.
1289
+
1290
+ Returns:
1291
+ `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
1292
+ - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
1293
+ directly predict a bounding box. (without the need of a decoder)
1294
+ - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
1295
+ sigmoid.
1296
+ """
1297
+ batch_size = enc_output.shape[0]
1298
+ proposals = []
1299
+ _cur = 0
1300
+ for level, (height, width) in enumerate(spatial_shapes):
1301
+ mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
1302
+ valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
1303
+ valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
1304
+
1305
+ grid_y, grid_x = meshgrid(
1306
+ torch.linspace(
1307
+ 0,
1308
+ height - 1,
1309
+ height,
1310
+ dtype=enc_output.dtype,
1311
+ device=enc_output.device,
1312
+ ),
1313
+ torch.linspace(
1314
+ 0,
1315
+ width - 1,
1316
+ width,
1317
+ dtype=enc_output.dtype,
1318
+ device=enc_output.device,
1319
+ ),
1320
+ indexing="ij",
1321
+ )
1322
+ grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
1323
+
1324
+ scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
1325
+ grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
1326
+ width_height = torch.ones_like(grid) * 0.05 * (2.0**level)
1327
+ proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4)
1328
+ proposals.append(proposal)
1329
+ _cur += height * width
1330
+ output_proposals = torch.cat(proposals, 1)
1331
+ output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
1332
+ output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
1333
+ output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
1334
+
1335
+ # assign each pixel as an object query
1336
+ object_query = enc_output
1337
+ object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
1338
+ object_query = object_query.masked_fill(~output_proposals_valid, float(0))
1339
+ return object_query, output_proposals
1340
+
1341
+ @check_model_inputs
1342
+ @auto_docstring
1343
+ def forward(
1344
+ self,
1345
+ pixel_values: torch.FloatTensor = None,
1346
+ pixel_mask: torch.LongTensor | None = None,
1347
+ **kwargs: Unpack[TransformersKwargs],
1348
+ ) -> LwDetrModelOutput:
1349
+ r"""
1350
+ Examples:
1351
+
1352
+ ```python
1353
+ >>> from transformers import AutoImageProcessor, DeformableDetrModel
1354
+ >>> from PIL import Image
1355
+ >>> import requests
1356
+
1357
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1358
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1359
+
1360
+ >>> image_processor = AutoImageProcessor.from_pretrained("stevenbucaille/lwdetr_small_60e_coco")
1361
+ >>> model = DeformableDetrModel.from_pretrained("stevenbucaille/lwdetr_small_60e_coco")
1362
+
1363
+ >>> inputs = image_processor(images=image, return_tensors="pt")
1364
+
1365
+ >>> outputs = model(**inputs)
1366
+
1367
+ >>> last_hidden_states = outputs.last_hidden_state
1368
+ >>> list(last_hidden_states.shape)
1369
+ [1, 300, 256]
1370
+ ```"""
1371
+ batch_size, num_channels, height, width = pixel_values.shape
1372
+ device = pixel_values.device
1373
+
1374
+ if pixel_mask is None:
1375
+ pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
1376
+
1377
+ # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
1378
+ # First, sent pixel_values + pixel_mask through Backbone to obtain the features
1379
+ # which is a list of tuples
1380
+ features = self.backbone(pixel_values, pixel_mask)
1381
+
1382
+ # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
1383
+ sources = []
1384
+ masks = []
1385
+ for level, (source, mask) in enumerate(features):
1386
+ sources.append(source)
1387
+ masks.append(mask)
1388
+ if mask is None:
1389
+ raise ValueError("No attention mask was provided")
1390
+
1391
+ if self.training:
1392
+ reference_points = self.reference_point_embed.weight
1393
+ query_feat = self.query_feat.weight
1394
+ else:
1395
+ # only use one group in inference
1396
+ reference_points = self.reference_point_embed.weight[: self.num_queries]
1397
+ query_feat = self.query_feat.weight[: self.num_queries]
1398
+
1399
+ # Prepare encoder inputs (by flattening)
1400
+ source_flatten = []
1401
+ mask_flatten = []
1402
+ spatial_shapes_list = []
1403
+ for source, mask in zip(sources, masks):
1404
+ batch_size, num_channels, height, width = source.shape
1405
+ spatial_shape = (height, width)
1406
+ spatial_shapes_list.append(spatial_shape)
1407
+ source = source.flatten(2).transpose(1, 2)
1408
+ mask = mask.flatten(1)
1409
+ source_flatten.append(source)
1410
+ mask_flatten.append(mask)
1411
+ source_flatten = torch.cat(source_flatten, 1)
1412
+ mask_flatten = torch.cat(mask_flatten, 1)
1413
+ spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
1414
+ level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
1415
+ valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
1416
+
1417
+ target = query_feat.unsqueeze(0).expand(batch_size, -1, -1)
1418
+ reference_points = reference_points.unsqueeze(0).expand(batch_size, -1, -1)
1419
+
1420
+ object_query_embedding, output_proposals = self.gen_encoder_output_proposals(
1421
+ source_flatten, ~mask_flatten, spatial_shapes_list
1422
+ )
1423
+
1424
+ group_detr = self.group_detr if self.training else 1
1425
+ topk = self.num_queries
1426
+ topk_coords_logits = []
1427
+ topk_coords_logits_undetach = []
1428
+ object_query_undetach = []
1429
+
1430
+ for group_id in range(group_detr):
1431
+ group_object_query = self.enc_output[group_id](object_query_embedding)
1432
+ group_object_query = self.enc_output_norm[group_id](group_object_query)
1433
+
1434
+ group_enc_outputs_class = self.enc_out_class_embed[group_id](group_object_query)
1435
+ group_delta_bbox = self.enc_out_bbox_embed[group_id](group_object_query)
1436
+ group_enc_outputs_coord = refine_bboxes(output_proposals, group_delta_bbox)
1437
+
1438
+ group_topk_proposals = torch.topk(group_enc_outputs_class.max(-1)[0], topk, dim=1)[1]
1439
+ group_topk_coords_logits_undetach = torch.gather(
1440
+ group_enc_outputs_coord,
1441
+ 1,
1442
+ group_topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
1443
+ )
1444
+ group_topk_coords_logits = group_topk_coords_logits_undetach.detach()
1445
+ group_object_query_undetach = torch.gather(
1446
+ group_object_query, 1, group_topk_proposals.unsqueeze(-1).repeat(1, 1, self.config.d_model)
1447
+ )
1448
+
1449
+ topk_coords_logits.append(group_topk_coords_logits)
1450
+ topk_coords_logits_undetach.append(group_topk_coords_logits_undetach)
1451
+ object_query_undetach.append(group_object_query_undetach)
1452
+
1453
+ topk_coords_logits = torch.cat(topk_coords_logits, 1)
1454
+ topk_coords_logits_undetach = torch.cat(topk_coords_logits_undetach, 1)
1455
+ object_query_undetach = torch.cat(object_query_undetach, 1)
1456
+
1457
+ enc_outputs_class = object_query_undetach
1458
+ enc_outputs_coord_logits = topk_coords_logits
1459
+
1460
+ reference_points = refine_bboxes(topk_coords_logits_undetach, reference_points)
1461
+
1462
+ init_reference_points = reference_points
1463
+ decoder_outputs = self.decoder(
1464
+ inputs_embeds=target,
1465
+ reference_points=reference_points,
1466
+ spatial_shapes=spatial_shapes,
1467
+ spatial_shapes_list=spatial_shapes_list,
1468
+ level_start_index=level_start_index,
1469
+ valid_ratios=valid_ratios,
1470
+ encoder_hidden_states=source_flatten,
1471
+ encoder_attention_mask=mask_flatten,
1472
+ **kwargs,
1473
+ )
1474
+
1475
+ return LwDetrModelOutput(
1476
+ init_reference_points=init_reference_points,
1477
+ last_hidden_state=decoder_outputs.last_hidden_state,
1478
+ intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
1479
+ intermediate_reference_points=decoder_outputs.intermediate_reference_points,
1480
+ enc_outputs_class=enc_outputs_class,
1481
+ enc_outputs_coord_logits=enc_outputs_coord_logits,
1482
+ )
1483
+
1484
+
1485
+ class LwDetrMLPPredictionHead(nn.Module):
1486
+ """
1487
+ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
1488
+ height and width of a bounding box w.r.t. an image.
1489
+
1490
+ Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
1491
+
1492
+ """
1493
+
1494
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
1495
+ super().__init__()
1496
+ self.num_layers = num_layers
1497
+ h = [hidden_dim] * (num_layers - 1)
1498
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
1499
+
1500
+ def forward(self, x):
1501
+ for i, layer in enumerate(self.layers):
1502
+ x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
1503
+ return x
1504
+
1505
+
1506
+ @dataclass
1507
+ @auto_docstring(
1508
+ custom_intro="""
1509
+ Output type of [`LwDetrForObjectDetection`].
1510
+ """
1511
+ )
1512
+ class LwDetrObjectDetectionOutput(ModelOutput):
1513
+ r"""
1514
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
1515
+ Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
1516
+ bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
1517
+ scale-invariant IoU loss.
1518
+ loss_dict (`Dict`, *optional*):
1519
+ A dictionary containing the individual losses. Useful for logging.
1520
+ logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
1521
+ Classification logits (including no-object) for all queries.
1522
+ pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
1523
+ Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
1524
+ values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
1525
+ possible padding). You can use [`~DeformableDetrProcessor.post_process_object_detection`] to retrieve the
1526
+ unnormalized bounding boxes.
1527
+ auxiliary_outputs (`list[Dict]`, *optional*):
1528
+ Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
1529
+ and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
1530
+ `pred_boxes`) for each decoder layer.
1531
+ init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
1532
+ Initial reference points sent through the Transformer decoder.
1533
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
1534
+ Stacked intermediate hidden states (output of each layer of the decoder).
1535
+ intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
1536
+ Stacked intermediate reference points (reference points of each layer of the decoder).
1537
+ enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
1538
+ Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
1539
+ picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
1540
+ foreground and background).
1541
+ enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
1542
+ Logits of predicted bounding boxes coordinates in the first stage.
1543
+ """
1544
+
1545
+ loss: torch.FloatTensor | None = None
1546
+ loss_dict: dict | None = None
1547
+ logits: torch.FloatTensor | None = None
1548
+ pred_boxes: torch.FloatTensor | None = None
1549
+ auxiliary_outputs: list[dict] | None = None
1550
+ init_reference_points: torch.FloatTensor | None = None
1551
+ last_hidden_state: torch.FloatTensor | None = None
1552
+ intermediate_hidden_states: torch.FloatTensor | None = None
1553
+ intermediate_reference_points: torch.FloatTensor | None = None
1554
+ enc_outputs_class: Any = None
1555
+ enc_outputs_coord_logits: torch.FloatTensor | None = None
1556
+
1557
+
1558
+ @auto_docstring(
1559
+ custom_intro="""
1560
+ LW DETR Model (consisting of a backbone and decoder Transformer) with object detection heads on
1561
+ top, for tasks such as COCO detection.
1562
+ """
1563
+ )
1564
+ class LwDetrForObjectDetection(LwDetrPreTrainedModel):
1565
+ # When using clones, all layers > 0 will be clones, but layer 0 *is* required
1566
+ # We can't initialize the model on meta device as some weights are modified during the initialization
1567
+ _no_split_modules = None
1568
+ _tied_weights_keys = None
1569
+
1570
+ def __init__(self, config: LwDetrConfig):
1571
+ super().__init__(config)
1572
+ self.model = LwDetrModel(config)
1573
+ self.class_embed = nn.Linear(config.d_model, config.num_labels)
1574
+ self.bbox_embed = LwDetrMLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3)
1575
+
1576
+ self.post_init()
1577
+
1578
+ @check_model_inputs
1579
+ @auto_docstring
1580
+ def forward(
1581
+ self,
1582
+ pixel_values: torch.FloatTensor = None,
1583
+ pixel_mask: torch.LongTensor | None = None,
1584
+ labels: list[dict] | None = None,
1585
+ **kwargs: Unpack[TransformersKwargs],
1586
+ ) -> LwDetrObjectDetectionOutput:
1587
+ r"""
1588
+ decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
1589
+ Not used by default. Can be used to mask object queries.
1590
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1591
+ Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
1592
+ can choose to directly pass a flattened representation of an image.
1593
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
1594
+ Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
1595
+ embedded representation.
1596
+ labels (`list[Dict]` of len `(batch_size,)`, *optional*):
1597
+ Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
1598
+ following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
1599
+ respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
1600
+ in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
1601
+
1602
+ Examples:
1603
+
1604
+ ```python
1605
+ >>> from transformers import AutoImageProcessor, LwDetrForObjectDetection
1606
+ >>> from PIL import Image
1607
+ >>> import requests
1608
+
1609
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1610
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1611
+
1612
+ >>> image_processor = AutoImageProcessor.from_pretrained("stevenbucaille/lwdetr_small_60e_coco")
1613
+ >>> model = LwDetrForObjectDetection.from_pretrained("stevenbucaille/lwdetr_small_60e_coco")
1614
+
1615
+ >>> inputs = image_processor(images=image, return_tensors="pt")
1616
+ >>> outputs = model(**inputs)
1617
+
1618
+ >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
1619
+ >>> target_sizes = torch.tensor([image.size[::-1]])
1620
+ >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
1621
+ ... 0
1622
+ ... ]
1623
+ >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
1624
+ ... box = [round(i, 2) for i in box.tolist()]
1625
+ ... print(
1626
+ ... f"Detected {model.config.id2label[label.item()]} with confidence "
1627
+ ... f"{round(score.item(), 3)} at location {box}"
1628
+ ... )
1629
+ Detected cat with confidence 0.8 at location [16.5, 52.84, 318.25, 470.78]
1630
+ Detected cat with confidence 0.789 at location [342.19, 24.3, 640.02, 372.25]
1631
+ Detected remote with confidence 0.633 at location [40.79, 72.78, 176.76, 117.25]
1632
+ ```"""
1633
+ outputs = self.model(
1634
+ pixel_values,
1635
+ pixel_mask=pixel_mask,
1636
+ **kwargs,
1637
+ )
1638
+
1639
+ last_hidden_states = outputs.last_hidden_state
1640
+ intermediate_reference_points = outputs.intermediate_reference_points
1641
+ enc_outputs_class_logits = outputs.enc_outputs_class
1642
+ enc_outputs_boxes_logits = outputs.enc_outputs_coord_logits
1643
+
1644
+ logits = self.class_embed(last_hidden_states)
1645
+ pred_boxes_delta = self.bbox_embed(last_hidden_states)
1646
+ pred_boxes = refine_bboxes(intermediate_reference_points[-1], pred_boxes_delta)
1647
+
1648
+ enc_outputs_class_logits_list = enc_outputs_class_logits.split(self.config.num_queries, dim=1)
1649
+ pred_class = []
1650
+ group_detr = self.config.group_detr if self.training else 1
1651
+ for group_index in range(group_detr):
1652
+ group_pred_class = self.model.enc_out_class_embed[group_index](enc_outputs_class_logits_list[group_index])
1653
+ pred_class.append(group_pred_class)
1654
+ enc_outputs_class_logits = torch.cat(pred_class, dim=1)
1655
+
1656
+ loss, loss_dict, auxiliary_outputs = None, None, None
1657
+ if labels is not None:
1658
+ outputs_class, outputs_coord = None, None
1659
+ if self.config.auxiliary_loss:
1660
+ intermediate_hidden_states = outputs.intermediate_hidden_states
1661
+ outputs_coord_delta = self.bbox_embed(intermediate_hidden_states)
1662
+ outputs_coord = refine_bboxes(intermediate_reference_points, outputs_coord_delta)
1663
+ outputs_class = self.class_embed(intermediate_hidden_states)
1664
+
1665
+ loss, loss_dict, auxiliary_outputs = self.loss_function(
1666
+ logits,
1667
+ labels,
1668
+ self.device,
1669
+ pred_boxes,
1670
+ self.config,
1671
+ outputs_class,
1672
+ outputs_coord,
1673
+ enc_outputs_class_logits,
1674
+ enc_outputs_boxes_logits,
1675
+ )
1676
+
1677
+ return LwDetrObjectDetectionOutput(
1678
+ loss=loss,
1679
+ loss_dict=loss_dict,
1680
+ logits=logits,
1681
+ pred_boxes=pred_boxes,
1682
+ auxiliary_outputs=auxiliary_outputs,
1683
+ last_hidden_state=outputs.last_hidden_state,
1684
+ intermediate_hidden_states=outputs.intermediate_hidden_states,
1685
+ intermediate_reference_points=outputs.intermediate_reference_points,
1686
+ init_reference_points=outputs.init_reference_points,
1687
+ enc_outputs_class=enc_outputs_class_logits,
1688
+ enc_outputs_coord_logits=enc_outputs_boxes_logits,
1689
+ )
1690
+
1691
+
1692
+ __all__ = [
1693
+ "LwDetrPreTrainedModel",
1694
+ "LwDetrModel",
1695
+ "LwDetrForObjectDetection",
1696
+ "LwDetrViTPreTrainedModel",
1697
+ "LwDetrViTBackbone",
1698
+ ]