tracepipe 0.2.0__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,575 @@
1
+ Metadata-Version: 2.4
2
+ Name: tracepipe
3
+ Version: 0.3.0
4
+ Summary: Row-level data lineage tracking for pandas pipelines
5
+ Project-URL: Homepage, https://github.com/tracepipe/tracepipe
6
+ Project-URL: Documentation, https://tracepipe.github.io/tracepipe/
7
+ Project-URL: Repository, https://github.com/tracepipe/tracepipe.git
8
+ Project-URL: Issues, https://github.com/tracepipe/tracepipe/issues
9
+ Project-URL: Changelog, https://tracepipe.github.io/tracepipe/changelog/
10
+ Author: Gauthier Piarrette
11
+ License: MIT License
12
+
13
+ Copyright (c) 2026 Gauthier Piarrette
14
+
15
+ Permission is hereby granted, free of charge, to any person obtaining a copy
16
+ of this software and associated documentation files (the "Software"), to deal
17
+ in the Software without restriction, including without limitation the rights
18
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
19
+ copies of the Software, and to permit persons to whom the Software is
20
+ furnished to do so, subject to the following conditions:
21
+
22
+ The above copyright notice and this permission notice shall be included in all
23
+ copies or substantial portions of the Software.
24
+
25
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
26
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
27
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
28
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
29
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
30
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31
+ SOFTWARE.
32
+ License-File: LICENSE
33
+ Keywords: data-engineering,data-lineage,data-quality,debugging,observability,pandas
34
+ Classifier: Development Status :: 4 - Beta
35
+ Classifier: Intended Audience :: Developers
36
+ Classifier: Intended Audience :: Science/Research
37
+ Classifier: License :: OSI Approved :: MIT License
38
+ Classifier: Operating System :: OS Independent
39
+ Classifier: Programming Language :: Python :: 3
40
+ Classifier: Programming Language :: Python :: 3.9
41
+ Classifier: Programming Language :: Python :: 3.10
42
+ Classifier: Programming Language :: Python :: 3.11
43
+ Classifier: Programming Language :: Python :: 3.12
44
+ Classifier: Topic :: Scientific/Engineering
45
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
46
+ Requires-Python: >=3.9
47
+ Requires-Dist: numpy>=1.20.0
48
+ Requires-Dist: pandas>=1.5.0
49
+ Provides-Extra: all
50
+ Requires-Dist: psutil>=5.9.0; extra == 'all'
51
+ Requires-Dist: pyarrow>=10.0.0; extra == 'all'
52
+ Provides-Extra: arrow
53
+ Requires-Dist: pyarrow>=10.0.0; extra == 'arrow'
54
+ Provides-Extra: dev
55
+ Requires-Dist: black>=23.0.0; extra == 'dev'
56
+ Requires-Dist: pre-commit>=3.5.0; extra == 'dev'
57
+ Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
58
+ Requires-Dist: pytest>=7.0.0; extra == 'dev'
59
+ Requires-Dist: ruff>=0.1.0; extra == 'dev'
60
+ Requires-Dist: taskipy>=1.12.0; extra == 'dev'
61
+ Provides-Extra: docs
62
+ Requires-Dist: mkdocs-material>=9.5.0; extra == 'docs'
63
+ Requires-Dist: mkdocs>=1.5.0; extra == 'docs'
64
+ Requires-Dist: mkdocstrings[python]>=0.24.0; extra == 'docs'
65
+ Requires-Dist: pymdown-extensions>=10.0.0; extra == 'docs'
66
+ Provides-Extra: memory
67
+ Requires-Dist: psutil>=5.9.0; extra == 'memory'
68
+ Description-Content-Type: text/markdown
69
+
70
+ # TracePipe
71
+
72
+ **Row-level data lineage for pandas pipelines.**
73
+
74
+ TracePipe automatically tracks what happens to every row and cell in your DataFrame — drops, transformations, merges, and value changes. Zero code changes required.
75
+
76
+ [![PyPI version](https://img.shields.io/pypi/v/tracepipe.svg)](https://pypi.org/project/tracepipe/)
77
+ [![Python 3.9+](https://img.shields.io/pypi/pyversions/tracepipe.svg)](https://pypi.org/project/tracepipe/)
78
+ [![CI](https://github.com/gauthierpiarrette/tracepipe/actions/workflows/ci.yml/badge.svg)](https://github.com/gauthierpiarrette/tracepipe/actions/workflows/ci.yml)
79
+ [![codecov](https://codecov.io/gh/gauthierpiarrette/tracepipe/branch/main/graph/badge.svg)](https://codecov.io/gh/gauthierpiarrette/tracepipe)
80
+ [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
81
+ [![Documentation](https://img.shields.io/badge/docs-mkdocs-blue.svg)](https://gauthierpiarrette.github.io/tracepipe/)
82
+
83
+ ---
84
+
85
+ ## The Problem
86
+
87
+ Data pipelines are black boxes. When something goes wrong, you're left asking:
88
+
89
+ - **"Where did row X go?"** — Dropped somewhere, but which step?
90
+ - **"Why is this value wrong?"** — It was fine in the source, what changed it?
91
+ - **"How did these rows get merged?"** — Which parent records combined?
92
+ - **"Why are there nulls here?"** — When did they appear?
93
+
94
+ ```python
95
+ df = pd.read_csv("customers.csv")
96
+ df = df.dropna() # Some rows disappear
97
+ df = df.merge(regions, on="zip") # New rows appear, some vanish
98
+ df["income"] = df["income"].fillna(0) # Values change silently
99
+ df = df[df["age"] >= 18] # More rows gone
100
+ # What actually happened to customer C-789?
101
+ ```
102
+
103
+ Traditional debugging means `print()` statements, manual diffs, and guesswork. **TracePipe gives you the complete audit trail.**
104
+
105
+ ---
106
+
107
+ ## The Solution
108
+
109
+ ```python
110
+ import tracepipe as tp
111
+ import pandas as pd
112
+
113
+ tp.enable(mode="debug", watch=["income", "score"])
114
+
115
+ df = pd.read_csv("customers.csv")
116
+ df = df.dropna()
117
+ df["income"] = df["income"].fillna(0)
118
+ df = df.merge(segments, on="customer_id")
119
+ df = df[df["age"] >= 18]
120
+
121
+ # Pipeline health check
122
+ print(tp.check(df))
123
+ ```
124
+ ```
125
+ TracePipe Check: [OK] Pipeline healthy
126
+ Mode: debug
127
+
128
+ Retention: 847/1000 (84.7%)
129
+ Dropped: 153 rows
130
+ • DataFrame.dropna: 42
131
+ • DataFrame.__getitem__[mask]: 111
132
+
133
+ Value changes: 23 cells modified
134
+ • DataFrame.fillna: 23 (income)
135
+ ```
136
+
137
+ ```python
138
+ # Why did this customer's income change?
139
+ print(tp.why(df, col="income", where={"customer_id": "C-789"}))
140
+ ```
141
+ ```
142
+ Cell History: row 42, column 'income'
143
+ Current value: 0.0
144
+ [i] Was null at step 1 (later recovered)
145
+ by: DataFrame.fillna
146
+
147
+ History (1 change):
148
+ None -> 0.0
149
+ by: DataFrame.fillna
150
+ ```
151
+
152
+ **One import. Complete audit trail.**
153
+
154
+ ---
155
+
156
+ ## Installation
157
+
158
+ ```bash
159
+ pip install tracepipe
160
+ ```
161
+
162
+ ---
163
+
164
+ ## Quick Start
165
+
166
+ ### 1. Enable tracking
167
+
168
+ ```python
169
+ import tracepipe as tp
170
+
171
+ tp.enable(mode="debug", watch=["price", "quantity"]) # Track specific columns
172
+ ```
173
+
174
+ ### 2. Run your pipeline normally
175
+
176
+ ```python
177
+ df = pd.DataFrame({
178
+ "product": ["A", "B", "C", "D"],
179
+ "price": [10.0, None, 30.0, 40.0],
180
+ "quantity": [5, 10, 0, 8]
181
+ })
182
+
183
+ df = df.dropna() # Drops row B
184
+ df = df[df["quantity"] > 0] # Drops row C
185
+ df["total"] = df["price"] * df["quantity"]
186
+ ```
187
+
188
+ ### 3. Inspect the lineage
189
+
190
+ ```python
191
+ # Health check - see drops AND changes
192
+ print(tp.check(df))
193
+ ```
194
+ ```
195
+ TracePipe Check: [OK] Pipeline healthy
196
+ Mode: debug
197
+
198
+ Retention: 2/4 (50.0%)
199
+ Dropped: 2 rows
200
+ • DataFrame.dropna: 1
201
+ • DataFrame.__getitem__[mask]: 1
202
+
203
+ Value changes: 2 cells
204
+ • DataFrame.__setitem__[total]: 2
205
+ ```
206
+
207
+ ```python
208
+ # Trace a specific row's full journey
209
+ print(tp.trace(df, where={"product": "A"}))
210
+ ```
211
+ ```
212
+ Row 0 Journey:
213
+ Status: [OK] Alive
214
+
215
+ Events: 1
216
+ [MODIFIED] DataFrame.__setitem__[total]: total
217
+ ```
218
+
219
+ ```python
220
+ # Explain why a specific cell has its current value
221
+ print(tp.why(df, col="total", row=0))
222
+ ```
223
+ ```
224
+ Cell History: row 0, column 'total'
225
+ Current value: 50.0
226
+
227
+ History (1 change):
228
+ None -> 50.0
229
+ by: DataFrame.__setitem__[total]
230
+ ```
231
+
232
+ ---
233
+
234
+ ## Key Features
235
+
236
+ ### 🔍 Zero-Code Instrumentation
237
+
238
+ TracePipe monkey-patches pandas at runtime. Your existing code works unchanged:
239
+
240
+ ```python
241
+ tp.enable()
242
+ # Your existing pipeline runs exactly as before
243
+ # TracePipe silently records everything
244
+ tp.disable()
245
+ ```
246
+
247
+ ### 📊 Rich Provenance Data
248
+
249
+ Track everything that happens in your pipeline:
250
+
251
+ | Question | Answer |
252
+ |----------|--------|
253
+ | Which rows were dropped? | `tp.check(df)` shows retention by operation |
254
+ | Why did this value change? | `tp.why(df, col="amount", row=5)` shows before/after |
255
+ | What's this row's history? | `tp.trace(df, row=0)` shows full journey |
256
+ | Where did these rows merge from? | Merge parent tracking in debug mode |
257
+ | Which rows grouped together? | `tp.debug.inspect().explain_group("A")` |
258
+ | When did nulls appear? | `tp.why()` flags null introduction |
259
+
260
+ ### 🎯 Business-Key Lookups
261
+
262
+ Find rows by their values, not internal IDs:
263
+
264
+ ```python
265
+ # Find by business key
266
+ tp.trace(df, where={"customer_id": "C-12345"})
267
+ tp.trace(df, where={"email": "alice@example.com"})
268
+
269
+ # Find rows where a column is null
270
+ tp.why(df, col="email", where={"email": None})
271
+ ```
272
+
273
+ ### 📈 Production-Ready Performance
274
+
275
+ | Operation | Overhead | Notes |
276
+ |-----------|----------|-------|
277
+ | Filter (dropna, query) | 1.4-1.9x | Acceptable |
278
+ | Transform (fillna, replace) | 1.0-1.2x | Minimal |
279
+ | GroupBy | 1.0-1.2x | Minimal |
280
+ | Sort | 1.4x | Optimized |
281
+ | Scalar access (at/iat) | <1ms added | Fixed overhead |
282
+
283
+ Tested on DataFrames up to 1M rows with linear scaling.
284
+
285
+ ### 🔒 Safety First
286
+
287
+ TracePipe never modifies your data or affects computation results:
288
+
289
+ ```python
290
+ # Original pandas method ALWAYS runs first
291
+ # Lineage capture happens after, and failures are non-fatal
292
+ result = df.dropna() # Guaranteed to work, even if tracking fails
293
+ ```
294
+
295
+ ---
296
+
297
+ ## Two Modes
298
+
299
+ ### CI Mode (Default)
300
+ Lightweight tracking for production pipelines:
301
+ - Step counts and retention rates
302
+ - Dropped row detection
303
+ - Merge mismatch warnings
304
+ - **No per-row provenance** (fast)
305
+
306
+ ```python
307
+ tp.enable(mode="ci")
308
+ ```
309
+
310
+ ### Debug Mode
311
+ Full lineage for development and debugging:
312
+ - Complete row-level history
313
+ - Cell change tracking with before/after values
314
+ - GroupBy membership
315
+ - Merge parent tracking
316
+
317
+ ```python
318
+ tp.enable(mode="debug", watch=["price", "amount"])
319
+ ```
320
+
321
+ ---
322
+
323
+ ## API Reference
324
+
325
+ ### Core Functions (5)
326
+
327
+ | Function | Purpose |
328
+ |----------|---------|
329
+ | `tp.enable(mode, watch)` | Start tracking |
330
+ | `tp.check(df)` | Health check with retention stats |
331
+ | `tp.trace(df, row, where)` | Trace a row's journey |
332
+ | `tp.why(df, col, row, where)` | Explain why a cell changed |
333
+ | `tp.report(df, path)` | Export HTML report |
334
+
335
+ ### Control Functions
336
+
337
+ | Function | Purpose |
338
+ |----------|---------|
339
+ | `tp.disable()` | Stop tracking |
340
+ | `tp.reset()` | Clear all lineage data |
341
+ | `tp.stage(name)` | Label pipeline stages |
342
+
343
+ ### Debug Namespace
344
+
345
+ For power users who need raw access:
346
+
347
+ ```python
348
+ dbg = tp.debug.inspect()
349
+ dbg.steps # All recorded operations
350
+ dbg.dropped_rows() # Set of dropped row IDs
351
+ dbg.explain_row(42) # Raw lineage for row 42
352
+ dbg.stats() # Memory and tracking stats
353
+ dbg.export("json", "lineage.json")
354
+ ```
355
+
356
+ ---
357
+
358
+ ## Data Quality Contracts
359
+
360
+ Validate your pipeline with fluent assertions:
361
+
362
+ ```python
363
+ result = (tp.contract()
364
+ .expect_unique("customer_id")
365
+ .expect_no_nulls("email")
366
+ .expect_retention(min_rate=0.9)
367
+ .check(df))
368
+
369
+ result.raise_if_failed() # Raises if any contract violated
370
+ ```
371
+
372
+ ---
373
+
374
+ ## Snapshots & Diff
375
+
376
+ Compare DataFrame states:
377
+
378
+ ```python
379
+ before = tp.snapshot(df)
380
+
381
+ # ... transformations ...
382
+
383
+ after = tp.snapshot(df)
384
+ diff = tp.diff(before, after)
385
+
386
+ print(f"Rows added: {diff.rows_added}")
387
+ print(f"Rows removed: {diff.rows_removed}")
388
+ print(f"Cells changed: {diff.cells_changed}")
389
+ ```
390
+
391
+ ---
392
+
393
+ ## HTML Reports
394
+
395
+ Generate interactive lineage reports:
396
+
397
+ ```python
398
+ tp.report(df, "pipeline_audit.html")
399
+ ```
400
+
401
+ Opens a visual dashboard showing:
402
+ - Pipeline flow diagram
403
+ - Retention funnel
404
+ - Dropped rows by operation
405
+ - Cell change history
406
+
407
+ ---
408
+
409
+ ## What's Tracked
410
+
411
+ | Operation | Tracking | Completeness |
412
+ |-----------|----------|--------------|
413
+ | `dropna`, `drop_duplicates` | Dropped row IDs | FULL |
414
+ | `query`, `df[mask]` | Dropped row IDs | FULL |
415
+ | `head`, `tail`, `sample` | Dropped row IDs | FULL |
416
+ | `fillna`, `replace` | Cell diffs (watched cols) | FULL |
417
+ | `loc[]=`, `iloc[]=`, `at[]=` | Cell diffs | FULL |
418
+ | `merge`, `join` | Parent tracking | FULL |
419
+ | `groupby().agg()` | Group membership | FULL |
420
+ | `sort_values` | Reorder tracking | FULL |
421
+ | `apply`, `pipe` | Output tracked | PARTIAL |
422
+
423
+ ---
424
+
425
+ ## Limitations
426
+
427
+ TracePipe tracks pandas operations, not arbitrary Python code:
428
+
429
+ | Limitation | Workaround |
430
+ |------------|------------|
431
+ | Direct NumPy array modification | Use pandas methods |
432
+ | Mutable objects in cells (lists, dicts) | Use immutable types |
433
+ | Custom C extensions | Wrap with pandas operations |
434
+
435
+ ---
436
+
437
+ ## Example: ML Pipeline Audit
438
+
439
+ ```python
440
+ import tracepipe as tp
441
+ import pandas as pd
442
+ import numpy as np
443
+
444
+ tp.enable(mode="debug", watch=["age", "income", "label"])
445
+
446
+ # Load and clean
447
+ df = pd.read_csv("training_data.csv")
448
+ df = df.dropna(subset=["label"])
449
+ df["income"] = df["income"].fillna(df["income"].median())
450
+ df = df[df["age"] >= 18]
451
+
452
+ # Feature engineering
453
+ df["age_bucket"] = pd.cut(df["age"], bins=[18, 30, 50, 100])
454
+ df["log_income"] = np.log1p(df["income"])
455
+
456
+ # Audit the pipeline
457
+ print(tp.check(df))
458
+ ```
459
+ ```
460
+ TracePipe Check: [OK] Pipeline healthy
461
+ Mode: debug
462
+
463
+ Retention: 8234/10000 (82.3%)
464
+ Dropped: 1766 rows
465
+ • DataFrame.dropna: 423
466
+ • DataFrame.__getitem__[mask]: 1343
467
+
468
+ Value changes: 892 cells
469
+ • DataFrame.fillna: 892 (income)
470
+ ```
471
+
472
+ ```python
473
+ # Why does this customer have log_income = 0?
474
+ print(tp.why(df, col="income", where={"customer_id": "C-789"}))
475
+ ```
476
+ ```
477
+ Cell History: row 156, column 'income'
478
+ Current value: 45000.0
479
+ [i] Was null at step 1 (later recovered)
480
+ by: DataFrame.fillna
481
+
482
+ History (1 change):
483
+ None -> 45000.0
484
+ by: DataFrame.fillna
485
+ ```
486
+
487
+ ```python
488
+ # Full journey of a specific row
489
+ print(tp.trace(df, where={"customer_id": "C-789"}))
490
+ ```
491
+ ```
492
+ Row 156 Journey:
493
+ Status: [OK] Alive
494
+
495
+ Events: 3
496
+ [MODIFIED] DataFrame.fillna: income
497
+ [MODIFIED] pd.cut: age_bucket
498
+ [MODIFIED] DataFrame.__setitem__[log_income]: log_income
499
+ ```
500
+
501
+ ---
502
+
503
+ ## Benchmarks
504
+
505
+ Run on MacBook Pro M1, pandas 2.0, Python 3.11:
506
+
507
+ ### Overhead (10K rows, median of 10 runs)
508
+
509
+ | Operation | Baseline | With TracePipe | Overhead |
510
+ |-----------|----------|----------------|----------|
511
+ | dropna | 0.9ms | 1.7ms | 1.9x |
512
+ | query | 2.1ms | 3.0ms | 1.4x |
513
+ | fillna | 0.4ms | 0.4ms | 1.0x |
514
+ | groupby.sum | 1.2ms | 1.2ms | 1.0x |
515
+ | merge | 4.5ms | 12.6ms | 2.8x |
516
+ | sort_values | 1.1ms | 1.5ms | 1.4x |
517
+
518
+ ### Scale (filter + dropna pipeline)
519
+
520
+ | Rows | Time | Throughput |
521
+ |------|------|------------|
522
+ | 10K | 5ms | 2M rows/sec |
523
+ | 100K | 35ms | 2.8M rows/sec |
524
+ | 1M | 320ms | 3.1M rows/sec |
525
+
526
+ ### Memory
527
+
528
+ - Base overhead: ~40 bytes per tracked diff
529
+ - Typical pipeline: 2-3x memory vs baseline
530
+ - Spillover to disk available for large pipelines
531
+
532
+ ---
533
+
534
+ ## Documentation
535
+
536
+ 📚 **[Full Documentation](https://gauthierpiarrette.github.io/tracepipe/)**
537
+
538
+ - [Getting Started](https://gauthierpiarrette.github.io/tracepipe/getting-started/quickstart/)
539
+ - [User Guide](https://gauthierpiarrette.github.io/tracepipe/guide/concepts/)
540
+ - [API Reference](https://gauthierpiarrette.github.io/tracepipe/api/)
541
+ - [Examples](https://gauthierpiarrette.github.io/tracepipe/examples/ml-pipeline/)
542
+
543
+ ---
544
+
545
+ ## Contributing
546
+
547
+ ```bash
548
+ git clone https://github.com/gauthierpiarrette/tracepipe.git
549
+ cd tracepipe
550
+ pip install -e ".[dev]"
551
+
552
+ # Run tests
553
+ pytest tests/ -v
554
+
555
+ # Run linting
556
+ ruff check tracepipe/ tests/
557
+
558
+ # Run benchmarks
559
+ python benchmarks/run_all.py
560
+ ```
561
+
562
+ See [CONTRIBUTING](https://gauthierpiarrette.github.io/tracepipe/contributing/) for detailed guidelines.
563
+
564
+ ---
565
+
566
+ ## License
567
+
568
+ MIT License. See [LICENSE](LICENSE) for details.
569
+
570
+ ---
571
+
572
+ <p align="center">
573
+ <b>Stop guessing where your rows went.</b><br>
574
+ <code>pip install tracepipe</code>
575
+ </p>
@@ -0,0 +1,29 @@
1
+ tracepipe/__init__.py,sha256=ZO6-yKMpguohwQLSRovuJoakb7kN1ZveSBwlGwhC-ho,3342
2
+ tracepipe/api.py,sha256=KFO0NYRaGqRevbNyFSCFK4ryhFwdixFtUnTeNabwb6o,11862
3
+ tracepipe/context.py,sha256=_povLpqa5wd_ESHt5hbSmWTSMTF3nUfeutEQo4RMK2E,3856
4
+ tracepipe/contracts.py,sha256=m-rjPrgnCiAgKEkweOS7P95jrjDptt5UPdvUlqaV_rU,16226
5
+ tracepipe/convenience.py,sha256=9F4rLx7AGWwNPKhuJMZD-6PG-QiZq0_mzfmnoU28x6U,26036
6
+ tracepipe/core.py,sha256=kAXks694rR0Z4tD7Gyty0TyJGWx2whsSdteYYpHuazo,8010
7
+ tracepipe/debug.py,sha256=6t2GKVZLwn7SJLhrStE9qsmTiVIHATTE3jJPQ2DYtnc,10140
8
+ tracepipe/safety.py,sha256=jTBZv4QGDJfnZETsSZeMKbdOUtGXk-_XkmllhnGWM-M,5537
9
+ tracepipe/snapshot.py,sha256=OLREzE1_LkWITluG_Bqeb7Y4pAKb8Lb3zJEF3cxnloU,13967
10
+ tracepipe/value_provenance.py,sha256=cCNDvMduYiFkTzfam5EpBNZI54RL4OtMLP6xNaM00ec,9092
11
+ tracepipe/instrumentation/__init__.py,sha256=pd0n6Z9m_V3gcBv097cXWFOZEzAP9sAq1jjQnNRrDZ8,222
12
+ tracepipe/instrumentation/apply_capture.py,sha256=cMThWzNXqWQENuMrCGTne1hO6fqaQFV7zJYNpsPTW4w,14463
13
+ tracepipe/instrumentation/filter_capture.py,sha256=onlYLU5bBZSM3WmxM2AFHfktnlx7ReG-brEn5eZ_N10,15830
14
+ tracepipe/instrumentation/indexer_capture.py,sha256=1ATCeJ-uNA1uGiSbgnUx0wdVsIlZGHeUBaFJPXgFQNg,28440
15
+ tracepipe/instrumentation/merge_capture.py,sha256=Eze-PTrn7IXxZRZBYX9R13mOY3diWKAkjp4z-wa1tEk,13349
16
+ tracepipe/instrumentation/pandas_inst.py,sha256=2YSoju9ml2PjLOYzsx8MHH1iqhjgnXHbIidnF0JDpaY,29546
17
+ tracepipe/instrumentation/series_capture.py,sha256=N1Cf-pQDh23qQLLd8DNsxbcaD-91sTJkRd5AnccKZGE,10649
18
+ tracepipe/storage/__init__.py,sha256=pGFMfbIgIi2kofVPwYDqe2HTYMYJoabiGjTq77pYi-g,348
19
+ tracepipe/storage/base.py,sha256=7DV_-rp37DjBMr9B1w85hLVYhC8OQShk2PcEhT-n4tE,4894
20
+ tracepipe/storage/lineage_store.py,sha256=KPN-OZOgkZeiIptodQst-Obp9krcuE7Erpc9NX53jKw,25148
21
+ tracepipe/storage/row_identity.py,sha256=HBU0gTTJlFtFTcAdUCKuX-c9cHa0lo3CDIodDPDgOzA,17161
22
+ tracepipe/utils/__init__.py,sha256=CI_GXViCjdMbu1j6HuzZhoQZEW0sIB6WAve6j5pfOC0,182
23
+ tracepipe/utils/value_capture.py,sha256=wGgegQmJnVHxHbwHSH9di7JAOBChzD3ERJrabZNiayk,4092
24
+ tracepipe/visualization/__init__.py,sha256=M3s44ZTUNEToyghjhQW0FgbmWHKPr4Xc-7iNF6DpI_E,132
25
+ tracepipe/visualization/html_export.py,sha256=G0hfZTJctUCfpun17zXX1NIXhvJZbca6hKmP3rcIjbg,42282
26
+ tracepipe-0.3.0.dist-info/METADATA,sha256=oEiGG2V8ya2J3ZKYU_oAfLIqYrZdgwqBRaKup44U-Uw,15478
27
+ tracepipe-0.3.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
28
+ tracepipe-0.3.0.dist-info/licenses/LICENSE,sha256=HMOAFHBClL79POwWL-2_aDcx42DJAq7Ce-nwJPvMB9U,1075
29
+ tracepipe-0.3.0.dist-info/RECORD,,