torchzero 0.4.1__py3-none-any.whl → 0.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_identical.py +1 -1
- torchzero/__init__.py +3 -1
- torchzero/_minimize/__init__.py +0 -0
- torchzero/_minimize/methods.py +95 -0
- torchzero/_minimize/minimize.py +518 -0
- torchzero/core/__init__.py +5 -5
- torchzero/core/chain.py +2 -1
- torchzero/core/functional.py +2 -1
- torchzero/core/module.py +75 -4
- torchzero/core/transform.py +6 -5
- torchzero/linalg/eigh.py +116 -68
- torchzero/linalg/linear_operator.py +1 -0
- torchzero/linalg/orthogonalize.py +60 -5
- torchzero/linalg/sketch.py +39 -0
- torchzero/modules/__init__.py +1 -0
- torchzero/modules/adaptive/adagrad.py +2 -0
- torchzero/modules/adaptive/adam.py +5 -1
- torchzero/modules/adaptive/adan.py +3 -0
- torchzero/modules/adaptive/ggt.py +20 -18
- torchzero/modules/adaptive/lion.py +3 -1
- torchzero/modules/adaptive/mars.py +6 -5
- torchzero/modules/adaptive/msam.py +3 -0
- torchzero/modules/adaptive/rmsprop.py +2 -0
- torchzero/modules/adaptive/rprop.py +9 -7
- torchzero/modules/adaptive/shampoo.py +9 -1
- torchzero/modules/adaptive/soap.py +32 -29
- torchzero/modules/basis/__init__.py +2 -0
- torchzero/modules/basis/ggt_basis.py +199 -0
- torchzero/modules/basis/soap_basis.py +254 -0
- torchzero/modules/clipping/ema_clipping.py +32 -27
- torchzero/modules/clipping/growth_clipping.py +1 -0
- torchzero/modules/experimental/__init__.py +1 -6
- torchzero/modules/experimental/coordinate_momentum.py +2 -0
- torchzero/modules/experimental/cubic_adam.py +4 -0
- torchzero/modules/grad_approximation/__init__.py +3 -2
- torchzero/modules/least_squares/gn.py +6 -0
- torchzero/modules/misc/gradient_accumulation.py +1 -0
- torchzero/modules/misc/misc.py +6 -0
- torchzero/modules/momentum/averaging.py +6 -0
- torchzero/modules/momentum/momentum.py +13 -9
- torchzero/modules/ops/__init__.py +0 -1
- torchzero/modules/ops/accumulate.py +4 -0
- torchzero/modules/ops/higher_level.py +6 -1
- torchzero/modules/second_order/inm.py +4 -0
- torchzero/modules/second_order/newton.py +11 -3
- torchzero/modules/second_order/newton_cg.py +7 -3
- torchzero/modules/second_order/nystrom.py +14 -19
- torchzero/modules/second_order/rsn.py +37 -6
- torchzero/modules/trust_region/trust_region.py +2 -1
- torchzero/utils/benchmarks/logistic.py +33 -18
- torchzero/utils/optuna_tools.py +1 -1
- torchzero/utils/params.py +13 -1
- torchzero/utils/tensorlist.py +2 -2
- {torchzero-0.4.1.dist-info → torchzero-0.4.3.dist-info}/METADATA +1 -1
- {torchzero-0.4.1.dist-info → torchzero-0.4.3.dist-info}/RECORD +58 -55
- torchzero/modules/experimental/adanystrom.py +0 -258
- torchzero/modules/experimental/common_directions_whiten.py +0 -142
- torchzero/modules/experimental/eigen_sr1.py +0 -182
- torchzero/modules/experimental/eigengrad.py +0 -207
- /torchzero/modules/{experimental → grad_approximation}/spsa1.py +0 -0
- {torchzero-0.4.1.dist-info → torchzero-0.4.3.dist-info}/WHEEL +0 -0
- {torchzero-0.4.1.dist-info → torchzero-0.4.3.dist-info}/top_level.txt +0 -0
|
@@ -1,182 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
from ...core import Transform
|
|
4
|
-
from ...linalg.orthogonalize import orthogonalize, OrthogonalizeMethod
|
|
5
|
-
from ...linalg.eigh import eigh_plus_uuT, regularize_eigh
|
|
6
|
-
from ...utils import TensorList, unpack_states, vec_to_tensors_
|
|
7
|
-
from ..opt_utils import safe_clip
|
|
8
|
-
from .eigengrad import _eigengrad_update_state_, eigengrad_apply
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def sr1_u(L: torch.Tensor, Q: torch.Tensor, s:torch.Tensor, y: torch.Tensor, tol:float):
|
|
12
|
-
"""u from u u^T correction and its sign"""
|
|
13
|
-
r = y - torch.linalg.multi_dot([Q, L.diag_embed(), Q.T, s]) # pylint:disable=not-callable
|
|
14
|
-
rs = r.dot(s)
|
|
15
|
-
|
|
16
|
-
if rs.abs() < tol * torch.linalg.vector_norm(r) * torch.linalg.vector_norm(s): # pylint:disable=not-callable
|
|
17
|
-
return None, None
|
|
18
|
-
|
|
19
|
-
u = r / rs.abs().sqrt()
|
|
20
|
-
return u, torch.sign(rs)
|
|
21
|
-
|
|
22
|
-
class EigenSR1(Transform):
|
|
23
|
-
def __init__(
|
|
24
|
-
self,
|
|
25
|
-
rank: int = 100,
|
|
26
|
-
tol: float = 1e-32,
|
|
27
|
-
eig_tol: float | None = None,
|
|
28
|
-
damping: float = 0,
|
|
29
|
-
rdamping: float = 0,
|
|
30
|
-
abs: bool = False,
|
|
31
|
-
mm_tol: float = 1e-7,
|
|
32
|
-
mm_truncate: int | None = None,
|
|
33
|
-
mm_damping: float = 1e-4,
|
|
34
|
-
mm_rdamping: float = 0,
|
|
35
|
-
mm_abs: bool = True,
|
|
36
|
-
id_reg: float | None = None,
|
|
37
|
-
column_space_tol=1e-9,
|
|
38
|
-
beta: float = 0.95,
|
|
39
|
-
balance_tol: float = 10,
|
|
40
|
-
balance_strength: float = 1e-1,
|
|
41
|
-
|
|
42
|
-
eigenbasis_optimizer = None,
|
|
43
|
-
update_freq: int = 1,
|
|
44
|
-
init_steps: int = 10,
|
|
45
|
-
orthogonalize_interval: int | None = 1,
|
|
46
|
-
orthogonalize_method: OrthogonalizeMethod = 'qr',
|
|
47
|
-
|
|
48
|
-
hvp_method = "autograd",
|
|
49
|
-
h = 1e-3,
|
|
50
|
-
inner = None,
|
|
51
|
-
|
|
52
|
-
):
|
|
53
|
-
defaults = locals().copy()
|
|
54
|
-
for k in ["self", "inner"]:
|
|
55
|
-
del defaults[k]
|
|
56
|
-
|
|
57
|
-
super().__init__(defaults)
|
|
58
|
-
|
|
59
|
-
def update_states(self, objective, states, settings):
|
|
60
|
-
fs = settings[0]
|
|
61
|
-
step = self.increment_counter("step", 0)
|
|
62
|
-
|
|
63
|
-
if step % fs["update_freq"] == 0:
|
|
64
|
-
|
|
65
|
-
params = TensorList(objective.params)
|
|
66
|
-
|
|
67
|
-
# compute y as hessian-vector product with s (random vecs during init steps)
|
|
68
|
-
if ("p_prev" not in self.global_state) or (step < fs["init_steps"]):
|
|
69
|
-
s_list = params.sample_like('rademacher')
|
|
70
|
-
|
|
71
|
-
else:
|
|
72
|
-
p_prev = self.global_state["p_prev"]
|
|
73
|
-
s_list = params - p_prev
|
|
74
|
-
|
|
75
|
-
if s_list.dot(s_list) < torch.finfo(s_list[0].dtype).tiny * 2:
|
|
76
|
-
s_list = params.sample_like('rademacher')
|
|
77
|
-
|
|
78
|
-
self.global_state["p_prev"] = params
|
|
79
|
-
|
|
80
|
-
# compute y as hessian-vector product with s
|
|
81
|
-
Hz_list, _ = objective.hessian_vector_product(s_list, rgrad=None, at_x0=True, hvp_method=fs["hvp_method"], h=fs["h"])
|
|
82
|
-
|
|
83
|
-
s = torch.cat([t.ravel() for t in s_list])
|
|
84
|
-
y = torch.cat([t.ravel() for t in Hz_list])
|
|
85
|
-
|
|
86
|
-
# keep track of exponential moving average of hessian diagonal and balance eigenvalues
|
|
87
|
-
if (fs["balance_strength"] != 0) and (step > fs["init_steps"]) and ("L" in self.global_state):
|
|
88
|
-
|
|
89
|
-
D = s * y # hutchinson estimator
|
|
90
|
-
exp_avg = self.global_state.get("exp_avg", None)
|
|
91
|
-
|
|
92
|
-
if exp_avg is None:
|
|
93
|
-
exp_avg = self.global_state["exp_avg"] = D
|
|
94
|
-
|
|
95
|
-
else:
|
|
96
|
-
exp_avg.lerp_(D, weight=1-fs["beta"])
|
|
97
|
-
|
|
98
|
-
L = self.global_state["L"]
|
|
99
|
-
L_abs = L.abs()
|
|
100
|
-
tau = L_abs.amax() / exp_avg.abs().amax()
|
|
101
|
-
|
|
102
|
-
if tau > fs["balance_tol"]:
|
|
103
|
-
L_balanced = L_abs.pow((1 / tau) ** (1 / fs["balance_strength"])).copysign(L)
|
|
104
|
-
self.global_state["L"] = torch.where(L_abs > 1, L_balanced, L)
|
|
105
|
-
|
|
106
|
-
# initialize L and Q on 1st step
|
|
107
|
-
if "L" not in self.global_state:
|
|
108
|
-
|
|
109
|
-
L = torch.zeros(1, dtype=s.dtype, device=s.device) # rank, rank
|
|
110
|
-
Q = torch.zeros([s.numel(), 1], dtype=s.dtype, device=s.device) # ndim, rank
|
|
111
|
-
|
|
112
|
-
u, sign = sr1_u(L=L, Q=Q, s=s, y=y, tol=0)
|
|
113
|
-
assert u is not None and sign is not None
|
|
114
|
-
|
|
115
|
-
# for uu^T u is eigenvector and u^T u is eigenvalue
|
|
116
|
-
norm = torch.linalg.vector_norm(u).clip(min=torch.finfo(u.dtype).tiny * 2) # pylint:disable=not-callable
|
|
117
|
-
|
|
118
|
-
self.global_state["L"] = self.global_state["L_reg"] = (u.dot(u).unsqueeze(0) / norm) * sign # (rank,)
|
|
119
|
-
self.global_state["Q"] = self.global_state["Q_reg"] = u.unsqueeze(-1) / norm # (m, rank)
|
|
120
|
-
|
|
121
|
-
# update hessian
|
|
122
|
-
else:
|
|
123
|
-
try:
|
|
124
|
-
L = self.global_state["L"]
|
|
125
|
-
Q = self.global_state["Q"]
|
|
126
|
-
|
|
127
|
-
H_step = self.increment_counter("H_step", start=0)
|
|
128
|
-
if H_step % fs["orthogonalize_interval"] == 0:
|
|
129
|
-
Q = orthogonalize(Q, method=fs["orthogonalize_method"])
|
|
130
|
-
|
|
131
|
-
u, sign = sr1_u(L=L, Q=Q, s=s, y=y, tol=fs["tol"])
|
|
132
|
-
|
|
133
|
-
if (u is not None) and (sign is not None):
|
|
134
|
-
|
|
135
|
-
# compute new factors
|
|
136
|
-
L_new, Q_new = eigh_plus_uuT(L, Q, u, tol=fs["column_space_tol"], alpha=sign.item(), retry_float64=True)
|
|
137
|
-
|
|
138
|
-
# truncate/regularize new factors (those go into the accumulator)
|
|
139
|
-
L_new, Q_new = regularize_eigh(L=L_new, Q=Q_new, truncate=min(fs["rank"], s.numel()),
|
|
140
|
-
tol=fs["eig_tol"], damping=fs["damping"], rdamping=fs["rdamping"])
|
|
141
|
-
|
|
142
|
-
_eigengrad_update_state_(state=self.global_state, setting=fs, L_new=L_new, Q_new=Q_new)
|
|
143
|
-
|
|
144
|
-
except torch.linalg.LinAlgError:
|
|
145
|
-
pass
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
def apply_states(self, objective, states, settings):
|
|
150
|
-
fs = settings[0]
|
|
151
|
-
updates = objective.get_updates()
|
|
152
|
-
|
|
153
|
-
if "eigenbasis_state" not in self.global_state:
|
|
154
|
-
self.global_state["eigenbasis_state"] = {}
|
|
155
|
-
|
|
156
|
-
step = self.global_state["step"] # starts at 0
|
|
157
|
-
if step < fs["init_steps"]:
|
|
158
|
-
|
|
159
|
-
# skip update first init_steps to let hessian kick-start
|
|
160
|
-
objective.stop = True
|
|
161
|
-
objective.skip_update = True
|
|
162
|
-
return objective
|
|
163
|
-
|
|
164
|
-
if "L_reg" not in self.global_state:
|
|
165
|
-
TensorList(updates).clip_(-0.1, 0.1)
|
|
166
|
-
return objective
|
|
167
|
-
|
|
168
|
-
dir = eigengrad_apply(
|
|
169
|
-
tensor = torch.cat([t.ravel() for t in updates]),
|
|
170
|
-
L_reg = self.global_state["L_reg"],
|
|
171
|
-
Q_reg = self.global_state["Q_reg"],
|
|
172
|
-
beta = None,
|
|
173
|
-
step = None,
|
|
174
|
-
debias = False,
|
|
175
|
-
id_reg = fs["id_reg"],
|
|
176
|
-
eigenbasis_optimizer = fs["eigenbasis_optimizer"],
|
|
177
|
-
eigenbasis_state = self.global_state["eigenbasis_state"],
|
|
178
|
-
whiten_fn = lambda x: x
|
|
179
|
-
)
|
|
180
|
-
|
|
181
|
-
vec_to_tensors_(dir, updates)
|
|
182
|
-
return objective
|
|
@@ -1,207 +0,0 @@
|
|
|
1
|
-
# pylint: disable = non-ascii-name
|
|
2
|
-
from collections.abc import Mapping
|
|
3
|
-
|
|
4
|
-
import torch
|
|
5
|
-
|
|
6
|
-
from ...core import Chainable, TensorTransform
|
|
7
|
-
from ...linalg.eigh import eigh_plus_uuT, regularize_eigh
|
|
8
|
-
from ...linalg.orthogonalize import OrthogonalizeMethod, orthogonalize
|
|
9
|
-
from ...linalg.linear_operator import Eigendecomposition
|
|
10
|
-
from ..adaptive.lre_optimizers import LREOptimizerBase
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
def _eigengrad_update_state_(state:dict, setting: Mapping, L_new: torch.Tensor | None, Q_new:torch.Tensor | None):
|
|
14
|
-
"""stores L, Q, L_reg, Q_reg and reprojects eigenbasis opt (this is also used on other eigen based modules)"""
|
|
15
|
-
if (L_new is not None) and (Q_new is not None):
|
|
16
|
-
|
|
17
|
-
# re-orthogonalize
|
|
18
|
-
orthogonalize_interval = setting["orthogonalize_interval"]
|
|
19
|
-
if orthogonalize_interval is not None:
|
|
20
|
-
Q_step = state.get("Q_step", 0)
|
|
21
|
-
state["Q_step"] = Q_step + 1
|
|
22
|
-
if Q_step % orthogonalize_interval == 0:
|
|
23
|
-
Q_new = orthogonalize(Q_new, method=setting["orthogonalize_method"])
|
|
24
|
-
|
|
25
|
-
# take absolute value (for hessian)
|
|
26
|
-
if setting.get("abs", False):
|
|
27
|
-
L_new = L_new.abs()
|
|
28
|
-
|
|
29
|
-
# store
|
|
30
|
-
state["L"] = L_new
|
|
31
|
-
state["Q"] = Q_new
|
|
32
|
-
|
|
33
|
-
# absolute value for matmul
|
|
34
|
-
if setting.get("mm_abs", False):
|
|
35
|
-
L_new = L_new.abs()
|
|
36
|
-
|
|
37
|
-
# regularize for matmul
|
|
38
|
-
# this second round of regularization is only used for preconditioning
|
|
39
|
-
# and doesn't affect the accumulator
|
|
40
|
-
L_reg_new, Q_reg_new = regularize_eigh(L=L_new, Q=Q_new,
|
|
41
|
-
truncate=setting["mm_truncate"],
|
|
42
|
-
tol=setting["mm_tol"],
|
|
43
|
-
damping=setting["mm_damping"],
|
|
44
|
-
rdamping=setting["mm_rdamping"],
|
|
45
|
-
)
|
|
46
|
-
|
|
47
|
-
# print(f'{state["L_reg"] = }, {L_reg_new = }')
|
|
48
|
-
|
|
49
|
-
# reproject eigenbasis optimizer
|
|
50
|
-
if (L_reg_new is not None) and (Q_reg_new is not None):
|
|
51
|
-
eigenbasis_optimizer: LREOptimizerBase | None = setting["eigenbasis_optimizer"]
|
|
52
|
-
if eigenbasis_optimizer is not None:
|
|
53
|
-
eigenbasis_optimizer.reproject(L_old=state["L_reg"], Q_old=state["Q_reg"], L_new=L_reg_new,
|
|
54
|
-
Q_new=Q_reg_new, state=state["eigenbasis_state"])
|
|
55
|
-
|
|
56
|
-
state["L_reg"] = L_reg_new
|
|
57
|
-
state["Q_reg"] = Q_reg_new
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
def eigengrad_apply(
|
|
61
|
-
tensor: torch.Tensor,
|
|
62
|
-
L_reg: torch.Tensor,
|
|
63
|
-
Q_reg: torch.Tensor,
|
|
64
|
-
beta: float | None,
|
|
65
|
-
step: int | None,
|
|
66
|
-
debias: bool,
|
|
67
|
-
id_reg: float | None,
|
|
68
|
-
eigenbasis_optimizer: LREOptimizerBase | None,
|
|
69
|
-
eigenbasis_state: dict,
|
|
70
|
-
|
|
71
|
-
whiten_fn = torch.sqrt
|
|
72
|
-
):
|
|
73
|
-
# debias
|
|
74
|
-
if debias:
|
|
75
|
-
assert beta is not None and step is not None
|
|
76
|
-
L_reg = L_reg / (1 - beta **step)
|
|
77
|
-
|
|
78
|
-
# step with eigenbasis optimizer
|
|
79
|
-
if eigenbasis_optimizer is not None:
|
|
80
|
-
if (id_reg is not None) and (id_reg != 0):
|
|
81
|
-
raise RuntimeError("id_reg is not compatible with eigenbasis_optimizer")
|
|
82
|
-
|
|
83
|
-
update = eigenbasis_optimizer.step(tensor.ravel(), L=L_reg, Q=Q_reg, state=eigenbasis_state)
|
|
84
|
-
return update.view_as(tensor)
|
|
85
|
-
|
|
86
|
-
# or just whiten
|
|
87
|
-
# L_reg = L_reg.clip(min=torch.finfo(L_reg.dtype).tiny * 2)
|
|
88
|
-
|
|
89
|
-
if id_reg is None or id_reg == 0:
|
|
90
|
-
G = Eigendecomposition(whiten_fn(L_reg), Q_reg, use_nystrom=False)
|
|
91
|
-
dir = G.solve(tensor.ravel())
|
|
92
|
-
|
|
93
|
-
else:
|
|
94
|
-
G = Eigendecomposition(whiten_fn(L_reg), Q_reg, use_nystrom=True)
|
|
95
|
-
dir = G.solve_plus_diag(tensor.ravel(), diag=id_reg)
|
|
96
|
-
|
|
97
|
-
return dir.view_as(tensor)
|
|
98
|
-
|
|
99
|
-
class Eigengrad(TensorTransform):
|
|
100
|
-
"""we can easily compute rank 1 symmetric update to a low rank eigendecomposition.
|
|
101
|
-
So this stores covariance matrix as it.
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
Args:
|
|
105
|
-
rank (int): maximum allowed rank
|
|
106
|
-
beta (float, optional): beta for covariance matrix exponential moving average. Defaults to 0.95.
|
|
107
|
-
eig_tol (float, optional):
|
|
108
|
-
removes eigenvalues this much smaller than largest eigenvalue when updating the preconditioner. Defaults to 1e-7.
|
|
109
|
-
damping (float, optional):
|
|
110
|
-
added to eigenvalues when updating the preconditioner. Defaults to 1e-8.
|
|
111
|
-
rdamping (float, optional):
|
|
112
|
-
added to eigenvalues when updating the preconditioner, relative to largest eigenvalue. Defaults to 0.
|
|
113
|
-
mm_tol (float, optional):
|
|
114
|
-
removes eigenvalues this much smaller than largest eigenvalue when computing the update. Defaults to 1e-7.
|
|
115
|
-
mm_truncate (int | None, optional):
|
|
116
|
-
uses top k eigenvalues to compute the update. Defaults to None.
|
|
117
|
-
mm_damping (float, optional):
|
|
118
|
-
added to eigenvalues when computing the update. Defaults to 1e-4.
|
|
119
|
-
mm_rdamping (float, optional):
|
|
120
|
-
added to eigenvalues when computing the update, relative to largest eigenvalue. Defaults to 0.
|
|
121
|
-
id_reg (float, optional):
|
|
122
|
-
multiplier to identity matrix added to preconditioner before computing update
|
|
123
|
-
If this value is given, solution from Nyström sketch-and-solve will be used to compute the update.
|
|
124
|
-
This value can't be too small (i.e. less than 1e-5) or the solver will be very unstable. Defaults to None.
|
|
125
|
-
column_space_tol (float, optional):
|
|
126
|
-
tolerance for deciding if new eigenvector is within column space of the covariance matrix. Defaults to 1e-9.
|
|
127
|
-
concat_params (bool, optional):
|
|
128
|
-
whether to precondition all parameters at once if True, or each separately if False. Defaults to True.
|
|
129
|
-
update_freq (int, optional): update frequency. Defaults to 1.
|
|
130
|
-
inner (Chainable | None, optional): inner modules. Defaults to None.
|
|
131
|
-
|
|
132
|
-
"""
|
|
133
|
-
|
|
134
|
-
def __init__(
|
|
135
|
-
self,
|
|
136
|
-
rank: int = 100,
|
|
137
|
-
beta=0.95,
|
|
138
|
-
eig_tol: float | None = 1e-5,
|
|
139
|
-
damping: float = 0,
|
|
140
|
-
rdamping: float = 0,
|
|
141
|
-
mm_tol: float = 0,
|
|
142
|
-
mm_truncate: int | None = None,
|
|
143
|
-
mm_damping: float = 1e-4,
|
|
144
|
-
mm_rdamping: float = 0,
|
|
145
|
-
id_reg: float | None = None,
|
|
146
|
-
column_space_tol = 1e-9,
|
|
147
|
-
|
|
148
|
-
orthogonalize_interval: int | None = None,
|
|
149
|
-
orthogonalize_method: OrthogonalizeMethod = 'qr',
|
|
150
|
-
|
|
151
|
-
eigenbasis_optimizer: LREOptimizerBase | None = None,
|
|
152
|
-
concat_params: bool = True,
|
|
153
|
-
update_freq: int = 1,
|
|
154
|
-
inner: Chainable | None = None,
|
|
155
|
-
):
|
|
156
|
-
defaults = locals().copy()
|
|
157
|
-
for k in ["self", "concat_params", "inner", "update_freq"]:
|
|
158
|
-
del defaults[k]
|
|
159
|
-
|
|
160
|
-
super().__init__(defaults, concat_params=concat_params, inner=inner, update_freq=update_freq)
|
|
161
|
-
|
|
162
|
-
def single_tensor_update(self, tensor, param, grad, loss, state, setting):
|
|
163
|
-
state["step"] = state.get("step", 0) + 1
|
|
164
|
-
beta = setting["beta"]
|
|
165
|
-
|
|
166
|
-
if "L" not in state:
|
|
167
|
-
# for uu^T u is eigenvector and u^T u is eigenvalue
|
|
168
|
-
norm = torch.linalg.vector_norm(tensor).clip(min=torch.finfo(tensor.dtype).tiny * 2) # pylint:disable=not-callable
|
|
169
|
-
|
|
170
|
-
state["L"] = state["L_reg"] = (tensor.dot(tensor).unsqueeze(0) / norm) # (rank,)
|
|
171
|
-
state["Q"] = state["Q_reg"] = tensor.unsqueeze(-1) / norm # (m, rank)
|
|
172
|
-
|
|
173
|
-
else:
|
|
174
|
-
try:
|
|
175
|
-
L = state["L"]
|
|
176
|
-
Q = state["Q"]
|
|
177
|
-
|
|
178
|
-
# compute new factors
|
|
179
|
-
L_new, Q_new = eigh_plus_uuT(L*beta, Q, tensor, alpha=(1-beta), tol=setting["column_space_tol"], retry_float64=True)
|
|
180
|
-
|
|
181
|
-
# truncate/regularize new factors (those go into the accumulator)
|
|
182
|
-
L_new, Q_new = regularize_eigh(L=L_new, Q=Q_new, truncate=setting["rank"], tol=setting["eig_tol"],
|
|
183
|
-
damping=setting["damping"], rdamping=setting["rdamping"])
|
|
184
|
-
|
|
185
|
-
_eigengrad_update_state_(state=state, setting=setting, L_new=L_new, Q_new=Q_new)
|
|
186
|
-
|
|
187
|
-
except torch.linalg.LinAlgError:
|
|
188
|
-
pass
|
|
189
|
-
|
|
190
|
-
def single_tensor_apply(self, tensor, param, grad, loss, state, setting):
|
|
191
|
-
if "L_reg" not in state:
|
|
192
|
-
return tensor.clip(-0.1, 0.1)
|
|
193
|
-
|
|
194
|
-
if "eigenbasis_state" not in state:
|
|
195
|
-
state["eigenbasis_state"] = {}
|
|
196
|
-
|
|
197
|
-
return eigengrad_apply(
|
|
198
|
-
tensor = tensor,
|
|
199
|
-
L_reg = state["L_reg"],
|
|
200
|
-
Q_reg = state["Q_reg"],
|
|
201
|
-
beta = setting["beta"],
|
|
202
|
-
step = state["step"],
|
|
203
|
-
debias = True,
|
|
204
|
-
id_reg = setting["id_reg"],
|
|
205
|
-
eigenbasis_optimizer = setting["eigenbasis_optimizer"],
|
|
206
|
-
eigenbasis_state = state["eigenbasis_state"]
|
|
207
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|