tpu-inference 0.11.1.dev202511150811__py3-none-any.whl → 0.11.1.dev202511270815__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (49) hide show
  1. tests/kernels/fused_moe_v1_test.py +303 -34
  2. tests/lora/test_layers.py +0 -6
  3. tests/lora/utils.py +0 -8
  4. tpu_inference/__init__.py +22 -3
  5. tpu_inference/core/disagg_utils.py +6 -8
  6. tpu_inference/distributed/tpu_connector.py +2 -3
  7. tpu_inference/distributed/utils.py +3 -2
  8. tpu_inference/envs.py +1 -1
  9. tpu_inference/executors/ray_distributed_executor.py +27 -11
  10. tpu_inference/kernels/fused_moe/v1/kernel.py +641 -110
  11. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +77 -54
  12. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +141 -107
  13. tpu_inference/layers/common/attention_interface.py +7 -1
  14. tpu_inference/layers/common/sharding.py +2 -1
  15. tpu_inference/layers/vllm/fused_moe.py +74 -25
  16. tpu_inference/layers/vllm/quantization/common.py +6 -1
  17. tpu_inference/layers/vllm/quantization/mxfp4.py +135 -61
  18. tpu_inference/layers/vllm/quantization/unquantized.py +107 -113
  19. tpu_inference/layers/vllm/sharding.py +2 -2
  20. tpu_inference/lora/torch_punica_tpu.py +1 -2
  21. tpu_inference/models/common/model_loader.py +43 -11
  22. tpu_inference/models/jax/llama3.py +2 -1
  23. tpu_inference/models/jax/llama_eagle3.py +8 -5
  24. tpu_inference/models/jax/llama_guard_4.py +361 -0
  25. tpu_inference/models/jax/qwen2.py +2 -1
  26. tpu_inference/models/jax/qwen2_5_vl.py +163 -48
  27. tpu_inference/models/jax/qwen3.py +2 -1
  28. tpu_inference/models/jax/utils/weight_utils.py +198 -143
  29. tpu_inference/models/vllm/vllm_model_wrapper.py +13 -5
  30. tpu_inference/platforms/tpu_platform.py +15 -2
  31. tpu_inference/runner/compilation_manager.py +58 -33
  32. tpu_inference/runner/kv_cache_manager.py +9 -3
  33. tpu_inference/runner/structured_decoding_manager.py +2 -3
  34. tpu_inference/runner/tpu_runner.py +203 -102
  35. tpu_inference/spec_decode/jax/eagle3.py +19 -2
  36. tpu_inference/tpu_info.py +4 -3
  37. tpu_inference/utils.py +5 -4
  38. tpu_inference/worker/tpu_worker.py +160 -23
  39. {tpu_inference-0.11.1.dev202511150811.dist-info → tpu_inference-0.11.1.dev202511270815.dist-info}/METADATA +3 -2
  40. {tpu_inference-0.11.1.dev202511150811.dist-info → tpu_inference-0.11.1.dev202511270815.dist-info}/RECORD +43 -48
  41. tpu_inference/mock/__init__.py +0 -0
  42. tpu_inference/mock/vllm_config_utils.py +0 -28
  43. tpu_inference/mock/vllm_envs.py +0 -1219
  44. tpu_inference/mock/vllm_logger.py +0 -212
  45. tpu_inference/mock/vllm_logging_utils.py +0 -15
  46. tpu_inference/models/jax/phi3.py +0 -376
  47. {tpu_inference-0.11.1.dev202511150811.dist-info → tpu_inference-0.11.1.dev202511270815.dist-info}/WHEEL +0 -0
  48. {tpu_inference-0.11.1.dev202511150811.dist-info → tpu_inference-0.11.1.dev202511270815.dist-info}/licenses/LICENSE +0 -0
  49. {tpu_inference-0.11.1.dev202511150811.dist-info → tpu_inference-0.11.1.dev202511270815.dist-info}/top_level.txt +0 -0
@@ -13,12 +13,14 @@ from typing import Any, Optional
13
13
  import jax
14
14
  import jax.numpy as jnp
15
15
  import torch
16
+ import torchax
16
17
  from flax import nnx
17
18
  from jax.sharding import Mesh, NamedSharding
18
19
  from jax.sharding import PartitionSpec as P
19
20
  from safetensors import safe_open
21
+ from vllm.config import VllmConfig
20
22
 
21
- from tpu_inference import utils
23
+ from tpu_inference import envs, utils
22
24
  from tpu_inference.logger import init_logger
23
25
  from tpu_inference.models.jax.utils import file_utils
24
26
 
@@ -197,12 +199,11 @@ def shard_put(x: jax.Array, shardings, mesh: jax.sharding.Mesh) -> jax.Array:
197
199
  return jax.device_put(x, shardings)
198
200
 
199
201
 
200
- def get_default_maps(vllm_config, mesh: Mesh,
202
+ def get_default_maps(model_config, mesh: Mesh,
201
203
  name_map: dict[str, str]) -> MetadataMap:
202
204
  """Load weights from one model weights file to the model, run on single thread."""
203
205
  sharding_size = mesh.shape["model"]
204
206
 
205
- model_config = vllm_config.model_config
206
207
  hf_config = model_config.hf_config
207
208
 
208
209
  num_heads = hf_config.num_attention_heads
@@ -266,14 +267,15 @@ def get_default_maps(vllm_config, mesh: Mesh,
266
267
  bias_pad_map=bias_pad_keys)
267
268
 
268
269
 
269
- def _load_hf_weights_on_thread(vllm_config,
270
- params: nnx.State,
271
- metadata_map: MetadataMap,
272
- mesh: Mesh,
273
- weights_file: str,
274
- filter_regex: str | None = None,
275
- keep_original_dtype_keys_regex: list[str]
276
- | None = None):
270
+ def _load_and_shard_weight(vllm_config,
271
+ params: nnx.State,
272
+ shardings: Any,
273
+ metadata_map: MetadataMap,
274
+ mesh: Mesh,
275
+ hf_key: str,
276
+ hf_weight: jax.Array,
277
+ keep_original_dtype_keys_regex: list[str]
278
+ | None = None):
277
279
  name_map = metadata_map.name_map
278
280
  reshape_keys = metadata_map.reshape_map
279
281
  bias_reshape_keys = metadata_map.bias_reshape_map
@@ -290,6 +292,118 @@ def _load_hf_weights_on_thread(vllm_config,
290
292
  head_dim = utils.get_padded_head_dim(head_dim_original)
291
293
  head_dim_pad = head_dim - head_dim_original
292
294
 
295
+ # Check if the key should retain its original dtype
296
+ keep_original_dtype = False
297
+ if keep_original_dtype_keys_regex:
298
+ for pattern in keep_original_dtype_keys_regex:
299
+ if re.match(pattern, hf_key):
300
+ keep_original_dtype = True
301
+ break
302
+
303
+ # Converting to config's dtype
304
+ if not keep_original_dtype and hf_weight.dtype != model_config.dtype:
305
+ logger.warning(
306
+ f"Converting dtype for {hf_key} from {hf_weight.dtype} to {model_config.dtype}"
307
+ )
308
+ hf_weight = hf_weight.astype(model_config.dtype)
309
+
310
+ if hf_key.endswith(".weight"):
311
+ hf_key = hf_key.removesuffix(".weight")
312
+
313
+ # Find the corresponding model key using the HF key
314
+ if "layers" in hf_key:
315
+ layer_num = re.search(r"layers\.(\d+)", hf_key).group(1)
316
+ layer_key = re.sub(r"layers\.\d+", "layers.*", hf_key)
317
+ model_key = name_map[layer_key]
318
+ model_key = re.sub(r"layers\.\*", f"layers.{layer_num}", model_key)
319
+ elif "blocks" in hf_key:
320
+ layer_num = re.search(r"blocks\.(\d+)", hf_key).group(1)
321
+ layer_key = re.sub(r"blocks\.\d+", "blocks.*", hf_key)
322
+ model_key = name_map[layer_key]
323
+ model_key = re.sub(r"blocks\.\*", f"blocks.{layer_num}", model_key)
324
+ else:
325
+ if hf_key not in name_map and hf_key == "lm_head":
326
+ logger.warning(f"Skip loading {hf_key} due to tie_word_embeddings")
327
+ return
328
+ if hf_key not in name_map and "t2d" in hf_key:
329
+ logger.warning(
330
+ f"Skip loading {hf_key} as it's not used in eagle-3 for now")
331
+ return
332
+ model_key = name_map.get(hf_key, hf_key)
333
+
334
+ model_weight, model_sharding = get_param_and_sharding(
335
+ params, shardings, model_key)
336
+
337
+ logger.debug(
338
+ "before transform | "
339
+ f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
340
+ )
341
+
342
+ if hf_key.endswith(".bias"):
343
+ for key in bias_reshape_keys:
344
+ if key in hf_key:
345
+ hf_weight = jnp.reshape(hf_weight, bias_reshape_keys[key])
346
+ if head_dim_pad > 0:
347
+ hf_weight = jnp.pad(hf_weight, ((0, 0), (0, head_dim_pad)))
348
+ break
349
+ else:
350
+ for key in reshape_keys:
351
+ if key in hf_key:
352
+ hf_weight = jnp.reshape(hf_weight, reshape_keys[key])
353
+ if head_dim_pad > 0:
354
+ if "o_proj" in key:
355
+ hf_weight = jnp.pad(hf_weight, ((0, 0), (0, 0),
356
+ (0, head_dim_pad)))
357
+ else:
358
+ hf_weight = jnp.pad(hf_weight,
359
+ ((0, 0), (0, head_dim_pad),
360
+ (0, 0)))
361
+ break
362
+ for key in transpose_keys:
363
+ if key in hf_key:
364
+ hf_weight = jnp.transpose(hf_weight, transpose_keys[key])
365
+ break
366
+
367
+ # Pad num-kv-heads
368
+ if hf_key.endswith(".bias"):
369
+ for key, value in bias_pad_keys.items():
370
+ dim = value[0]
371
+ dim_size = value[1]
372
+ if key in hf_key and dim_size != 0:
373
+ hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
374
+ break
375
+ else:
376
+ for key, value in pad_keys.items():
377
+ dim = value[0]
378
+ dim_size = value[1]
379
+ if key in hf_key and dim_size != 0:
380
+ hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
381
+ break
382
+
383
+ logger.debug(
384
+ "after transform | "
385
+ f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
386
+ )
387
+
388
+ if head_dim_pad == 0:
389
+ assert model_weight.value.shape == hf_weight.shape, f"{hf_key}: {model_weight.value.shape} != {hf_weight.shape}"
390
+
391
+ # Update the model weight
392
+ spec = model_weight.sharding.spec if isinstance(
393
+ model_weight.sharding, NamedSharding) else model_weight.sharding
394
+ model_weight.value = shard(hf_weight, spec)
395
+
396
+
397
+ def _load_hf_weights_on_thread(
398
+ vllm_config: VllmConfig,
399
+ params: nnx.State,
400
+ metadata_map: "MetadataMap",
401
+ mesh: Mesh,
402
+ weights_file: str,
403
+ filter_regex: Optional[str] = None,
404
+ keep_original_dtype_keys_regex: Optional[list[str]] = None,
405
+ ):
406
+ """Loads weights from a single weights file."""
293
407
  try:
294
408
  shardings = nnx.get_named_sharding(params, mesh)
295
409
  except TypeError:
@@ -297,147 +411,88 @@ def _load_hf_weights_on_thread(vllm_config,
297
411
 
298
412
  for hf_key, hf_weight in model_weights_single_file_generator(
299
413
  weights_file, framework="flax", filter_regex=filter_regex):
414
+ _load_and_shard_weight(
415
+ vllm_config,
416
+ params,
417
+ shardings,
418
+ metadata_map,
419
+ mesh,
420
+ hf_key,
421
+ hf_weight,
422
+ keep_original_dtype_keys_regex,
423
+ )
300
424
 
301
- # Check if the key should retain its original dtype
302
- keep_original_dtype = False
303
- if keep_original_dtype_keys_regex:
304
- for pattern in keep_original_dtype_keys_regex:
305
- if re.match(pattern, hf_key):
306
- keep_original_dtype = True
307
- break
308
425
 
309
- # Converting to config's dtype
310
- if not keep_original_dtype and hf_weight.dtype != model_config.dtype:
311
- logger.warning(
312
- f"Converting dtype for {hf_key} from {hf_weight.dtype} to {model_config.dtype}"
313
- )
314
- hf_weight = hf_weight.astype(model_config.dtype)
315
-
316
- if hf_key.endswith(".weight"):
317
- hf_key = hf_key.removesuffix(".weight")
318
-
319
- # Find the corresponding model key using the HF key
320
- if "layers" in hf_key:
321
- layer_num = re.search(r"layers\.(\d+)", hf_key).group(1)
322
- layer_key = re.sub(r"layers\.\d+", "layers.*", hf_key)
323
- model_key = name_map[layer_key]
324
- model_key = re.sub(r"layers\.\*", f"layers.{layer_num}", model_key)
325
- elif "blocks" in hf_key:
326
- layer_num = re.search(r"blocks\.(\d+)", hf_key).group(1)
327
- layer_key = re.sub(r"blocks\.\d+", "blocks.*", hf_key)
328
- model_key = name_map[layer_key]
329
- model_key = re.sub(r"blocks\.\*", f"blocks.{layer_num}", model_key)
330
- else:
331
- if hf_key not in name_map and hf_key == "lm_head":
332
- logger.warning(
333
- f"Skip loading {hf_key} due to tie_word_embeddings")
334
- continue
335
- if hf_key not in name_map and "t2d" in hf_key:
336
- logger.warning(
337
- f"Skip loading {hf_key} as it's not used in eagle-3 for now"
338
- )
426
+ def load_hf_weights(
427
+ vllm_config: VllmConfig,
428
+ model: nnx.Module,
429
+ metadata_map: "MetadataMap",
430
+ mesh: Mesh,
431
+ filter_regex: Optional[str] = None,
432
+ is_draft_model: bool = False,
433
+ keep_original_dtype_keys_regex: Optional[list[str]] = None,
434
+ ):
435
+ """Load weights into a JAX model from either an iterator or files."""
436
+ params = nnx.state(model)
437
+ try:
438
+ shardings = nnx.get_named_sharding(params, mesh)
439
+ except TypeError:
440
+ shardings = params
441
+ weights_iterator = None
442
+ if hasattr(vllm_config.model_config, "model_weights_iterator"):
443
+ weights_iterator = vllm_config.model_config.model_weights_iterator
444
+ env = torchax.default_env()
445
+ # The weights_iterator is used in RunAI model streamer integration.
446
+ if weights_iterator is not None:
447
+ for hf_key, hf_weight in weights_iterator:
448
+ if filter_regex and not re.match(filter_regex, hf_key):
339
449
  continue
340
- model_key = name_map.get(hf_key, hf_key)
341
- model_weight, model_sharding = get_param_and_sharding(
342
- params, shardings, model_key)
343
450
 
344
- logger.debug(
345
- "before transform | "
346
- f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
347
- )
348
-
349
- if hf_key.endswith(".bias"):
350
- for key in bias_reshape_keys:
351
- if key in hf_key:
352
- hf_weight = jnp.reshape(hf_weight, bias_reshape_keys[key])
353
- if head_dim_pad > 0:
354
- hf_weight = jnp.pad(hf_weight,
355
- ((0, 0), (0, head_dim_pad)))
356
- break
357
- else:
358
- for key in reshape_keys:
359
- if key in hf_key:
360
- hf_weight = jnp.reshape(hf_weight, reshape_keys[key])
361
- if head_dim_pad > 0:
362
- if "o_proj" in key:
363
- hf_weight = jnp.pad(hf_weight, ((0, 0), (0, 0),
364
- (0, head_dim_pad)))
365
- else:
366
- hf_weight = jnp.pad(hf_weight,
367
- ((0, 0), (0, head_dim_pad),
368
- (0, 0)))
369
- break
370
- for key in transpose_keys:
371
- if key in hf_key:
372
- hf_weight = jnp.transpose(hf_weight, transpose_keys[key])
373
- break
374
-
375
- # Pad num-kv-heads
376
- if hf_key.endswith(".bias"):
377
- for key, value in bias_pad_keys.items():
378
- dim = value[0]
379
- dim_size = value[1]
380
- if key in hf_key and dim_size != 0:
381
- hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
382
- break
383
- else:
384
- for key, value in pad_keys.items():
385
- dim = value[0]
386
- dim_size = value[1]
387
- if key in hf_key and dim_size != 0:
388
- hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
389
- break
390
-
391
- logger.debug(
392
- "after transform | "
393
- f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
394
- )
451
+ # Since the weights_iterator yields Pytorch tensors (torch.Tensor),
452
+ # we need to convert them to JAX arrays (jax.Array).
453
+ hf_weight_jax = env.t2j_copy(hf_weight)
395
454
 
396
- if head_dim_pad == 0:
397
- assert model_weight.value.shape == hf_weight.shape, f"{hf_key}: {model_weight.value.shape} != {hf_weight.shape}"
398
-
399
- # Update the model weight
400
- spec = model_weight.sharding.spec if isinstance(
401
- model_weight.sharding, NamedSharding) else model_weight.sharding
402
- model_weight.value = shard(hf_weight, spec)
403
-
404
-
405
- def load_hf_weights(vllm_config,
406
- model: nnx.Module,
407
- metadata_map: MetadataMap,
408
- mesh: Mesh,
409
- filter_regex: str | None = None,
410
- is_draft_model: bool = False,
411
- keep_original_dtype_keys_regex: list[str] | None = None):
412
- """Load weights from all model weights files to the model, run in multi threads."""
413
- if is_draft_model:
414
- model_path = vllm_config.speculative_config.draft_model_config.model
415
- else:
416
- model_path = vllm_config.model_config.model
417
- weights_files = get_model_weights_files(
418
- model_path, vllm_config.load_config.download_dir)
419
- params = nnx.state(model)
420
- max_workers = min(64, len(weights_files))
421
- # NOTE(xiang): Disable multi-threading mode if running on multi-host.
422
- # Because multi-threading would cause different JAX processes to load
423
- # different weights at the same time.
424
- if os.environ.get("TPU_MULTIHOST_BACKEND", "").lower() == "ray":
425
- max_workers = 1
426
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
427
- futures = [
428
- executor.submit(
429
- _load_hf_weights_on_thread,
455
+ _load_and_shard_weight(
430
456
  vllm_config,
431
457
  params,
458
+ shardings,
432
459
  metadata_map,
433
460
  mesh,
434
- weights_file,
435
- filter_regex=filter_regex,
436
- keep_original_dtype_keys_regex=keep_original_dtype_keys_regex)
437
- for weights_file in weights_files
438
- ]
439
- for future in futures:
440
- future.result()
461
+ hf_key,
462
+ hf_weight_jax,
463
+ keep_original_dtype_keys_regex,
464
+ )
465
+ else:
466
+ # File-based path (multi-threaded)
467
+ if is_draft_model:
468
+ model_path = vllm_config.speculative_config.draft_model_config.model
469
+ else:
470
+ model_path = vllm_config.model_config.model
471
+ weights_files = get_model_weights_files(
472
+ model_path, vllm_config.load_config.download_dir)
473
+ max_workers = min(64, len(weights_files))
474
+ # NOTE(xiang): Disable multi-threading mode if running on multi-host.
475
+ # Because multi-threading would cause different JAX processes to load
476
+ # different weights at the same time.
477
+ if envs.TPU_MULTIHOST_BACKEND == "ray":
478
+ max_workers = 1
479
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
480
+ futures = [
481
+ executor.submit(
482
+ _load_hf_weights_on_thread,
483
+ vllm_config,
484
+ params,
485
+ metadata_map,
486
+ mesh,
487
+ weights_file,
488
+ filter_regex=filter_regex,
489
+ keep_original_dtype_keys_regex=
490
+ keep_original_dtype_keys_regex,
491
+ ) for weights_file in weights_files
492
+ ]
493
+ for future in futures:
494
+ future.result()
495
+
441
496
  check_all_loaded(params)
442
497
  nnx.update(model, params)
443
498
 
@@ -9,6 +9,7 @@ import jax
9
9
  import torch
10
10
  import torch.nn
11
11
  import torchax
12
+ import vllm.envs as vllm_envs
12
13
  from flax.typing import PRNGKey
13
14
  from jax.sharding import Mesh, NamedSharding, PartitionSpec
14
15
  from torchax.interop import jax_view, torch_view
@@ -118,9 +119,16 @@ class VllmModelWrapper:
118
119
  "torch._sync",
119
120
  return_value=None) if use_random_weights else nullcontext()
120
121
 
122
+ # By default load weights to the CPU device first. If we are running
123
+ # under Pathways, this would cause weights to be loaded on a CPU-only
124
+ # node, so we'll need to remove this context.
125
+ jax_context = jax.default_device(
126
+ jax.devices("cpu")
127
+ [0]) if not vllm_envs.VLLM_TPU_USING_PATHWAYS else nullcontext()
128
+
121
129
  # Load the vLLM model and wrap it into a new model whose forward
122
130
  # function can calculate the hidden_state and logits.
123
- with load_context:
131
+ with load_context, jax_context:
124
132
  vllm_model = vllm_get_model(vllm_config=vllm_config_for_load)
125
133
  lora_manager = None
126
134
  if vllm_config_for_load.lora_config is not None:
@@ -161,6 +169,7 @@ class VllmModelWrapper:
161
169
  input_ids: jax.Array,
162
170
  attn_metadata: AttentionMetadata,
163
171
  input_embeds: jax.Array,
172
+ input_positions: jax.Array,
164
173
  layer_name_to_kvcache_index: Sequence[Tuple[str, int]],
165
174
  lora_metadata,
166
175
  intermediate_tensors: JaxIntermediateTensors = None,
@@ -187,8 +196,8 @@ class VllmModelWrapper:
187
196
  torch_view(params_and_buffers),
188
197
  kwargs={
189
198
  "input_ids": torch_view(input_ids),
190
- "positions": torch_view(attn_metadata.input_positions),
191
- "intermediate_tensors": intermediate_tensors,
199
+ "positions": torch_view(input_positions),
200
+ "intermediate_tensors": None,
192
201
  "inputs_embeds": None,
193
202
  },
194
203
  tie_weights=False,
@@ -268,10 +277,9 @@ def replace_set_lora(model):
268
277
  index: int,
269
278
  lora_a: torch.Tensor,
270
279
  lora_b: torch.Tensor,
271
- embeddings_tensor: Optional[torch.Tensor],
272
280
  ):
273
281
  with torchax.default_env():
274
- self._original_set_lora(index, lora_a, lora_b, embeddings_tensor)
282
+ self._original_set_lora(index, lora_a, lora_b)
275
283
 
276
284
  def _tpu_reset_lora(self, index: int):
277
285
  with torchax.default_env():
@@ -1,9 +1,9 @@
1
1
  # SPDX-License-Identifier: Apache-2.0
2
2
 
3
- import os
4
3
  from typing import TYPE_CHECKING, Any, Optional, Tuple, Union, cast
5
4
 
6
5
  import jax.numpy as jnp
6
+ import torch
7
7
  import vllm.envs as vllm_envs
8
8
  from torchax.ops.mappings import j2t_dtype
9
9
  from tpu_info import device
@@ -83,6 +83,14 @@ class TpuPlatform(Platform):
83
83
  logger.warning(f"Error getting device name: {e}")
84
84
  return 'TPU'
85
85
 
86
+ @classmethod
87
+ def fp8_dtype(cls) -> torch.dtype:
88
+ if cls.get_device_name().lower() == "tpu v6e":
89
+ logger.info(
90
+ "Automatically using fp8_e5m2 for FP8 KV cache on TPU v6e.")
91
+ return torch.float8_e5m2
92
+ return torch.float8_e4m3fn
93
+
86
94
  @classmethod
87
95
  def get_device_total_memory(cls, device_id: int = 0) -> int:
88
96
  raise NotImplementedError
@@ -133,6 +141,7 @@ class TpuPlatform(Platform):
133
141
  # For v0, the default block size is 16.
134
142
  if cache_config and cache_config.block_size is None:
135
143
  cache_config.block_size = cast(BlockSize, 16)
144
+
136
145
  compilation_config = vllm_config.compilation_config
137
146
 
138
147
  # TPU only supports DYNAMO_TRACE_ONCE compilation level
@@ -183,7 +192,7 @@ class TpuPlatform(Platform):
183
192
  parallel_config.worker_cls = \
184
193
  "tpu_inference.worker.tpu_worker.TPUWorker"
185
194
 
186
- multihost_backend = os.environ.get("TPU_MULTIHOST_BACKEND", "").lower()
195
+ multihost_backend = envs.TPU_MULTIHOST_BACKEND
187
196
  if not multihost_backend: # Single host
188
197
  if parallel_config.pipeline_parallel_size == 1:
189
198
  logger.info("Force using UniProcExecutor for JAX on \
@@ -267,3 +276,7 @@ class TpuPlatform(Platform):
267
276
  Returns if the current platform needs to sync weight loader.
268
277
  """
269
278
  return True
279
+
280
+ @classmethod
281
+ def support_hybrid_kv_cache(cls) -> bool:
282
+ return True