tpu-inference 0.11.1rc1__py3-none-any.whl → 0.11.1rc3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +254 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/attention_interface.py +356 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/binary_search.py +295 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +172 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +95 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +69 -0
- tpu_inference/layers/jax/sharding.py +406 -0
- tpu_inference/layers/jax/transformer_block.py +76 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +184 -0
- tpu_inference/layers/vllm/fused_moe.py +399 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +34 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +121 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +263 -0
- tpu_inference/layers/vllm/sharding.py +151 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +433 -0
- {tpu_inference-0.11.1rc1.dist-info → tpu_inference-0.11.1rc3.dist-info}/METADATA +6 -6
- {tpu_inference-0.11.1rc1.dist-info → tpu_inference-0.11.1rc3.dist-info}/RECORD +50 -5
- {tpu_inference-0.11.1rc1.dist-info → tpu_inference-0.11.1rc3.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1rc1.dist-info → tpu_inference-0.11.1rc3.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1rc1.dist-info → tpu_inference-0.11.1rc3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
"""All-gather matmul kernel's tuned block sizes."""
|
|
3
|
+
|
|
4
|
+
import jax
|
|
5
|
+
|
|
6
|
+
# key:
|
|
7
|
+
# - tpu_version
|
|
8
|
+
# - m
|
|
9
|
+
# - n
|
|
10
|
+
# - k
|
|
11
|
+
# - dtype
|
|
12
|
+
# - tp_size
|
|
13
|
+
# value:
|
|
14
|
+
# - bn
|
|
15
|
+
# - bk
|
|
16
|
+
TUNED_BLOCK_SIZES = {
|
|
17
|
+
# go/keep-sorted start
|
|
18
|
+
(6, 1024, 51200, 5120, 'bfloat16', 8): (6400, 2560),
|
|
19
|
+
(6, 1024, 57344, 8192, 'bfloat16', 8): (7168, 8192),
|
|
20
|
+
(6, 2048, 51200, 5120, 'bfloat16', 8): (1280, 5120),
|
|
21
|
+
(6, 2048, 57344, 8192, 'bfloat16', 8): (1024, 8192),
|
|
22
|
+
(6, 4096, 51200, 5120, 'bfloat16', 8): (3200, 5120),
|
|
23
|
+
(6, 8192, 51200, 5120, 'bfloat16', 8): (1280, 5120),
|
|
24
|
+
# go/keep-sorted end
|
|
25
|
+
}
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def get_tpu_version() -> int:
|
|
29
|
+
"""Returns the numeric version of the TPU, or -1 if not on TPU."""
|
|
30
|
+
kind = jax.devices()[0].device_kind
|
|
31
|
+
if 'TPU' not in kind:
|
|
32
|
+
return -1
|
|
33
|
+
if kind.endswith(' lite'):
|
|
34
|
+
kind = kind[:-len(' lite')]
|
|
35
|
+
assert kind[:-1] == 'TPU v', kind
|
|
36
|
+
return int(kind[-1])
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def get_key(
|
|
40
|
+
m,
|
|
41
|
+
n,
|
|
42
|
+
k,
|
|
43
|
+
dtype,
|
|
44
|
+
tp_size,
|
|
45
|
+
):
|
|
46
|
+
"""Returns the key for the given parameters."""
|
|
47
|
+
return (
|
|
48
|
+
get_tpu_version(),
|
|
49
|
+
m,
|
|
50
|
+
n,
|
|
51
|
+
k,
|
|
52
|
+
dtype,
|
|
53
|
+
tp_size,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def get_tuned_block_sizes(m, n, k, dtype_name, tp_size):
|
|
58
|
+
"""Returns the tuned block sizes for the given parameters."""
|
|
59
|
+
key = get_key(m, n, k, dtype_name, tp_size)
|
|
60
|
+
return TUNED_BLOCK_SIZES.get(key, (None, None))
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
"""utilities for collective kernels."""
|
|
3
|
+
|
|
4
|
+
import functools
|
|
5
|
+
|
|
6
|
+
from jax.experimental import pallas as pl
|
|
7
|
+
from jax.experimental.pallas import tpu as pltpu
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def local_barrier(left_neighbor, right_neighbor, double_barrier=True):
|
|
11
|
+
"""Performs a barrier with neighbors on the global barrier semaphore.
|
|
12
|
+
|
|
13
|
+
Optionally performs a second barrier, which prevents a potential race
|
|
14
|
+
when reusing the same collective_id across kernel invocations.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
left_neighbor: Left neighbor device id.
|
|
18
|
+
right_neighbor: Right neighbor device id.
|
|
19
|
+
double_barrier: Whether to perform a second barrier.
|
|
20
|
+
"""
|
|
21
|
+
barrier_sem = pltpu.get_barrier_semaphore()
|
|
22
|
+
for neighbor in [left_neighbor, right_neighbor]:
|
|
23
|
+
pltpu.semaphore_signal(
|
|
24
|
+
barrier_sem,
|
|
25
|
+
inc=1,
|
|
26
|
+
device_id=(neighbor, ),
|
|
27
|
+
device_id_type=pltpu.DeviceIdType.MESH,
|
|
28
|
+
)
|
|
29
|
+
pltpu.semaphore_wait(barrier_sem, 2)
|
|
30
|
+
if double_barrier:
|
|
31
|
+
# The double-barrier prevents a race condition where one neighbor can
|
|
32
|
+
# re-enter the kernel again on a subsequent call and increment the
|
|
33
|
+
# barrier semaphore a second time. This would unblock the current device
|
|
34
|
+
# even if the other neighbor is not ready yet.
|
|
35
|
+
# To implement a double-barrier, we stack-allocate a second REGULAR
|
|
36
|
+
# semaphore using run_scoped.
|
|
37
|
+
@functools.partial(pl.run_scoped,
|
|
38
|
+
second_barrier=pltpu.SemaphoreType.REGULAR)
|
|
39
|
+
def _(second_barrier):
|
|
40
|
+
for neighbor in [left_neighbor, right_neighbor]:
|
|
41
|
+
pltpu.semaphore_signal(
|
|
42
|
+
second_barrier,
|
|
43
|
+
inc=1,
|
|
44
|
+
device_id=(neighbor, ),
|
|
45
|
+
device_id_type=pltpu.DeviceIdType.MESH,
|
|
46
|
+
)
|
|
47
|
+
pltpu.semaphore_wait(second_barrier, 2)
|
|
File without changes
|
|
File without changes
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
from dataclasses import dataclass, field
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
import jax
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@functools.partial(
|
|
9
|
+
jax.tree_util.register_dataclass,
|
|
10
|
+
data_fields=[
|
|
11
|
+
"input_positions",
|
|
12
|
+
"block_tables",
|
|
13
|
+
"seq_lens",
|
|
14
|
+
"query_start_loc",
|
|
15
|
+
"request_distribution",
|
|
16
|
+
],
|
|
17
|
+
meta_fields=[],
|
|
18
|
+
drop_fields=["query_start_loc_cpu", "seq_lens_cpu"],
|
|
19
|
+
)
|
|
20
|
+
@dataclass
|
|
21
|
+
class AttentionMetadata(object):
|
|
22
|
+
# (padded_total_num_scheduled_tokens,)
|
|
23
|
+
input_positions: jax.Array
|
|
24
|
+
# (max_num_seqs * max_num_blocks_per_req,)
|
|
25
|
+
block_tables: jax.Array = None
|
|
26
|
+
# (max_num_seqs,)
|
|
27
|
+
seq_lens: jax.Array = None
|
|
28
|
+
# (max_num_seqs + 1,)
|
|
29
|
+
query_start_loc: jax.Array = None
|
|
30
|
+
# (3,)
|
|
31
|
+
request_distribution: jax.Array = None
|
|
32
|
+
|
|
33
|
+
query_start_loc_cpu: Any = field(init=False)
|
|
34
|
+
seq_lens_cpu: Any = field(init=False)
|
|
File without changes
|
|
File without changes
|
|
@@ -0,0 +1,254 @@
|
|
|
1
|
+
from dataclasses import InitVar, dataclass
|
|
2
|
+
from typing import Any, Tuple
|
|
3
|
+
|
|
4
|
+
import jax
|
|
5
|
+
import jax.numpy as jnp
|
|
6
|
+
from flax import nnx
|
|
7
|
+
from flax.typing import Sharding
|
|
8
|
+
from jax.experimental import shard_map
|
|
9
|
+
from jax.sharding import Mesh
|
|
10
|
+
from jax.sharding import PartitionSpec as P
|
|
11
|
+
|
|
12
|
+
from tpu_inference import utils
|
|
13
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.kernel import \
|
|
14
|
+
ragged_paged_attention
|
|
15
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
16
|
+
from tpu_inference.layers.jax.base import create_param
|
|
17
|
+
from tpu_inference.layers.jax.rope_interface import apply_rope
|
|
18
|
+
|
|
19
|
+
KVCache = Tuple[jax.Array, jax.Array]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@dataclass(kw_only=True)
|
|
23
|
+
class Attention(nnx.Module):
|
|
24
|
+
"""An implementation of attention.
|
|
25
|
+
|
|
26
|
+
This module performs the attention mechanism for a transformer model,
|
|
27
|
+
including query, key, and value projections, application of Rotary
|
|
28
|
+
Position Embeddings (RoPE), and management of a KV cache for efficient
|
|
29
|
+
autoregressive generation. It supports both prefill and generation
|
|
30
|
+
(decode) modes and handles tensor sharding for distributed computation.
|
|
31
|
+
|
|
32
|
+
Attributes:
|
|
33
|
+
mesh: The JAX device mesh for distributed computation.
|
|
34
|
+
"""
|
|
35
|
+
hidden_size: int
|
|
36
|
+
num_attention_heads: int
|
|
37
|
+
num_key_value_heads: int
|
|
38
|
+
head_dim: int
|
|
39
|
+
rope_theta: float
|
|
40
|
+
rope_scaling: dict[str, Any]
|
|
41
|
+
dtype: jnp.dtype
|
|
42
|
+
mesh: Mesh
|
|
43
|
+
kv_cache_dtype: str
|
|
44
|
+
|
|
45
|
+
dnh_sharding: Sharding = ()
|
|
46
|
+
dkh_sharding: Sharding = ()
|
|
47
|
+
nhd_sharding: Sharding = ()
|
|
48
|
+
|
|
49
|
+
activation_q_td: Sharding = ()
|
|
50
|
+
query_tnh: P = P()
|
|
51
|
+
keyvalue_skh: P = P()
|
|
52
|
+
|
|
53
|
+
attn_o_tnh: P = P()
|
|
54
|
+
rngs: InitVar[nnx.Rngs]
|
|
55
|
+
|
|
56
|
+
random_init: bool = False
|
|
57
|
+
attention_chunk_size: int | None = None
|
|
58
|
+
rope_input_ordering: str = "split"
|
|
59
|
+
|
|
60
|
+
_q_scale: float = 1.0
|
|
61
|
+
_k_scale: float = 1.0
|
|
62
|
+
_v_scale: float = 1.0
|
|
63
|
+
|
|
64
|
+
kv_cache_quantized_dtype = None
|
|
65
|
+
|
|
66
|
+
def __post_init__(self, rngs: nnx.Rngs):
|
|
67
|
+
"""Initializes the weight kernels for Q, K, V, and O projections."""
|
|
68
|
+
N = self.num_attention_heads
|
|
69
|
+
K = self.num_key_value_heads
|
|
70
|
+
D = self.hidden_size
|
|
71
|
+
H = self.head_dim
|
|
72
|
+
|
|
73
|
+
self.kernel_q_proj_DNH = create_param(rngs, (D, N, H),
|
|
74
|
+
self.dnh_sharding,
|
|
75
|
+
self.dtype,
|
|
76
|
+
random_init=self.random_init)
|
|
77
|
+
self.kernel_k_proj_DKH = create_param(rngs, (D, K, H),
|
|
78
|
+
self.dkh_sharding,
|
|
79
|
+
self.dtype,
|
|
80
|
+
random_init=self.random_init)
|
|
81
|
+
self.kernel_v_proj_DKH = create_param(rngs, (D, K, H),
|
|
82
|
+
self.dkh_sharding,
|
|
83
|
+
self.dtype,
|
|
84
|
+
random_init=self.random_init)
|
|
85
|
+
self.kernel_o_proj_NHD = create_param(rngs, (N, H, D),
|
|
86
|
+
self.nhd_sharding,
|
|
87
|
+
self.dtype,
|
|
88
|
+
random_init=self.random_init)
|
|
89
|
+
|
|
90
|
+
if self.kv_cache_dtype != "auto":
|
|
91
|
+
self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
|
|
92
|
+
self.kv_cache_dtype)
|
|
93
|
+
|
|
94
|
+
def __call__(self,
|
|
95
|
+
x,
|
|
96
|
+
is_prefill,
|
|
97
|
+
kv_cache: KVCache,
|
|
98
|
+
attention_metadata: AttentionMetadata,
|
|
99
|
+
use_attention_rope: bool = True):
|
|
100
|
+
"""Performs the forward pass of the attention module.
|
|
101
|
+
|
|
102
|
+
This method computes the attention output by projecting the input `x`
|
|
103
|
+
to queries, keys, and values, applying RoPE, performing scaled
|
|
104
|
+
dot-product attention, and projecting the result back to the model
|
|
105
|
+
dimension. It updates and utilizes a KV cache.
|
|
106
|
+
|
|
107
|
+
Args:
|
|
108
|
+
x: The input tensor of shape `(seq_len, d_model)`.
|
|
109
|
+
is_prefill: Whether the operation mode is prefill (otherwise it is generate).
|
|
110
|
+
kv_cache: The key-value cache for storing past attention states.
|
|
111
|
+
attention_metadata: Metadata for attention, such as input positions.
|
|
112
|
+
use_attention_rope: Whether to use RoPE.
|
|
113
|
+
|
|
114
|
+
Returns:
|
|
115
|
+
A tuple containing:
|
|
116
|
+
- The updated KV cache.
|
|
117
|
+
- The attention output tensor of shape
|
|
118
|
+
`(batch_size, seq_len, d_model)`.
|
|
119
|
+
"""
|
|
120
|
+
md = attention_metadata
|
|
121
|
+
x_SD = jnp.asarray(x, self.dtype)
|
|
122
|
+
x_q_TD = nnx.with_sharding_constraint(x, self.activation_q_td)
|
|
123
|
+
H = self.head_dim
|
|
124
|
+
with jax.named_scope("q_proj"):
|
|
125
|
+
q_TNH = jnp.einsum('TD,DNH -> TNH', x_q_TD,
|
|
126
|
+
self.kernel_q_proj_DNH.value)
|
|
127
|
+
if use_attention_rope:
|
|
128
|
+
q_TNH = apply_rope(q_TNH, md.input_positions, H,
|
|
129
|
+
self.rope_theta, self.rope_scaling,
|
|
130
|
+
self.rope_input_ordering)
|
|
131
|
+
q_TNH = nnx.with_sharding_constraint(q_TNH, self.query_tnh)
|
|
132
|
+
with jax.named_scope("k_proj"):
|
|
133
|
+
k_SKH = jnp.einsum('SD,DKH -> SKH', x_SD,
|
|
134
|
+
self.kernel_k_proj_DKH.value)
|
|
135
|
+
if use_attention_rope:
|
|
136
|
+
k_SKH = apply_rope(k_SKH, md.input_positions, H,
|
|
137
|
+
self.rope_theta, self.rope_scaling,
|
|
138
|
+
self.rope_input_ordering)
|
|
139
|
+
k_SKH = nnx.with_sharding_constraint(k_SKH, self.keyvalue_skh)
|
|
140
|
+
|
|
141
|
+
with jax.named_scope("v_proj"):
|
|
142
|
+
v_SKH = jnp.einsum('SD,DKH -> SKH', x_SD,
|
|
143
|
+
self.kernel_v_proj_DKH.value)
|
|
144
|
+
|
|
145
|
+
q_scale = k_scale = v_scale = None
|
|
146
|
+
if self.kv_cache_quantized_dtype:
|
|
147
|
+
# TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
|
|
148
|
+
# q_scale = self._q_scale
|
|
149
|
+
k_scale = self._k_scale
|
|
150
|
+
v_scale = self._v_scale
|
|
151
|
+
k_SKH, v_SKH = utils.quantize_kv(k_SKH, v_SKH,
|
|
152
|
+
self.kv_cache_quantized_dtype,
|
|
153
|
+
k_scale, v_scale)
|
|
154
|
+
|
|
155
|
+
with jax.named_scope("attn_op"):
|
|
156
|
+
new_kv_cache, outputs_TNH = self.attention(
|
|
157
|
+
is_prefill,
|
|
158
|
+
kv_cache,
|
|
159
|
+
q_TNH,
|
|
160
|
+
k_SKH,
|
|
161
|
+
v_SKH,
|
|
162
|
+
attention_metadata,
|
|
163
|
+
self.mesh,
|
|
164
|
+
q_scale=q_scale,
|
|
165
|
+
k_scale=k_scale,
|
|
166
|
+
v_scale=v_scale,
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
with jax.named_scope("o_proj"):
|
|
170
|
+
o_TD = jnp.einsum('TNH,NHD -> TD', outputs_TNH,
|
|
171
|
+
self.kernel_o_proj_NHD.value)
|
|
172
|
+
return new_kv_cache, o_TD
|
|
173
|
+
|
|
174
|
+
def attention(
|
|
175
|
+
self,
|
|
176
|
+
is_prefill: bool,
|
|
177
|
+
kv_cache: KVCache,
|
|
178
|
+
q_TNH: jax.Array,
|
|
179
|
+
k_SKH: jax.Array,
|
|
180
|
+
v_SKH: jax.Array,
|
|
181
|
+
attention_metadata: AttentionMetadata,
|
|
182
|
+
mesh: Mesh,
|
|
183
|
+
q_scale: float | None = None,
|
|
184
|
+
k_scale: float | None = None,
|
|
185
|
+
v_scale: float | None = None,
|
|
186
|
+
) -> Tuple[KVCache, jax.Array]:
|
|
187
|
+
"""Performs scaled dot-product attention and updates the KV cache.
|
|
188
|
+
|
|
189
|
+
This function handles the core attention logic, which varies between
|
|
190
|
+
prefill and generation modes. In prefill, it computes self-attention
|
|
191
|
+
over the input sequence with a causal mask. In generation, it attends
|
|
192
|
+
to the full history of keys and values stored in the cache.
|
|
193
|
+
|
|
194
|
+
Args:
|
|
195
|
+
is_prefill: A boolean indicating if the mode is 'prefill'.
|
|
196
|
+
kv_cache: The key-value cache to be updated and used.
|
|
197
|
+
q_TNH: Query tensor of shape `(query_seq, num_attention_heads, head_dim)`.
|
|
198
|
+
k_SKH: Key tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
199
|
+
v_SKH: Value tensor of shape `(kv_seq, num_key_value_heads, head_dim)`.
|
|
200
|
+
attention_metadata: Metadata containing sequence lengths.
|
|
201
|
+
mesh: The JAX device mesh (unused in this specific function but
|
|
202
|
+
kept for potential future use or API consistency).
|
|
203
|
+
q_scale: Quantization scale for q.
|
|
204
|
+
k_scale: Quantization scale for k.
|
|
205
|
+
v_scale: Quantization scale for v.
|
|
206
|
+
|
|
207
|
+
Returns:
|
|
208
|
+
A tuple containing:
|
|
209
|
+
- The updated KV cache.
|
|
210
|
+
- The attention output tensor of shape
|
|
211
|
+
`(seq, num_q_heads, head_dim)`.
|
|
212
|
+
"""
|
|
213
|
+
md = attention_metadata
|
|
214
|
+
kv_cache_spec = P(None, None, "model")
|
|
215
|
+
in_specs = (
|
|
216
|
+
self.query_tnh, # q
|
|
217
|
+
self.keyvalue_skh, # k
|
|
218
|
+
self.keyvalue_skh, # v
|
|
219
|
+
kv_cache_spec, # kv_cache
|
|
220
|
+
P(), # md.seq_lens: Replicated
|
|
221
|
+
P(), # page_indices_flat: Replicated
|
|
222
|
+
P(), # query_start_loc: Replicated
|
|
223
|
+
P(), # distribution: Replicated
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
out_specs = (self.attn_o_tnh, kv_cache_spec)
|
|
227
|
+
|
|
228
|
+
def _ragged_paged_attention(*args):
|
|
229
|
+
return ragged_paged_attention(
|
|
230
|
+
*args,
|
|
231
|
+
sm_scale=q_TNH.shape[-1]**-0.5,
|
|
232
|
+
q_scale=q_scale,
|
|
233
|
+
k_scale=k_scale,
|
|
234
|
+
v_scale=v_scale,
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
output_TNH, kv_cache = jax.jit(
|
|
238
|
+
shard_map.shard_map(
|
|
239
|
+
_ragged_paged_attention,
|
|
240
|
+
mesh=mesh,
|
|
241
|
+
in_specs=in_specs,
|
|
242
|
+
out_specs=out_specs,
|
|
243
|
+
check_rep=False,
|
|
244
|
+
))(
|
|
245
|
+
q_TNH,
|
|
246
|
+
k_SKH,
|
|
247
|
+
v_SKH,
|
|
248
|
+
kv_cache,
|
|
249
|
+
md.seq_lens,
|
|
250
|
+
md.block_tables,
|
|
251
|
+
md.query_start_loc,
|
|
252
|
+
md.request_distribution,
|
|
253
|
+
)
|
|
254
|
+
return kv_cache, output_TNH
|