torchzero 0.3.10__py3-none-any.whl → 0.3.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (140) hide show
  1. docs/source/conf.py +6 -4
  2. docs/source/docstring template.py +46 -0
  3. tests/test_identical.py +2 -3
  4. tests/test_opts.py +64 -50
  5. tests/test_vars.py +1 -0
  6. torchzero/core/module.py +138 -6
  7. torchzero/core/transform.py +158 -51
  8. torchzero/modules/__init__.py +3 -2
  9. torchzero/modules/clipping/clipping.py +114 -17
  10. torchzero/modules/clipping/ema_clipping.py +27 -13
  11. torchzero/modules/clipping/growth_clipping.py +8 -7
  12. torchzero/modules/experimental/__init__.py +22 -5
  13. torchzero/modules/experimental/absoap.py +5 -2
  14. torchzero/modules/experimental/adadam.py +8 -2
  15. torchzero/modules/experimental/adamY.py +8 -2
  16. torchzero/modules/experimental/adam_lambertw.py +149 -0
  17. torchzero/modules/{line_search/trust_region.py → experimental/adaptive_step_size.py} +21 -4
  18. torchzero/modules/experimental/adasoap.py +7 -2
  19. torchzero/modules/experimental/cosine.py +214 -0
  20. torchzero/modules/experimental/cubic_adam.py +97 -0
  21. torchzero/modules/{projections → experimental}/dct.py +11 -11
  22. torchzero/modules/experimental/eigendescent.py +4 -1
  23. torchzero/modules/experimental/etf.py +32 -9
  24. torchzero/modules/experimental/exp_adam.py +113 -0
  25. torchzero/modules/experimental/expanded_lbfgs.py +141 -0
  26. torchzero/modules/{projections → experimental}/fft.py +10 -10
  27. torchzero/modules/experimental/hnewton.py +85 -0
  28. torchzero/modules/{quasi_newton/experimental → experimental}/modular_lbfgs.py +27 -28
  29. torchzero/modules/experimental/newtonnewton.py +7 -3
  30. torchzero/modules/experimental/parabolic_search.py +220 -0
  31. torchzero/modules/experimental/reduce_outward_lr.py +4 -4
  32. torchzero/modules/{projections/structural.py → experimental/structural_projections.py} +12 -54
  33. torchzero/modules/experimental/subspace_preconditioners.py +11 -4
  34. torchzero/modules/experimental/{tada.py → tensor_adagrad.py} +10 -6
  35. torchzero/modules/functional.py +12 -2
  36. torchzero/modules/grad_approximation/fdm.py +30 -3
  37. torchzero/modules/grad_approximation/forward_gradient.py +13 -3
  38. torchzero/modules/grad_approximation/grad_approximator.py +51 -6
  39. torchzero/modules/grad_approximation/rfdm.py +285 -38
  40. torchzero/modules/higher_order/higher_order_newton.py +152 -89
  41. torchzero/modules/line_search/__init__.py +4 -4
  42. torchzero/modules/line_search/adaptive.py +99 -0
  43. torchzero/modules/line_search/backtracking.py +34 -9
  44. torchzero/modules/line_search/line_search.py +70 -12
  45. torchzero/modules/line_search/polynomial.py +233 -0
  46. torchzero/modules/line_search/scipy.py +2 -2
  47. torchzero/modules/line_search/strong_wolfe.py +34 -7
  48. torchzero/modules/misc/__init__.py +27 -0
  49. torchzero/modules/{ops → misc}/debug.py +24 -1
  50. torchzero/modules/misc/escape.py +60 -0
  51. torchzero/modules/misc/gradient_accumulation.py +70 -0
  52. torchzero/modules/misc/misc.py +316 -0
  53. torchzero/modules/misc/multistep.py +158 -0
  54. torchzero/modules/misc/regularization.py +171 -0
  55. torchzero/modules/{ops → misc}/split.py +29 -1
  56. torchzero/modules/{ops → misc}/switch.py +44 -3
  57. torchzero/modules/momentum/__init__.py +1 -1
  58. torchzero/modules/momentum/averaging.py +6 -6
  59. torchzero/modules/momentum/cautious.py +45 -8
  60. torchzero/modules/momentum/ema.py +7 -7
  61. torchzero/modules/momentum/experimental.py +2 -2
  62. torchzero/modules/momentum/matrix_momentum.py +90 -63
  63. torchzero/modules/momentum/momentum.py +2 -1
  64. torchzero/modules/ops/__init__.py +3 -31
  65. torchzero/modules/ops/accumulate.py +6 -10
  66. torchzero/modules/ops/binary.py +72 -26
  67. torchzero/modules/ops/multi.py +77 -16
  68. torchzero/modules/ops/reduce.py +15 -7
  69. torchzero/modules/ops/unary.py +29 -13
  70. torchzero/modules/ops/utility.py +20 -12
  71. torchzero/modules/optimizers/__init__.py +12 -3
  72. torchzero/modules/optimizers/adagrad.py +23 -13
  73. torchzero/modules/optimizers/adahessian.py +223 -0
  74. torchzero/modules/optimizers/adam.py +7 -6
  75. torchzero/modules/optimizers/adan.py +110 -0
  76. torchzero/modules/optimizers/adaptive_heavyball.py +57 -0
  77. torchzero/modules/optimizers/esgd.py +171 -0
  78. torchzero/modules/{experimental/spectral.py → optimizers/ladagrad.py} +91 -71
  79. torchzero/modules/optimizers/lion.py +1 -1
  80. torchzero/modules/optimizers/mars.py +91 -0
  81. torchzero/modules/optimizers/msam.py +186 -0
  82. torchzero/modules/optimizers/muon.py +30 -5
  83. torchzero/modules/optimizers/orthograd.py +1 -1
  84. torchzero/modules/optimizers/rmsprop.py +7 -4
  85. torchzero/modules/optimizers/rprop.py +42 -8
  86. torchzero/modules/optimizers/sam.py +163 -0
  87. torchzero/modules/optimizers/shampoo.py +39 -5
  88. torchzero/modules/optimizers/soap.py +29 -19
  89. torchzero/modules/optimizers/sophia_h.py +71 -14
  90. torchzero/modules/projections/__init__.py +2 -4
  91. torchzero/modules/projections/cast.py +51 -0
  92. torchzero/modules/projections/galore.py +3 -1
  93. torchzero/modules/projections/projection.py +188 -94
  94. torchzero/modules/quasi_newton/__init__.py +12 -2
  95. torchzero/modules/quasi_newton/cg.py +160 -59
  96. torchzero/modules/quasi_newton/diagonal_quasi_newton.py +163 -0
  97. torchzero/modules/quasi_newton/lbfgs.py +154 -97
  98. torchzero/modules/quasi_newton/lsr1.py +101 -57
  99. torchzero/modules/quasi_newton/quasi_newton.py +863 -215
  100. torchzero/modules/quasi_newton/trust_region.py +397 -0
  101. torchzero/modules/second_order/__init__.py +2 -2
  102. torchzero/modules/second_order/newton.py +220 -41
  103. torchzero/modules/second_order/newton_cg.py +300 -11
  104. torchzero/modules/second_order/nystrom.py +104 -1
  105. torchzero/modules/smoothing/gaussian.py +34 -0
  106. torchzero/modules/smoothing/laplacian.py +14 -4
  107. torchzero/modules/step_size/__init__.py +2 -0
  108. torchzero/modules/step_size/adaptive.py +122 -0
  109. torchzero/modules/step_size/lr.py +154 -0
  110. torchzero/modules/weight_decay/__init__.py +1 -1
  111. torchzero/modules/weight_decay/weight_decay.py +89 -7
  112. torchzero/modules/wrappers/optim_wrapper.py +29 -1
  113. torchzero/optim/wrappers/directsearch.py +39 -2
  114. torchzero/optim/wrappers/fcmaes.py +21 -13
  115. torchzero/optim/wrappers/mads.py +5 -6
  116. torchzero/optim/wrappers/nevergrad.py +16 -1
  117. torchzero/optim/wrappers/optuna.py +1 -1
  118. torchzero/optim/wrappers/scipy.py +5 -3
  119. torchzero/utils/__init__.py +2 -2
  120. torchzero/utils/derivatives.py +3 -3
  121. torchzero/utils/linalg/__init__.py +1 -1
  122. torchzero/utils/linalg/solve.py +251 -12
  123. torchzero/utils/numberlist.py +2 -0
  124. torchzero/utils/python_tools.py +10 -0
  125. torchzero/utils/tensorlist.py +40 -28
  126. {torchzero-0.3.10.dist-info → torchzero-0.3.11.dist-info}/METADATA +65 -40
  127. torchzero-0.3.11.dist-info/RECORD +159 -0
  128. torchzero/modules/experimental/diagonal_higher_order_newton.py +0 -225
  129. torchzero/modules/experimental/soapy.py +0 -163
  130. torchzero/modules/experimental/structured_newton.py +0 -111
  131. torchzero/modules/lr/__init__.py +0 -2
  132. torchzero/modules/lr/adaptive.py +0 -93
  133. torchzero/modules/lr/lr.py +0 -63
  134. torchzero/modules/ops/misc.py +0 -418
  135. torchzero/modules/quasi_newton/experimental/__init__.py +0 -1
  136. torchzero/modules/quasi_newton/olbfgs.py +0 -196
  137. torchzero-0.3.10.dist-info/RECORD +0 -139
  138. {torchzero-0.3.10.dist-info → torchzero-0.3.11.dist-info}/WHEEL +0 -0
  139. {torchzero-0.3.10.dist-info → torchzero-0.3.11.dist-info}/licenses/LICENSE +0 -0
  140. {torchzero-0.3.10.dist-info → torchzero-0.3.11.dist-info}/top_level.txt +0 -0
@@ -3,94 +3,160 @@ from typing import Any
3
3
  from functools import partial
4
4
  import torch
5
5
 
6
- from ...utils import TensorList, Distributions, NumberList, generic_eq
6
+ from ...utils import TensorList, Distributions, NumberList
7
7
  from .grad_approximator import GradApproximator, GradTarget, _FD_Formula
8
8
 
9
-
10
- def _rforward2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: float | None):
9
+ def _rforward2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
11
10
  """p_fn is a function that returns the perturbation.
12
11
  It may return pre-generated one or generate one deterministically from a seed as in MeZO.
13
12
  Returned perturbation must be multiplied by `h`."""
14
- if v_0 is None: v_0 = closure(False)
13
+ if f_0 is None: f_0 = closure(False)
15
14
  params += p_fn()
16
- v_plus = closure(False)
15
+ f_1 = closure(False)
17
16
  params -= p_fn()
18
17
  h = h**2 # because perturbation already multiplied by h
19
- return v_0, v_0, (v_plus - v_0) / h # (loss, loss_approx, grad)
18
+ return f_0, f_0, (f_1 - f_0) / h # (loss, loss_approx, grad)
20
19
 
21
- def _rbackward2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: float | None):
22
- if v_0 is None: v_0 = closure(False)
20
+ def _rbackward2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
21
+ if f_0 is None: f_0 = closure(False)
23
22
  params -= p_fn()
24
- v_minus = closure(False)
23
+ f_m1 = closure(False)
25
24
  params += p_fn()
26
25
  h = h**2 # because perturbation already multiplied by h
27
- return v_0, v_0, (v_0 - v_minus) / h
26
+ return f_0, f_0, (f_0 - f_m1) / h
28
27
 
29
- def _rcentral2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: Any):
28
+ def _rcentral2(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: Any):
30
29
  params += p_fn()
31
- v_plus = closure(False)
30
+ f_1 = closure(False)
32
31
 
33
32
  params -= p_fn() * 2
34
- v_minus = closure(False)
33
+ f_m1 = closure(False)
35
34
 
36
35
  params += p_fn()
37
36
  h = h**2 # because perturbation already multiplied by h
38
- return v_0, v_plus, (v_plus - v_minus) / (2 * h)
37
+ return f_0, f_1, (f_1 - f_m1) / (2 * h)
39
38
 
40
- def _rforward3(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: float | None):
41
- if v_0 is None: v_0 = closure(False)
39
+ def _rforward3(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
40
+ if f_0 is None: f_0 = closure(False)
42
41
  params += p_fn()
43
- v_plus1 = closure(False)
42
+ f_1 = closure(False)
44
43
 
45
44
  params += p_fn()
46
- v_plus2 = closure(False)
45
+ f_2 = closure(False)
47
46
 
48
47
  params -= p_fn() * 2
49
48
  h = h**2 # because perturbation already multiplied by h
50
- return v_0, v_0, (-3*v_0 + 4*v_plus1 - v_plus2) / (2 * h)
49
+ return f_0, f_0, (-3*f_0 + 4*f_1 - f_2) / (2 * h)
51
50
 
52
- def _rbackward3(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: float | None):
53
- if v_0 is None: v_0 = closure(False)
51
+ def _rbackward3(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
52
+ if f_0 is None: f_0 = closure(False)
54
53
 
55
54
  params -= p_fn()
56
- v_minus1 = closure(False)
55
+ f_m1 = closure(False)
57
56
 
58
57
  params -= p_fn()
59
- v_minus2 = closure(False)
58
+ f_m2 = closure(False)
60
59
 
61
60
  params += p_fn() * 2
62
61
  h = h**2 # because perturbation already multiplied by h
63
- return v_0, v_0, (v_minus2 - 4*v_minus1 + 3*v_0) / (2 * h)
62
+ return f_0, f_0, (f_m2 - 4*f_m1 + 3*f_0) / (2 * h)
64
63
 
65
- def _rcentral4(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, v_0: float | None):
64
+ def _rcentral4(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
66
65
  params += p_fn()
67
- v_plus1 = closure(False)
66
+ f_1 = closure(False)
68
67
 
69
68
  params += p_fn()
70
- v_plus2 = closure(False)
69
+ f_2 = closure(False)
71
70
 
72
71
  params -= p_fn() * 3
73
- v_minus1 = closure(False)
72
+ f_m1 = closure(False)
74
73
 
75
74
  params -= p_fn()
76
- v_minus2 = closure(False)
75
+ f_m2 = closure(False)
77
76
 
78
77
  params += p_fn() * 2
79
78
  h = h**2 # because perturbation already multiplied by h
80
- return v_0, v_plus1, (v_minus2 - 8*v_minus1 + 8*v_plus1 - v_plus2) / (12 * h)
79
+ return f_0, f_1, (f_m2 - 8*f_m1 + 8*f_1 - f_2) / (12 * h)
80
+
81
+ # some good ones
82
+ # Pachalyl S. et al. Generalized simultaneous perturbation-based gradient search with reduced estimator bias //IEEE Transactions on Automatic Control. – 2025.
83
+ # Three measurements GSPSA is _rforward3
84
+ # Four measurements GSPSA
85
+ def _rforward4(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
86
+ if f_0 is None: f_0 = closure(False)
87
+ params += p_fn()
88
+ f_1 = closure(False)
89
+
90
+ params += p_fn()
91
+ f_2 = closure(False)
92
+
93
+ params += p_fn()
94
+ f_3 = closure(False)
95
+
96
+ params -= p_fn() * 3
97
+ h = h**2 # because perturbation already multiplied by h
98
+ return f_0, f_0, (2*f_3 - 9*f_2 + 18*f_1 - 11*f_0) / (6 * h)
99
+
100
+ def _rforward5(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
101
+ if f_0 is None: f_0 = closure(False)
102
+ params += p_fn()
103
+ f_1 = closure(False)
104
+
105
+ params += p_fn()
106
+ f_2 = closure(False)
107
+
108
+ params += p_fn()
109
+ f_3 = closure(False)
110
+
111
+ params += p_fn()
112
+ f_4 = closure(False)
113
+
114
+ params -= p_fn() * 4
115
+ h = h**2 # because perturbation already multiplied by h
116
+ return f_0, f_0, (-3*f_4 + 16*f_3 - 36*f_2 + 48*f_1 - 25*f_0) / (12 * h)
117
+
118
+ # another central4
119
+ def _bgspsa4(closure: Callable[..., float], params:TensorList, p_fn:Callable[[], TensorList], h, f_0: float | None):
120
+ params += p_fn()
121
+ f_1 = closure(False)
122
+
123
+ params += p_fn() * 2
124
+ f_3 = closure(False)
125
+
126
+ params -= p_fn() * 4
127
+ f_m1 = closure(False)
128
+
129
+ params -= p_fn() * 2
130
+ f_m3 = closure(False)
131
+
132
+ params += p_fn() * 3
133
+ h = h**2 # because perturbation already multiplied by h
134
+ return f_0, f_1, (27*f_1 - f_m1 - f_3 + f_m3) / (48 * h)
135
+
81
136
 
82
137
  _RFD_FUNCS = {
138
+ "forward": _rforward2,
83
139
  "forward2": _rforward2,
140
+ "backward": _rbackward2,
84
141
  "backward2": _rbackward2,
142
+ "central": _rcentral2,
85
143
  "central2": _rcentral2,
144
+ "central3": _rcentral2,
86
145
  "forward3": _rforward3,
87
146
  "backward3": _rbackward3,
88
147
  "central4": _rcentral4,
148
+ "forward4": _rforward4,
149
+ "forward5": _rforward5,
150
+ "bspsa4": _bgspsa4,
89
151
  }
90
152
 
91
153
 
92
154
  class RandomizedFDM(GradApproximator):
93
- """_summary_
155
+ """Gradient approximation via a randomized finite-difference method.
156
+
157
+ .. note::
158
+ This module is a gradient approximator. It modifies the closure to evaluate the estimated gradients,
159
+ and further closure-based modules will use the modified closure. All modules after this will use estimated gradients.
94
160
 
95
161
  Args:
96
162
  h (float, optional): finite difference step size of jvp_method is set to `forward` or `central`. Defaults to 1e-3.
@@ -98,17 +164,108 @@ class RandomizedFDM(GradApproximator):
98
164
  formula (_FD_Formula, optional): finite difference formula. Defaults to 'central2'.
99
165
  distribution (Distributions, optional): distribution. Defaults to "rademacher".
100
166
  If this is set to a value higher than zero, instead of using directional derivatives in a new random direction on each step, the direction changes gradually with momentum based on this value. This may make it possible to use methods with memory. Defaults to 0.
167
+ beta (float, optional): optinal momentum for generated perturbations. Defaults to 1e-3.
101
168
  pre_generate (bool, optional):
102
169
  whether to pre-generate gradient samples before each step. If samples are not pre-generated, whenever a method performs multiple closure evaluations, the gradient will be evaluated in different directions each time. Defaults to True.
103
170
  seed (int | None | torch.Generator, optional): Seed for random generator. Defaults to None.
104
171
  target (GradTarget, optional): what to set on var. Defaults to "closure".
172
+
173
+ Examples:
174
+ #### Simultaneous perturbation stochastic approximation (SPSA) method
175
+
176
+ SPSA is randomized finite differnce with rademacher distribution and central formula.
177
+
178
+ .. code-block:: python
179
+
180
+ spsa = tz.Modular(
181
+ model.parameters(),
182
+ tz.m.RandomizedFDM(formula="central", distribution="rademacher"),
183
+ tz.m.LR(1e-2)
184
+ )
185
+
186
+ #### Random-direction stochastic approximation (RDSA) method
187
+
188
+ RDSA is randomized finite differnce with usually gaussian distribution and central formula.
189
+
190
+ .. code-block:: python
191
+
192
+ rdsa = tz.Modular(
193
+ model.parameters(),
194
+ tz.m.RandomizedFDM(formula="central", distribution="gaussian"),
195
+ tz.m.LR(1e-2)
196
+ )
197
+
198
+ #### RandomizedFDM with momentum
199
+
200
+ Momentum might help by reducing the variance of the estimated gradients.
201
+
202
+ .. code-block:: python
203
+
204
+ momentum_spsa = tz.Modular(
205
+ model.parameters(),
206
+ tz.m.RandomizedFDM(),
207
+ tz.m.HeavyBall(0.9),
208
+ tz.m.LR(1e-3)
209
+ )
210
+
211
+ #### Gaussian smoothing method
212
+
213
+ GS uses many gaussian samples with possibly a larger finite difference step size.
214
+
215
+ .. code-block:: python
216
+
217
+ gs = tz.Modular(
218
+ model.parameters(),
219
+ tz.m.RandomizedFDM(n_samples=100, distribution="gaussian", formula="forward2", h=1e-1),
220
+ tz.m.NewtonCG(hvp_method="forward"),
221
+ tz.m.Backtracking()
222
+ )
223
+
224
+ #### SPSA-NewtonCG
225
+
226
+ NewtonCG with hessian-vector product estimated via gradient difference
227
+ calls closure multiple times per step. If each closure call estimates gradients
228
+ with different perturbations, NewtonCG is unable to produce useful directions.
229
+
230
+ By setting pre_generate to True, perturbations are generated once before each step,
231
+ and each closure call estimates gradients using the same pre-generated perturbations.
232
+ This way closure-based algorithms are able to use gradients estimated in a consistent way.
233
+
234
+ .. code-block:: python
235
+
236
+ opt = tz.Modular(
237
+ model.parameters(),
238
+ tz.m.RandomizedFDM(n_samples=10),
239
+ tz.m.NewtonCG(hvp_method="forward", pre_generate=True),
240
+ tz.m.Backtracking()
241
+ )
242
+
243
+ #### SPSA-BFGS
244
+
245
+ L-BFGS uses a memory of past parameter and gradient differences. If past gradients
246
+ were estimated with different perturbations, L-BFGS directions will be useless.
247
+
248
+ To alleviate this momentum can be added to random perturbations to make sure they only
249
+ change by a little bit, and the history stays relevant. The momentum is determined by the :code:`beta` parameter.
250
+ The disadvantage is that the subspace the algorithm is able to explore changes slowly.
251
+
252
+ Additionally we will reset BFGS memory every 100 steps to remove influence from old gradient estimates.
253
+
254
+ .. code-block:: python
255
+
256
+ opt = tz.Modular(
257
+ model.parameters(),
258
+ tz.m.RandomizedFDM(n_samples=10, pre_generate=True, beta=0.99),
259
+ tz.m.BFGS(reset_interval=100),
260
+ tz.m.Backtracking()
261
+ )
105
262
  """
106
263
  PRE_MULTIPLY_BY_H = True
107
264
  def __init__(
108
265
  self,
109
266
  h: float = 1e-3,
110
267
  n_samples: int = 1,
111
- formula: _FD_Formula = "central2",
268
+ formula: _FD_Formula = "central",
112
269
  distribution: Distributions = "rademacher",
113
270
  beta: float = 0,
114
271
  pre_generate = True,
@@ -165,8 +322,9 @@ class RandomizedFDM(GradApproximator):
165
322
  torch._foreach_lerp_(cur_flat, new_flat, betas)
166
323
 
167
324
  @torch.no_grad
168
- def approximate(self, closure, params, loss, var):
325
+ def approximate(self, closure, params, loss):
169
326
  params = TensorList(params)
327
+ orig_params = params.clone() # store to avoid small changes due to float imprecision
170
328
  loss_approx = None
171
329
 
172
330
  h = NumberList(self.settings[p]['h'] for p in params)
@@ -184,17 +342,64 @@ class RandomizedFDM(GradApproximator):
184
342
  if prt[0] is None: prt = params.sample_like(distribution=distribution, generator=generator).mul_(h)
185
343
  else: prt = TensorList(prt)
186
344
 
187
- loss, loss_approx, d = fd_fn(closure=closure, params=params, p_fn=lambda: prt, h=h, v_0=loss)
345
+ loss, loss_approx, d = fd_fn(closure=closure, params=params, p_fn=lambda: prt, h=h, f_0=loss)
188
346
  if grad is None: grad = prt * d
189
347
  else: grad += prt * d
190
348
 
349
+ params.set_(orig_params)
191
350
  assert grad is not None
192
351
  if n_samples > 1: grad.div_(n_samples)
193
352
  return grad, loss, loss_approx
194
353
 
195
- SPSA = RandomizedFDM
354
+ class SPSA(RandomizedFDM):
355
+ """
356
+ Gradient approximation via Simultaneous perturbation stochastic approximation (SPSA) method.
357
+
358
+ .. note::
359
+ This module is a gradient approximator. It modifies the closure to evaluate the estimated gradients,
360
+ and further closure-based modules will use the modified closure. All modules after this will use estimated gradients.
361
+
362
+
363
+ Args:
364
+ h (float, optional): finite difference step size of jvp_method is set to `forward` or `central`. Defaults to 1e-3.
365
+ n_samples (int, optional): number of random gradient samples. Defaults to 1.
366
+ formula (_FD_Formula, optional): finite difference formula. Defaults to 'central2'.
367
+ distribution (Distributions, optional): distribution. Defaults to "rademacher".
368
+ beta (float, optional):
369
+ If this is set to a value higher than zero, instead of using directional derivatives in a new random direction on each step, the direction changes gradually with momentum based on this value. This may make it possible to use methods with memory. Defaults to 0.
370
+ pre_generate (bool, optional):
371
+ whether to pre-generate gradient samples before each step. If samples are not pre-generated, whenever a method performs multiple closure evaluations, the gradient will be evaluated in different directions each time. Defaults to True.
372
+ seed (int | None | torch.Generator, optional): Seed for random generator. Defaults to None.
373
+ target (GradTarget, optional): what to set on var. Defaults to "closure".
374
+
375
+ References:
376
+ Chen, Y. (2021). Theoretical study and comparison of SPSA and RDSA algorithms. arXiv preprint arXiv:2107.12771. https://arxiv.org/abs/2107.12771
377
+ """
196
378
 
197
379
  class RDSA(RandomizedFDM):
380
+ """
381
+ Gradient approximation via Random-direction stochastic approximation (RDSA) method.
382
+
383
+ .. note::
384
+ This module is a gradient approximator. It modifies the closure to evaluate the estimated gradients,
385
+ and further closure-based modules will use the modified closure. All modules after this will use estimated gradients.
386
+
387
+ Args:
388
+ h (float, optional): finite difference step size of jvp_method is set to `forward` or `central`. Defaults to 1e-3.
389
+ n_samples (int, optional): number of random gradient samples. Defaults to 1.
390
+ formula (_FD_Formula, optional): finite difference formula. Defaults to 'central2'.
391
+ distribution (Distributions, optional): distribution. Defaults to "gaussian".
392
+ beta (float, optional):
393
+ If this is set to a value higher than zero, instead of using directional derivatives in a new random direction on each step, the direction changes gradually with momentum based on this value. This may make it possible to use methods with memory. Defaults to 0.
394
+ pre_generate (bool, optional):
395
+ whether to pre-generate gradient samples before each step. If samples are not pre-generated, whenever a method performs multiple closure evaluations, the gradient will be evaluated in different directions each time. Defaults to True.
396
+ seed (int | None | torch.Generator, optional): Seed for random generator. Defaults to None.
397
+ target (GradTarget, optional): what to set on var. Defaults to "closure".
398
+
399
+ References:
400
+ Chen, Y. (2021). Theoretical study and comparison of SPSA and RDSA algorithms. arXiv preprint arXiv:2107.12771. https://arxiv.org/abs/2107.12771
401
+
402
+ """
198
403
  def __init__(
199
404
  self,
200
405
  h: float = 1e-3,
@@ -209,11 +414,34 @@ class RDSA(RandomizedFDM):
209
414
  super().__init__(h=h, n_samples=n_samples,formula=formula,distribution=distribution,beta=beta,pre_generate=pre_generate,target=target,seed=seed)
210
415
 
211
416
  class GaussianSmoothing(RandomizedFDM):
417
+ """
418
+ Gradient approximation via Gaussian smoothing method.
419
+
420
+ .. note::
421
+ This module is a gradient approximator. It modifies the closure to evaluate the estimated gradients,
422
+ and further closure-based modules will use the modified closure. All modules after this will use estimated gradients.
423
+
424
+ Args:
425
+ h (float, optional): finite difference step size of jvp_method is set to `forward` or `central`. Defaults to 1e-2.
426
+ n_samples (int, optional): number of random gradient samples. Defaults to 100.
427
+ formula (_FD_Formula, optional): finite difference formula. Defaults to 'forward2'.
428
+ distribution (Distributions, optional): distribution. Defaults to "gaussian".
429
+ beta (float, optional):
430
+ If this is set to a value higher than zero, instead of using directional derivatives in a new random direction on each step, the direction changes gradually with momentum based on this value. This may make it possible to use methods with memory. Defaults to 0.
431
+ pre_generate (bool, optional):
432
+ whether to pre-generate gradient samples before each step. If samples are not pre-generated, whenever a method performs multiple closure evaluations, the gradient will be evaluated in different directions each time. Defaults to True.
433
+ seed (int | None | torch.Generator, optional): Seed for random generator. Defaults to None.
434
+ target (GradTarget, optional): what to set on var. Defaults to "closure".
435
+
436
+
437
+ References:
438
+ Yurii Nesterov, Vladimir Spokoiny. (2015). Random Gradient-Free Minimization of Convex Functions. https://gwern.net/doc/math/2015-nesterov.pdf
439
+ """
212
440
  def __init__(
213
441
  self,
214
442
  h: float = 1e-2,
215
443
  n_samples: int = 100,
216
- formula: _FD_Formula = "central2",
444
+ formula: _FD_Formula = "forward2",
217
445
  distribution: Distributions = "gaussian",
218
446
  beta: float = 0,
219
447
  pre_generate = True,
@@ -223,8 +451,27 @@ class GaussianSmoothing(RandomizedFDM):
223
451
  super().__init__(h=h, n_samples=n_samples,formula=formula,distribution=distribution,beta=beta,pre_generate=pre_generate,target=target,seed=seed)
224
452
 
225
453
  class MeZO(GradApproximator):
454
+ """Gradient approximation via memory-efficient zeroth order optimizer (MeZO) - https://arxiv.org/abs/2305.17333.
455
+
456
+ .. note::
457
+ This module is a gradient approximator. It modifies the closure to evaluate the estimated gradients,
458
+ and further closure-based modules will use the modified closure. All modules after this will use estimated gradients.
459
+
460
+ Args:
461
+ h (float, optional): finite difference step size of jvp_method is set to `forward` or `central`. Defaults to 1e-3.
462
+ n_samples (int, optional): number of random gradient samples. Defaults to 1.
463
+ formula (_FD_Formula, optional): finite difference formula. Defaults to 'central2'.
464
+ distribution (Distributions, optional): distribution. Defaults to "rademacher".
465
+ If this is set to a value higher than zero, instead of using directional derivatives in a new random direction on each step, the direction changes gradually with momentum based on this value. This may make it possible to use methods with memory. Defaults to 0.
466
+ target (GradTarget, optional): what to set on var. Defaults to "closure".
467
+
468
+ References:
469
+ Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D., Chen, D., & Arora, S. (2023). Fine-tuning language models with just forward passes. Advances in Neural Information Processing Systems, 36, 53038-53075. https://arxiv.org/abs/2305.17333
470
+ """
471
+
226
472
  def __init__(self, h: float=1e-3, n_samples: int = 1, formula: _FD_Formula = 'central2',
227
473
  distribution: Distributions = 'rademacher', target: GradTarget = 'closure'):
474
+
228
475
  defaults = dict(h=h, formula=formula, n_samples=n_samples, distribution=distribution)
229
476
  super().__init__(defaults, target=target)
230
477
 
@@ -251,7 +498,7 @@ class MeZO(GradApproximator):
251
498
  self.global_state['prt_fns'] = prt_fns
252
499
 
253
500
  @torch.no_grad
254
- def approximate(self, closure, params, loss, var):
501
+ def approximate(self, closure, params, loss):
255
502
  params = TensorList(params)
256
503
  loss_approx = None
257
504
 
@@ -263,7 +510,7 @@ class MeZO(GradApproximator):
263
510
 
264
511
  grad = None
265
512
  for i in range(n_samples):
266
- loss, loss_approx, d = fd_fn(closure=closure, params=params, p_fn=prt_fns[i], h=h, v_0=loss)
513
+ loss, loss_approx, d = fd_fn(closure=closure, params=params, p_fn=prt_fns[i], h=h, f_0=loss)
267
514
  if grad is None: grad = prt_fns[i]().mul_(d)
268
515
  else: grad += prt_fns[i]().mul_(d)
269
516