tracepipe 0.2.0__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tracepipe/__init__.py +117 -78
- tracepipe/api.py +219 -332
- tracepipe/context.py +21 -1
- tracepipe/contracts.py +473 -0
- tracepipe/convenience.py +817 -0
- tracepipe/core.py +174 -17
- tracepipe/debug.py +325 -0
- tracepipe/instrumentation/apply_capture.py +453 -0
- tracepipe/instrumentation/filter_capture.py +468 -0
- tracepipe/instrumentation/indexer_capture.py +813 -0
- tracepipe/instrumentation/merge_capture.py +434 -0
- tracepipe/instrumentation/pandas_inst.py +66 -183
- tracepipe/instrumentation/series_capture.py +331 -0
- tracepipe/safety.py +3 -3
- tracepipe/snapshot.py +420 -0
- tracepipe/storage/base.py +7 -3
- tracepipe/storage/lineage_store.py +252 -47
- tracepipe/storage/row_identity.py +366 -104
- tracepipe/value_provenance.py +309 -0
- tracepipe/visualization/html_export.py +22 -7
- tracepipe-0.3.1.dist-info/METADATA +308 -0
- tracepipe-0.3.1.dist-info/RECORD +29 -0
- tracepipe-0.2.0.dist-info/METADATA +0 -508
- tracepipe-0.2.0.dist-info/RECORD +0 -19
- {tracepipe-0.2.0.dist-info → tracepipe-0.3.1.dist-info}/WHEEL +0 -0
- {tracepipe-0.2.0.dist-info → tracepipe-0.3.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,309 @@
|
|
|
1
|
+
# tracepipe/value_provenance.py
|
|
2
|
+
"""
|
|
3
|
+
Cell-level value provenance tracking.
|
|
4
|
+
|
|
5
|
+
Provides detailed history of how specific cell values changed
|
|
6
|
+
throughout the pipeline, including null introduction tracking.
|
|
7
|
+
|
|
8
|
+
Usage:
|
|
9
|
+
# Get history of a specific cell
|
|
10
|
+
history = tp.explain_value(row_id=123, column="price", df=result)
|
|
11
|
+
|
|
12
|
+
# Analyze where nulls came from in a column
|
|
13
|
+
analysis = tp.null_analysis("email", df)
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
from typing import Any, Optional
|
|
18
|
+
|
|
19
|
+
import pandas as pd
|
|
20
|
+
|
|
21
|
+
from .context import get_context
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@dataclass
|
|
25
|
+
class ValueEvent:
|
|
26
|
+
"""Single change event for a cell."""
|
|
27
|
+
|
|
28
|
+
step_id: int
|
|
29
|
+
operation: str
|
|
30
|
+
old_value: Any
|
|
31
|
+
new_value: Any
|
|
32
|
+
change_type: str
|
|
33
|
+
timestamp: float
|
|
34
|
+
code_location: Optional[str]
|
|
35
|
+
|
|
36
|
+
def to_dict(self) -> dict:
|
|
37
|
+
"""Export to dictionary."""
|
|
38
|
+
return {
|
|
39
|
+
"step_id": self.step_id,
|
|
40
|
+
"operation": self.operation,
|
|
41
|
+
"old_value": self.old_value,
|
|
42
|
+
"new_value": self.new_value,
|
|
43
|
+
"change_type": self.change_type,
|
|
44
|
+
"timestamp": self.timestamp,
|
|
45
|
+
"code_location": self.code_location,
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@dataclass
|
|
50
|
+
class ValueHistory:
|
|
51
|
+
"""Complete history of a cell's value."""
|
|
52
|
+
|
|
53
|
+
row_id: int
|
|
54
|
+
column: str
|
|
55
|
+
current_value: Any
|
|
56
|
+
events: list[ValueEvent]
|
|
57
|
+
became_null_at: Optional[int] = None # step_id
|
|
58
|
+
became_null_by: Optional[str] = None # operation
|
|
59
|
+
|
|
60
|
+
def __repr__(self) -> str:
|
|
61
|
+
lines = [f"Value History: row {self.row_id}, column '{self.column}'"]
|
|
62
|
+
lines.append(f" Current: {self.current_value}")
|
|
63
|
+
lines.append(f" Changes: {len(self.events)}")
|
|
64
|
+
|
|
65
|
+
if self.became_null_at:
|
|
66
|
+
lines.append(f" ! Became null at step {self.became_null_at} by {self.became_null_by}")
|
|
67
|
+
|
|
68
|
+
for event in self.events[-5:]:
|
|
69
|
+
lines.append(f" {event.operation}: {event.old_value} -> {event.new_value}")
|
|
70
|
+
|
|
71
|
+
if len(self.events) > 5:
|
|
72
|
+
lines.append(f" ... and {len(self.events) - 5} more events")
|
|
73
|
+
|
|
74
|
+
return "\n".join(lines)
|
|
75
|
+
|
|
76
|
+
@property
|
|
77
|
+
def was_modified(self) -> bool:
|
|
78
|
+
"""True if value was ever modified."""
|
|
79
|
+
return len(self.events) > 0
|
|
80
|
+
|
|
81
|
+
@property
|
|
82
|
+
def is_null(self) -> bool:
|
|
83
|
+
"""True if current value is null."""
|
|
84
|
+
return pd.isna(self.current_value)
|
|
85
|
+
|
|
86
|
+
def to_dict(self) -> dict:
|
|
87
|
+
"""Export to dictionary."""
|
|
88
|
+
return {
|
|
89
|
+
"row_id": self.row_id,
|
|
90
|
+
"column": self.column,
|
|
91
|
+
"current_value": self.current_value,
|
|
92
|
+
"events": [e.to_dict() for e in self.events],
|
|
93
|
+
"became_null_at": self.became_null_at,
|
|
94
|
+
"became_null_by": self.became_null_by,
|
|
95
|
+
}
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def explain_value(
|
|
99
|
+
row_id: int,
|
|
100
|
+
column: str,
|
|
101
|
+
df: Optional[pd.DataFrame] = None,
|
|
102
|
+
follow_lineage: bool = True,
|
|
103
|
+
) -> ValueHistory:
|
|
104
|
+
"""
|
|
105
|
+
Get complete history of a specific cell's value.
|
|
106
|
+
|
|
107
|
+
Args:
|
|
108
|
+
row_id: Row ID to trace
|
|
109
|
+
column: Column name
|
|
110
|
+
df: Optional DataFrame for current value lookup
|
|
111
|
+
follow_lineage: If True, include pre-merge parent history (default: True)
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
ValueHistory with all changes to this cell
|
|
115
|
+
"""
|
|
116
|
+
ctx = get_context()
|
|
117
|
+
store = ctx.store
|
|
118
|
+
|
|
119
|
+
# Get current value if df provided
|
|
120
|
+
current_value = None
|
|
121
|
+
if df is not None:
|
|
122
|
+
rids = ctx.row_manager.get_ids_array(df)
|
|
123
|
+
if rids is not None:
|
|
124
|
+
# Find position of this row_id
|
|
125
|
+
matches = (rids == row_id).nonzero()[0]
|
|
126
|
+
if len(matches) > 0 and column in df.columns:
|
|
127
|
+
current_value = df.iloc[matches[0]][column]
|
|
128
|
+
|
|
129
|
+
# Collect events - use lineage-aware method if requested
|
|
130
|
+
if follow_lineage and hasattr(store, "get_cell_history_with_lineage"):
|
|
131
|
+
# Get cell history including pre-merge parent history
|
|
132
|
+
raw_events = store.get_cell_history_with_lineage(row_id, column)
|
|
133
|
+
else:
|
|
134
|
+
# Fallback to direct row_id lookup only
|
|
135
|
+
raw_events = [e for e in store.get_row_history(row_id) if e["col"] == column]
|
|
136
|
+
|
|
137
|
+
# Convert to ValueEvent objects
|
|
138
|
+
events = []
|
|
139
|
+
became_null_at = None
|
|
140
|
+
became_null_by = None
|
|
141
|
+
|
|
142
|
+
for diff in raw_events:
|
|
143
|
+
events.append(
|
|
144
|
+
ValueEvent(
|
|
145
|
+
step_id=diff["step_id"],
|
|
146
|
+
operation=diff.get("operation", "unknown"),
|
|
147
|
+
old_value=diff["old_val"],
|
|
148
|
+
new_value=diff["new_val"],
|
|
149
|
+
change_type=diff.get("change_type", "UNKNOWN"),
|
|
150
|
+
timestamp=diff.get("timestamp", 0) or 0,
|
|
151
|
+
code_location=diff.get("code_location"),
|
|
152
|
+
)
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
# Track when value became null
|
|
156
|
+
if became_null_at is None and pd.isna(diff["new_val"]) and not pd.isna(diff["old_val"]):
|
|
157
|
+
became_null_at = diff["step_id"]
|
|
158
|
+
became_null_by = diff.get("operation", "unknown")
|
|
159
|
+
|
|
160
|
+
# Events should already be sorted by step_id from lineage method
|
|
161
|
+
events.sort(key=lambda e: e.step_id)
|
|
162
|
+
|
|
163
|
+
return ValueHistory(
|
|
164
|
+
row_id=row_id,
|
|
165
|
+
column=column,
|
|
166
|
+
current_value=current_value,
|
|
167
|
+
events=events,
|
|
168
|
+
became_null_at=became_null_at,
|
|
169
|
+
became_null_by=became_null_by,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
@dataclass
|
|
174
|
+
class NullAnalysis:
|
|
175
|
+
"""Analysis of how nulls appeared in a column."""
|
|
176
|
+
|
|
177
|
+
column: str
|
|
178
|
+
total_nulls: int
|
|
179
|
+
null_sources: dict[str, int] # operation -> count
|
|
180
|
+
sample_row_ids: list[int]
|
|
181
|
+
|
|
182
|
+
def __repr__(self) -> str:
|
|
183
|
+
lines = [f"Null Analysis: '{self.column}'"]
|
|
184
|
+
lines.append(f" Total nulls: {self.total_nulls}")
|
|
185
|
+
|
|
186
|
+
if self.null_sources:
|
|
187
|
+
lines.append(" Sources:")
|
|
188
|
+
for op, count in sorted(self.null_sources.items(), key=lambda x: -x[1]):
|
|
189
|
+
lines.append(f" {op}: {count}")
|
|
190
|
+
else:
|
|
191
|
+
lines.append(" No tracked null introductions")
|
|
192
|
+
|
|
193
|
+
if self.sample_row_ids:
|
|
194
|
+
lines.append(f" Sample row IDs: {self.sample_row_ids[:5]}")
|
|
195
|
+
|
|
196
|
+
return "\n".join(lines)
|
|
197
|
+
|
|
198
|
+
@property
|
|
199
|
+
def has_untracked_nulls(self) -> bool:
|
|
200
|
+
"""True if some nulls were not tracked by TracePipe."""
|
|
201
|
+
tracked = sum(self.null_sources.values())
|
|
202
|
+
return tracked < self.total_nulls
|
|
203
|
+
|
|
204
|
+
def to_dict(self) -> dict:
|
|
205
|
+
"""Export to dictionary."""
|
|
206
|
+
return {
|
|
207
|
+
"column": self.column,
|
|
208
|
+
"total_nulls": self.total_nulls,
|
|
209
|
+
"null_sources": self.null_sources,
|
|
210
|
+
"sample_row_ids": self.sample_row_ids,
|
|
211
|
+
"has_untracked_nulls": self.has_untracked_nulls,
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def null_analysis(column: str, df: pd.DataFrame) -> NullAnalysis:
|
|
216
|
+
"""
|
|
217
|
+
Analyze how nulls appeared in a column.
|
|
218
|
+
|
|
219
|
+
Returns breakdown of which operations introduced nulls.
|
|
220
|
+
|
|
221
|
+
Args:
|
|
222
|
+
column: Column name to analyze
|
|
223
|
+
df: Current DataFrame
|
|
224
|
+
|
|
225
|
+
Returns:
|
|
226
|
+
NullAnalysis with breakdown of null sources
|
|
227
|
+
"""
|
|
228
|
+
ctx = get_context()
|
|
229
|
+
store = ctx.store
|
|
230
|
+
|
|
231
|
+
if column not in df.columns:
|
|
232
|
+
return NullAnalysis(column=column, total_nulls=0, null_sources={}, sample_row_ids=[])
|
|
233
|
+
|
|
234
|
+
rids = ctx.row_manager.get_ids_array(df)
|
|
235
|
+
if rids is None:
|
|
236
|
+
return NullAnalysis(
|
|
237
|
+
column=column,
|
|
238
|
+
total_nulls=int(df[column].isna().sum()),
|
|
239
|
+
null_sources={},
|
|
240
|
+
sample_row_ids=[],
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
# Find null rows
|
|
244
|
+
null_mask = df[column].isna()
|
|
245
|
+
null_rids = set(rids[null_mask].tolist())
|
|
246
|
+
|
|
247
|
+
# Track which operations introduced nulls
|
|
248
|
+
null_sources: dict[str, int] = {}
|
|
249
|
+
step_map = {s.step_id: s for s in store.steps}
|
|
250
|
+
sample_ids: list[int] = []
|
|
251
|
+
|
|
252
|
+
for diff in store._iter_all_diffs():
|
|
253
|
+
if diff["col"] == column and diff["row_id"] in null_rids:
|
|
254
|
+
if pd.isna(diff["new_val"]) and not pd.isna(diff["old_val"]):
|
|
255
|
+
step = step_map.get(diff["step_id"])
|
|
256
|
+
op = step.operation if step else "unknown"
|
|
257
|
+
null_sources[op] = null_sources.get(op, 0) + 1
|
|
258
|
+
if len(sample_ids) < 10:
|
|
259
|
+
sample_ids.append(diff["row_id"])
|
|
260
|
+
|
|
261
|
+
return NullAnalysis(
|
|
262
|
+
column=column,
|
|
263
|
+
total_nulls=len(null_rids),
|
|
264
|
+
null_sources=null_sources,
|
|
265
|
+
sample_row_ids=sample_ids,
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
def column_changes_summary(column: str, df: pd.DataFrame) -> dict[str, Any]:
|
|
270
|
+
"""
|
|
271
|
+
Get summary of all changes to a column.
|
|
272
|
+
|
|
273
|
+
Args:
|
|
274
|
+
column: Column name
|
|
275
|
+
df: Current DataFrame
|
|
276
|
+
|
|
277
|
+
Returns:
|
|
278
|
+
Dict with summary statistics
|
|
279
|
+
"""
|
|
280
|
+
ctx = get_context()
|
|
281
|
+
store = ctx.store
|
|
282
|
+
|
|
283
|
+
rids = ctx.row_manager.get_ids_array(df)
|
|
284
|
+
if rids is None:
|
|
285
|
+
return {
|
|
286
|
+
"column": column,
|
|
287
|
+
"total_changes": 0,
|
|
288
|
+
"changes_by_operation": {},
|
|
289
|
+
"unique_rows_modified": 0,
|
|
290
|
+
}
|
|
291
|
+
|
|
292
|
+
rid_set = set(rids.tolist())
|
|
293
|
+
changes_by_op: dict[str, int] = {}
|
|
294
|
+
modified_rows: set = set()
|
|
295
|
+
step_map = {s.step_id: s for s in store.steps}
|
|
296
|
+
|
|
297
|
+
for diff in store._iter_all_diffs():
|
|
298
|
+
if diff["col"] == column and diff["row_id"] in rid_set:
|
|
299
|
+
step = step_map.get(diff["step_id"])
|
|
300
|
+
op = step.operation if step else "unknown"
|
|
301
|
+
changes_by_op[op] = changes_by_op.get(op, 0) + 1
|
|
302
|
+
modified_rows.add(diff["row_id"])
|
|
303
|
+
|
|
304
|
+
return {
|
|
305
|
+
"column": column,
|
|
306
|
+
"total_changes": sum(changes_by_op.values()),
|
|
307
|
+
"changes_by_operation": changes_by_op,
|
|
308
|
+
"unique_rows_modified": len(modified_rows),
|
|
309
|
+
}
|
|
@@ -156,12 +156,17 @@ def _get_groups_summary(ctx) -> list[dict]:
|
|
|
156
156
|
groups = []
|
|
157
157
|
for mapping in ctx.store.aggregation_mappings:
|
|
158
158
|
for group_key, row_ids in mapping.membership.items():
|
|
159
|
-
|
|
159
|
+
# Count-only groups are stored as [-count] (list with one negative element)
|
|
160
|
+
is_count_only = len(row_ids) == 1 and row_ids[0] < 0
|
|
161
|
+
if is_count_only:
|
|
162
|
+
row_count = abs(row_ids[0])
|
|
163
|
+
else:
|
|
164
|
+
row_count = len(row_ids)
|
|
160
165
|
groups.append(
|
|
161
166
|
{
|
|
162
167
|
"key": str(group_key),
|
|
163
168
|
"column": mapping.group_column,
|
|
164
|
-
"row_count":
|
|
169
|
+
"row_count": row_count,
|
|
165
170
|
"is_count_only": is_count_only,
|
|
166
171
|
"row_ids": [] if is_count_only else row_ids[:100], # First 100 only
|
|
167
172
|
"agg_functions": mapping.agg_functions,
|
|
@@ -1059,9 +1064,13 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
|
1059
1064
|
"""
|
|
1060
1065
|
|
|
1061
1066
|
|
|
1062
|
-
def save(filepath: str) -> None:
|
|
1067
|
+
def save(filepath: str, title: str = "TracePipe Dashboard") -> None:
|
|
1063
1068
|
"""
|
|
1064
1069
|
Save interactive lineage report as HTML.
|
|
1070
|
+
|
|
1071
|
+
Args:
|
|
1072
|
+
filepath: Path to save the HTML file
|
|
1073
|
+
title: Title for the report (shown in browser tab and header)
|
|
1065
1074
|
"""
|
|
1066
1075
|
ctx = get_context()
|
|
1067
1076
|
|
|
@@ -1073,7 +1082,9 @@ def save(filepath: str) -> None:
|
|
|
1073
1082
|
row_index = _build_row_index(ctx)
|
|
1074
1083
|
|
|
1075
1084
|
# Total registered rows (approximate)
|
|
1076
|
-
total_registered =
|
|
1085
|
+
total_registered = (
|
|
1086
|
+
ctx.row_manager._next_row_id if hasattr(ctx.row_manager, "_next_row_id") else 0
|
|
1087
|
+
)
|
|
1077
1088
|
|
|
1078
1089
|
# Identify Suggested Rows for UX
|
|
1079
1090
|
suggested_rows = {"dropped": [], "modified": [], "survivors": []}
|
|
@@ -1181,13 +1192,16 @@ def save(filepath: str) -> None:
|
|
|
1181
1192
|
</div>
|
|
1182
1193
|
"""
|
|
1183
1194
|
|
|
1195
|
+
# Escape title for HTML
|
|
1196
|
+
escaped_title = html.escape(title)
|
|
1197
|
+
|
|
1184
1198
|
html_content = f"""
|
|
1185
1199
|
<!DOCTYPE html>
|
|
1186
1200
|
<html lang="en">
|
|
1187
1201
|
<head>
|
|
1188
1202
|
<meta charset="utf-8">
|
|
1189
1203
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
1190
|
-
<title>
|
|
1204
|
+
<title>{escaped_title}</title>
|
|
1191
1205
|
{CSS}
|
|
1192
1206
|
</head>
|
|
1193
1207
|
<body>
|
|
@@ -1217,7 +1231,7 @@ def save(filepath: str) -> None:
|
|
|
1217
1231
|
<div class="main-content">
|
|
1218
1232
|
<!-- Top Bar -->
|
|
1219
1233
|
<div class="top-bar">
|
|
1220
|
-
<div class="page-title">
|
|
1234
|
+
<div class="page-title">{escaped_title}</div>
|
|
1221
1235
|
<div class="search-wrapper">
|
|
1222
1236
|
<i class="search-icon-abs">🔍</i>
|
|
1223
1237
|
<input type="text" id="globalSearch" class="search-input"
|
|
@@ -1236,7 +1250,8 @@ def save(filepath: str) -> None:
|
|
|
1236
1250
|
</div>
|
|
1237
1251
|
<div class="card">
|
|
1238
1252
|
<h3>Retention</h3>
|
|
1239
|
-
<div class="metric-value">{
|
|
1253
|
+
<div class="metric-value">{
|
|
1254
|
+
(final_rows / initial_rows * 100) if initial_rows else 0:.1f}%</div>
|
|
1240
1255
|
<div class="metric-sub">{_format_number(final_rows)} of {
|
|
1241
1256
|
_format_number(initial_rows)
|
|
1242
1257
|
} rows</div>
|
|
@@ -0,0 +1,308 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: tracepipe
|
|
3
|
+
Version: 0.3.1
|
|
4
|
+
Summary: Row-level data lineage tracking for pandas pipelines
|
|
5
|
+
Project-URL: Homepage, https://github.com/tracepipe/tracepipe
|
|
6
|
+
Project-URL: Documentation, https://tracepipe.github.io/tracepipe/
|
|
7
|
+
Project-URL: Repository, https://github.com/tracepipe/tracepipe.git
|
|
8
|
+
Project-URL: Issues, https://github.com/tracepipe/tracepipe/issues
|
|
9
|
+
Project-URL: Changelog, https://tracepipe.github.io/tracepipe/changelog/
|
|
10
|
+
Author: Gauthier Piarrette
|
|
11
|
+
License: MIT License
|
|
12
|
+
|
|
13
|
+
Copyright (c) 2026 Gauthier Piarrette
|
|
14
|
+
|
|
15
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
16
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
17
|
+
in the Software without restriction, including without limitation the rights
|
|
18
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
19
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
20
|
+
furnished to do so, subject to the following conditions:
|
|
21
|
+
|
|
22
|
+
The above copyright notice and this permission notice shall be included in all
|
|
23
|
+
copies or substantial portions of the Software.
|
|
24
|
+
|
|
25
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
26
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
27
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
28
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
29
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
30
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
31
|
+
SOFTWARE.
|
|
32
|
+
License-File: LICENSE
|
|
33
|
+
Keywords: data-engineering,data-lineage,data-quality,debugging,observability,pandas
|
|
34
|
+
Classifier: Development Status :: 4 - Beta
|
|
35
|
+
Classifier: Intended Audience :: Developers
|
|
36
|
+
Classifier: Intended Audience :: Science/Research
|
|
37
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
38
|
+
Classifier: Operating System :: OS Independent
|
|
39
|
+
Classifier: Programming Language :: Python :: 3
|
|
40
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
41
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
42
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
43
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
44
|
+
Classifier: Topic :: Scientific/Engineering
|
|
45
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
46
|
+
Requires-Python: >=3.9
|
|
47
|
+
Requires-Dist: numpy>=1.20.0
|
|
48
|
+
Requires-Dist: pandas>=1.5.0
|
|
49
|
+
Provides-Extra: all
|
|
50
|
+
Requires-Dist: psutil>=5.9.0; extra == 'all'
|
|
51
|
+
Requires-Dist: pyarrow>=10.0.0; extra == 'all'
|
|
52
|
+
Provides-Extra: arrow
|
|
53
|
+
Requires-Dist: pyarrow>=10.0.0; extra == 'arrow'
|
|
54
|
+
Provides-Extra: dev
|
|
55
|
+
Requires-Dist: black>=23.0.0; extra == 'dev'
|
|
56
|
+
Requires-Dist: pre-commit>=3.5.0; extra == 'dev'
|
|
57
|
+
Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
|
|
58
|
+
Requires-Dist: pytest>=7.0.0; extra == 'dev'
|
|
59
|
+
Requires-Dist: ruff>=0.1.0; extra == 'dev'
|
|
60
|
+
Requires-Dist: taskipy>=1.12.0; extra == 'dev'
|
|
61
|
+
Provides-Extra: docs
|
|
62
|
+
Requires-Dist: mkdocs-material>=9.5.0; extra == 'docs'
|
|
63
|
+
Requires-Dist: mkdocs>=1.5.0; extra == 'docs'
|
|
64
|
+
Requires-Dist: mkdocstrings[python]>=0.24.0; extra == 'docs'
|
|
65
|
+
Requires-Dist: pymdown-extensions>=10.0.0; extra == 'docs'
|
|
66
|
+
Provides-Extra: memory
|
|
67
|
+
Requires-Dist: psutil>=5.9.0; extra == 'memory'
|
|
68
|
+
Description-Content-Type: text/markdown
|
|
69
|
+
|
|
70
|
+
<div align="center">
|
|
71
|
+
|
|
72
|
+
# TracePipe
|
|
73
|
+
|
|
74
|
+
### Row-level data lineage for pandas pipelines
|
|
75
|
+
|
|
76
|
+
**Know exactly where every row went, why values changed, and how your data transformed.**
|
|
77
|
+
|
|
78
|
+
[](https://pypi.org/project/tracepipe/)
|
|
79
|
+
[](https://pypi.org/project/tracepipe/)
|
|
80
|
+
[](https://github.com/gauthierpiarrette/tracepipe/actions/workflows/ci.yml)
|
|
81
|
+
[](https://codecov.io/gh/gauthierpiarrette/tracepipe)
|
|
82
|
+
[](https://opensource.org/licenses/MIT)
|
|
83
|
+
[](https://gauthierpiarrette.github.io/tracepipe/)
|
|
84
|
+
|
|
85
|
+
[Getting Started](#getting-started) · [Documentation](https://gauthierpiarrette.github.io/tracepipe/) · [Examples](#real-world-example)
|
|
86
|
+
|
|
87
|
+
</div>
|
|
88
|
+
|
|
89
|
+
---
|
|
90
|
+
|
|
91
|
+
## Why TracePipe?
|
|
92
|
+
|
|
93
|
+
Data pipelines are black boxes. Rows vanish. Values change. You're left guessing.
|
|
94
|
+
|
|
95
|
+
```python
|
|
96
|
+
df = pd.read_csv("customers.csv")
|
|
97
|
+
df = df.dropna() # Some rows disappear
|
|
98
|
+
df = df.merge(regions, on="zip") # New rows appear, some vanish
|
|
99
|
+
df["income"] = df["income"].fillna(0) # Values change silently
|
|
100
|
+
df = df[df["age"] >= 18] # More rows gone
|
|
101
|
+
# What happened to customer C-789? 🤷
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
**TracePipe gives you the complete audit trail — zero code changes required.**
|
|
105
|
+
|
|
106
|
+
---
|
|
107
|
+
|
|
108
|
+
## Getting Started
|
|
109
|
+
|
|
110
|
+
```bash
|
|
111
|
+
pip install tracepipe
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
```python
|
|
115
|
+
import tracepipe as tp
|
|
116
|
+
import pandas as pd
|
|
117
|
+
|
|
118
|
+
tp.enable(mode="debug", watch=["income"])
|
|
119
|
+
|
|
120
|
+
df = pd.read_csv("customers.csv")
|
|
121
|
+
df = df.dropna()
|
|
122
|
+
df["income"] = df["income"].fillna(0)
|
|
123
|
+
df = df[df["age"] >= 18]
|
|
124
|
+
|
|
125
|
+
tp.check(df) # See what happened
|
|
126
|
+
```
|
|
127
|
+
|
|
128
|
+
```
|
|
129
|
+
TracePipe Check: [OK] Pipeline healthy
|
|
130
|
+
|
|
131
|
+
Retention: 847/1000 (84.7%)
|
|
132
|
+
Dropped: 153 rows
|
|
133
|
+
• DataFrame.dropna: 42
|
|
134
|
+
• DataFrame.__getitem__[mask]: 111
|
|
135
|
+
|
|
136
|
+
Value changes: 23 cells modified
|
|
137
|
+
• DataFrame.fillna: 23 (income)
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
That's it. **One import, full visibility.**
|
|
141
|
+
|
|
142
|
+
---
|
|
143
|
+
|
|
144
|
+
## Core API
|
|
145
|
+
|
|
146
|
+
| Function | What it does |
|
|
147
|
+
|----------|--------------|
|
|
148
|
+
| `tp.enable()` | Start tracking |
|
|
149
|
+
| `tp.check(df)` | Health check — retention, drops, changes |
|
|
150
|
+
| `tp.trace(df, where={"id": "C-789"})` | Follow a row's complete journey |
|
|
151
|
+
| `tp.why(df, col="income", row=5)` | Explain why a cell has its current value |
|
|
152
|
+
| `tp.report(df, "audit.html")` | Export interactive HTML report |
|
|
153
|
+
|
|
154
|
+
---
|
|
155
|
+
|
|
156
|
+
## Key Features
|
|
157
|
+
|
|
158
|
+
<table>
|
|
159
|
+
<tr>
|
|
160
|
+
<td width="50%">
|
|
161
|
+
|
|
162
|
+
### 🔍 Zero-Code Instrumentation
|
|
163
|
+
TracePipe patches pandas at runtime. Your existing code works unchanged.
|
|
164
|
+
|
|
165
|
+
### 📊 Complete Provenance
|
|
166
|
+
Track drops, transforms, merges, and cell-level changes with before/after values.
|
|
167
|
+
|
|
168
|
+
</td>
|
|
169
|
+
<td width="50%">
|
|
170
|
+
|
|
171
|
+
### 🎯 Business-Key Lookups
|
|
172
|
+
Find rows by their values: `tp.trace(df, where={"email": "alice@example.com"})`
|
|
173
|
+
|
|
174
|
+
### ⚡ Production-Ready
|
|
175
|
+
1.0-2.8x overhead (varies by operation). Tested on DataFrames up to 1M rows.
|
|
176
|
+
|
|
177
|
+
</td>
|
|
178
|
+
</tr>
|
|
179
|
+
</table>
|
|
180
|
+
|
|
181
|
+
---
|
|
182
|
+
|
|
183
|
+
## Real-World Example
|
|
184
|
+
|
|
185
|
+
```python
|
|
186
|
+
import tracepipe as tp
|
|
187
|
+
import pandas as pd
|
|
188
|
+
|
|
189
|
+
tp.enable(mode="debug", watch=["age", "income", "label"])
|
|
190
|
+
|
|
191
|
+
# Load and clean
|
|
192
|
+
df = pd.read_csv("training_data.csv")
|
|
193
|
+
df = df.dropna(subset=["label"])
|
|
194
|
+
df["income"] = df["income"].fillna(df["income"].median())
|
|
195
|
+
df = df[df["age"] >= 18]
|
|
196
|
+
|
|
197
|
+
# Audit
|
|
198
|
+
print(tp.check(df))
|
|
199
|
+
```
|
|
200
|
+
|
|
201
|
+
```
|
|
202
|
+
Retention: 8234/10000 (82.3%)
|
|
203
|
+
Dropped: 1766 rows
|
|
204
|
+
• DataFrame.dropna: 423
|
|
205
|
+
• DataFrame.__getitem__[mask]: 1343
|
|
206
|
+
|
|
207
|
+
Value changes: 892 cells
|
|
208
|
+
• DataFrame.fillna: 892 (income)
|
|
209
|
+
```
|
|
210
|
+
|
|
211
|
+
```python
|
|
212
|
+
# Why does this customer have a filled income?
|
|
213
|
+
tp.why(df, col="income", where={"customer_id": "C-789"})
|
|
214
|
+
```
|
|
215
|
+
|
|
216
|
+
```
|
|
217
|
+
Cell History: row 156, column 'income'
|
|
218
|
+
Current value: 45000.0
|
|
219
|
+
[i] Was null at step 1 (later recovered)
|
|
220
|
+
|
|
221
|
+
History (1 change):
|
|
222
|
+
None -> 45000.0
|
|
223
|
+
by: DataFrame.fillna
|
|
224
|
+
```
|
|
225
|
+
|
|
226
|
+
---
|
|
227
|
+
|
|
228
|
+
## Two Modes
|
|
229
|
+
|
|
230
|
+
| Mode | Use Case | What's Tracked |
|
|
231
|
+
|------|----------|----------------|
|
|
232
|
+
| **CI** (default) | Production pipelines | Step counts, retention rates, merge warnings |
|
|
233
|
+
| **Debug** | Development | Full row history, cell diffs, merge parents, group membership |
|
|
234
|
+
|
|
235
|
+
```python
|
|
236
|
+
tp.enable(mode="ci") # Lightweight
|
|
237
|
+
tp.enable(mode="debug") # Full lineage
|
|
238
|
+
```
|
|
239
|
+
|
|
240
|
+
---
|
|
241
|
+
|
|
242
|
+
## What's Tracked
|
|
243
|
+
|
|
244
|
+
| Operation | Coverage |
|
|
245
|
+
|-----------|----------|
|
|
246
|
+
| `dropna`, `drop_duplicates`, `query`, `df[mask]` | ✅ Full |
|
|
247
|
+
| `fillna`, `replace`, `loc[]=`, `iloc[]=` | ✅ Full (cell diffs) |
|
|
248
|
+
| `merge`, `join` | ✅ Full (parent tracking) |
|
|
249
|
+
| `groupby().agg()` | ✅ Full (group membership) |
|
|
250
|
+
| `sort_values`, `head`, `tail`, `sample` | ✅ Full |
|
|
251
|
+
| `apply`, `pipe` | ⚠️ Partial |
|
|
252
|
+
|
|
253
|
+
---
|
|
254
|
+
|
|
255
|
+
## Data Quality Contracts
|
|
256
|
+
|
|
257
|
+
```python
|
|
258
|
+
(tp.contract()
|
|
259
|
+
.expect_unique("customer_id")
|
|
260
|
+
.expect_no_nulls("email")
|
|
261
|
+
.expect_retention(min_rate=0.9)
|
|
262
|
+
.check(df)
|
|
263
|
+
.raise_if_failed())
|
|
264
|
+
```
|
|
265
|
+
|
|
266
|
+
---
|
|
267
|
+
|
|
268
|
+
## Documentation
|
|
269
|
+
|
|
270
|
+
📚 **[Full Documentation](https://gauthierpiarrette.github.io/tracepipe/)**
|
|
271
|
+
|
|
272
|
+
- [Quickstart](https://gauthierpiarrette.github.io/tracepipe/getting-started/quickstart/)
|
|
273
|
+
- [User Guide](https://gauthierpiarrette.github.io/tracepipe/guide/concepts/)
|
|
274
|
+
- [API Reference](https://gauthierpiarrette.github.io/tracepipe/api/)
|
|
275
|
+
- [Examples](https://gauthierpiarrette.github.io/tracepipe/examples/ml-pipeline/)
|
|
276
|
+
|
|
277
|
+
---
|
|
278
|
+
|
|
279
|
+
## Contributing
|
|
280
|
+
|
|
281
|
+
```bash
|
|
282
|
+
git clone https://github.com/gauthierpiarrette/tracepipe.git
|
|
283
|
+
cd tracepipe
|
|
284
|
+
pip install -e ".[dev]"
|
|
285
|
+
pytest tests/ -v
|
|
286
|
+
```
|
|
287
|
+
|
|
288
|
+
See [CONTRIBUTING](https://gauthierpiarrette.github.io/tracepipe/contributing/) for guidelines.
|
|
289
|
+
|
|
290
|
+
---
|
|
291
|
+
|
|
292
|
+
## License
|
|
293
|
+
|
|
294
|
+
MIT License. See [LICENSE](LICENSE).
|
|
295
|
+
|
|
296
|
+
---
|
|
297
|
+
|
|
298
|
+
<div align="center">
|
|
299
|
+
|
|
300
|
+
**Stop guessing where your rows went.**
|
|
301
|
+
|
|
302
|
+
```bash
|
|
303
|
+
pip install tracepipe
|
|
304
|
+
```
|
|
305
|
+
|
|
306
|
+
⭐ Star us on GitHub if TracePipe helps your data work!
|
|
307
|
+
|
|
308
|
+
</div>
|