tradingview-mcp 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tradingview_mcp/__init__.py +14 -0
- tradingview_mcp/column.py +231 -0
- tradingview_mcp/constants.py +425 -0
- tradingview_mcp/models.py +154 -0
- tradingview_mcp/query.py +367 -0
- tradingview_mcp/scanner.py +256 -0
- tradingview_mcp/server.py +1361 -0
- tradingview_mcp/utils.py +382 -0
- tradingview_mcp-1.0.0.dist-info/METADATA +182 -0
- tradingview_mcp-1.0.0.dist-info/RECORD +13 -0
- tradingview_mcp-1.0.0.dist-info/WHEEL +4 -0
- tradingview_mcp-1.0.0.dist-info/entry_points.txt +2 -0
- tradingview_mcp-1.0.0.dist-info/licenses/LICENSE +23 -0
|
@@ -0,0 +1,256 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Pre-built scanner configurations for common use cases.
|
|
3
|
+
|
|
4
|
+
Provides ready-to-use Query objects for popular screening scenarios.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
|
|
9
|
+
from tradingview_mcp.column import Column
|
|
10
|
+
from tradingview_mcp.query import Query
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
DEFAULT_COLUMNS = ["name", "close", "volume", "market_cap_basic"]
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class Scanner:
|
|
17
|
+
"""
|
|
18
|
+
Collection of pre-built stock screeners.
|
|
19
|
+
|
|
20
|
+
Examples:
|
|
21
|
+
>>> Scanner.premarket_gainers.get_scanner_data()
|
|
22
|
+
>>> Scanner.top_volume.get_scanner_data()
|
|
23
|
+
>>> Scanner.oversold_rsi.get_scanner_data()
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
# Pre-market Scanners
|
|
27
|
+
premarket_gainers = (
|
|
28
|
+
Query()
|
|
29
|
+
.select(*DEFAULT_COLUMNS, "premarket_change", "premarket_change_abs", "premarket_volume")
|
|
30
|
+
.order_by("premarket_change", ascending=False)
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
premarket_losers = (
|
|
34
|
+
Query()
|
|
35
|
+
.select(*DEFAULT_COLUMNS, "premarket_change", "premarket_change_abs", "premarket_volume")
|
|
36
|
+
.order_by("premarket_change", ascending=True)
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
premarket_most_active = (
|
|
40
|
+
Query()
|
|
41
|
+
.select(*DEFAULT_COLUMNS, "premarket_change", "premarket_change_abs", "premarket_volume")
|
|
42
|
+
.order_by("premarket_volume", ascending=False)
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
premarket_gappers = (
|
|
46
|
+
Query()
|
|
47
|
+
.select(*DEFAULT_COLUMNS, "premarket_change", "premarket_change_abs", "premarket_volume", "premarket_gap")
|
|
48
|
+
.order_by("premarket_gap", ascending=False)
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# Post-market Scanners
|
|
52
|
+
postmarket_gainers = (
|
|
53
|
+
Query()
|
|
54
|
+
.select(*DEFAULT_COLUMNS, "postmarket_change", "postmarket_change_abs", "postmarket_volume")
|
|
55
|
+
.order_by("postmarket_change", ascending=False)
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
postmarket_losers = (
|
|
59
|
+
Query()
|
|
60
|
+
.select(*DEFAULT_COLUMNS, "postmarket_change", "postmarket_change_abs", "postmarket_volume")
|
|
61
|
+
.order_by("postmarket_change", ascending=True)
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
postmarket_most_active = (
|
|
65
|
+
Query()
|
|
66
|
+
.select(*DEFAULT_COLUMNS, "postmarket_change", "postmarket_change_abs", "postmarket_volume")
|
|
67
|
+
.order_by("postmarket_volume", ascending=False)
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Volume Scanners
|
|
71
|
+
top_volume = (
|
|
72
|
+
Query()
|
|
73
|
+
.select(*DEFAULT_COLUMNS, "change", "relative_volume_10d_calc")
|
|
74
|
+
.order_by("volume", ascending=False)
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
unusual_volume = (
|
|
78
|
+
Query()
|
|
79
|
+
.select(*DEFAULT_COLUMNS, "change", "relative_volume_10d_calc")
|
|
80
|
+
.where(Column("relative_volume_10d_calc") > 2.0)
|
|
81
|
+
.order_by("relative_volume_10d_calc", ascending=False)
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Price Change Scanners
|
|
85
|
+
top_gainers = (
|
|
86
|
+
Query()
|
|
87
|
+
.select(*DEFAULT_COLUMNS, "change", "change_abs")
|
|
88
|
+
.where(Column("change") > 0)
|
|
89
|
+
.order_by("change", ascending=False)
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
top_losers = (
|
|
93
|
+
Query()
|
|
94
|
+
.select(*DEFAULT_COLUMNS, "change", "change_abs")
|
|
95
|
+
.where(Column("change") < 0)
|
|
96
|
+
.order_by("change", ascending=True)
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
# Technical Scanners
|
|
100
|
+
oversold_rsi = (
|
|
101
|
+
Query()
|
|
102
|
+
.select(*DEFAULT_COLUMNS, "change", "RSI", "RSI7")
|
|
103
|
+
.where(Column("RSI") < 30)
|
|
104
|
+
.order_by("RSI", ascending=True)
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
overbought_rsi = (
|
|
108
|
+
Query()
|
|
109
|
+
.select(*DEFAULT_COLUMNS, "change", "RSI", "RSI7")
|
|
110
|
+
.where(Column("RSI") > 70)
|
|
111
|
+
.order_by("RSI", ascending=False)
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
macd_bullish_crossover = (
|
|
115
|
+
Query()
|
|
116
|
+
.select(*DEFAULT_COLUMNS, "change", "MACD.macd", "MACD.signal")
|
|
117
|
+
.where(Column("MACD.macd").crosses_above(Column("MACD.signal")))
|
|
118
|
+
.order_by("change", ascending=False)
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
macd_bearish_crossover = (
|
|
122
|
+
Query()
|
|
123
|
+
.select(*DEFAULT_COLUMNS, "change", "MACD.macd", "MACD.signal")
|
|
124
|
+
.where(Column("MACD.macd").crosses_below(Column("MACD.signal")))
|
|
125
|
+
.order_by("change", ascending=True)
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
# 52-Week Scanners
|
|
129
|
+
near_52_week_high = (
|
|
130
|
+
Query()
|
|
131
|
+
.select(*DEFAULT_COLUMNS, "change", "price_52_week_high", "price_52_week_low")
|
|
132
|
+
.where(Column("close").above_pct("price_52_week_high", 0.95))
|
|
133
|
+
.order_by("change", ascending=False)
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
near_52_week_low = (
|
|
137
|
+
Query()
|
|
138
|
+
.select(*DEFAULT_COLUMNS, "change", "price_52_week_high", "price_52_week_low")
|
|
139
|
+
.where(Column("close").below_pct("price_52_week_low", 1.05))
|
|
140
|
+
.order_by("change", ascending=True)
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
# Bollinger Band Scanners
|
|
144
|
+
bb_squeeze = (
|
|
145
|
+
Query()
|
|
146
|
+
.select(*DEFAULT_COLUMNS, "change", "BB.upper", "BB.lower", "SMA20", "ATR")
|
|
147
|
+
.order_by("Volatility.D", ascending=True)
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
above_upper_bb = (
|
|
151
|
+
Query()
|
|
152
|
+
.select(*DEFAULT_COLUMNS, "change", "BB.upper", "BB.lower", "SMA20")
|
|
153
|
+
.where(Column("close") > Column("BB.upper"))
|
|
154
|
+
.order_by("change", ascending=False)
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
below_lower_bb = (
|
|
158
|
+
Query()
|
|
159
|
+
.select(*DEFAULT_COLUMNS, "change", "BB.upper", "BB.lower", "SMA20")
|
|
160
|
+
.where(Column("close") < Column("BB.lower"))
|
|
161
|
+
.order_by("change", ascending=True)
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
# Moving Average Scanners
|
|
165
|
+
golden_cross = (
|
|
166
|
+
Query()
|
|
167
|
+
.select(*DEFAULT_COLUMNS, "change", "SMA50", "SMA200")
|
|
168
|
+
.where(Column("SMA50").crosses_above(Column("SMA200")))
|
|
169
|
+
.order_by("volume", ascending=False)
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
death_cross = (
|
|
173
|
+
Query()
|
|
174
|
+
.select(*DEFAULT_COLUMNS, "change", "SMA50", "SMA200")
|
|
175
|
+
.where(Column("SMA50").crosses_below(Column("SMA200")))
|
|
176
|
+
.order_by("volume", ascending=False)
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
above_all_mas = (
|
|
180
|
+
Query()
|
|
181
|
+
.select(*DEFAULT_COLUMNS, "change", "SMA20", "SMA50", "SMA200")
|
|
182
|
+
.where(
|
|
183
|
+
Column("close") > Column("SMA20"),
|
|
184
|
+
Column("close") > Column("SMA50"),
|
|
185
|
+
Column("close") > Column("SMA200"),
|
|
186
|
+
)
|
|
187
|
+
.order_by("change", ascending=False)
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
@classmethod
|
|
191
|
+
def names(cls) -> list[str]:
|
|
192
|
+
"""Get list of all available scanner names."""
|
|
193
|
+
return [x for x in cls.__dict__.keys() if not x.startswith("_") and x != "names"]
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class CryptoScanner:
|
|
197
|
+
"""
|
|
198
|
+
Collection of pre-built cryptocurrency screeners.
|
|
199
|
+
|
|
200
|
+
Examples:
|
|
201
|
+
>>> CryptoScanner.top_gainers.get_scanner_data()
|
|
202
|
+
>>> CryptoScanner.high_volume.get_scanner_data()
|
|
203
|
+
"""
|
|
204
|
+
|
|
205
|
+
CRYPTO_COLUMNS = ["name", "close", "volume", "change", "market_cap_basic"]
|
|
206
|
+
|
|
207
|
+
top_gainers = (
|
|
208
|
+
Query()
|
|
209
|
+
.set_markets("crypto")
|
|
210
|
+
.select(*CRYPTO_COLUMNS)
|
|
211
|
+
.where(Column("change") > 0)
|
|
212
|
+
.order_by("change", ascending=False)
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
top_losers = (
|
|
216
|
+
Query()
|
|
217
|
+
.set_markets("crypto")
|
|
218
|
+
.select(*CRYPTO_COLUMNS)
|
|
219
|
+
.where(Column("change") < 0)
|
|
220
|
+
.order_by("change", ascending=True)
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
high_volume = (
|
|
224
|
+
Query()
|
|
225
|
+
.set_markets("crypto")
|
|
226
|
+
.select(*CRYPTO_COLUMNS, "24h_vol|5")
|
|
227
|
+
.order_by("volume", ascending=False)
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
most_volatile = (
|
|
231
|
+
Query()
|
|
232
|
+
.set_markets("crypto")
|
|
233
|
+
.select(*CRYPTO_COLUMNS, "Volatility.D")
|
|
234
|
+
.order_by("Volatility.D", ascending=False)
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
oversold = (
|
|
238
|
+
Query()
|
|
239
|
+
.set_markets("crypto")
|
|
240
|
+
.select(*CRYPTO_COLUMNS, "RSI")
|
|
241
|
+
.where(Column("RSI") < 30)
|
|
242
|
+
.order_by("RSI", ascending=True)
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
overbought = (
|
|
246
|
+
Query()
|
|
247
|
+
.set_markets("crypto")
|
|
248
|
+
.select(*CRYPTO_COLUMNS, "RSI")
|
|
249
|
+
.where(Column("RSI") > 70)
|
|
250
|
+
.order_by("RSI", ascending=False)
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
@classmethod
|
|
254
|
+
def names(cls) -> list[str]:
|
|
255
|
+
"""Get list of all available crypto scanner names."""
|
|
256
|
+
return [x for x in cls.__dict__.keys() if not x.startswith("_") and x not in ("names", "CRYPTO_COLUMNS")]
|