torchzero 0.1.8__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/source/conf.py +57 -0
- tests/test_identical.py +230 -0
- tests/test_module.py +50 -0
- tests/test_opts.py +884 -0
- tests/test_tensorlist.py +1787 -0
- tests/test_utils_optimizer.py +170 -0
- tests/test_vars.py +184 -0
- torchzero/__init__.py +4 -4
- torchzero/core/__init__.py +3 -13
- torchzero/core/module.py +629 -510
- torchzero/core/preconditioner.py +137 -0
- torchzero/core/transform.py +252 -0
- torchzero/modules/__init__.py +13 -21
- torchzero/modules/clipping/__init__.py +3 -0
- torchzero/modules/clipping/clipping.py +320 -0
- torchzero/modules/clipping/ema_clipping.py +135 -0
- torchzero/modules/clipping/growth_clipping.py +187 -0
- torchzero/modules/experimental/__init__.py +13 -18
- torchzero/modules/experimental/absoap.py +350 -0
- torchzero/modules/experimental/adadam.py +111 -0
- torchzero/modules/experimental/adamY.py +135 -0
- torchzero/modules/experimental/adasoap.py +282 -0
- torchzero/modules/experimental/algebraic_newton.py +145 -0
- torchzero/modules/experimental/curveball.py +89 -0
- torchzero/modules/experimental/dsoap.py +290 -0
- torchzero/modules/experimental/gradmin.py +85 -0
- torchzero/modules/experimental/reduce_outward_lr.py +35 -0
- torchzero/modules/experimental/spectral.py +286 -0
- torchzero/modules/experimental/subspace_preconditioners.py +128 -0
- torchzero/modules/experimental/tropical_newton.py +136 -0
- torchzero/modules/functional.py +209 -0
- torchzero/modules/grad_approximation/__init__.py +4 -0
- torchzero/modules/grad_approximation/fdm.py +120 -0
- torchzero/modules/grad_approximation/forward_gradient.py +81 -0
- torchzero/modules/grad_approximation/grad_approximator.py +66 -0
- torchzero/modules/grad_approximation/rfdm.py +259 -0
- torchzero/modules/line_search/__init__.py +5 -30
- torchzero/modules/line_search/backtracking.py +186 -0
- torchzero/modules/line_search/line_search.py +181 -0
- torchzero/modules/line_search/scipy.py +37 -0
- torchzero/modules/line_search/strong_wolfe.py +260 -0
- torchzero/modules/line_search/trust_region.py +61 -0
- torchzero/modules/lr/__init__.py +2 -0
- torchzero/modules/lr/lr.py +59 -0
- torchzero/modules/lr/step_size.py +97 -0
- torchzero/modules/momentum/__init__.py +14 -4
- torchzero/modules/momentum/averaging.py +78 -0
- torchzero/modules/momentum/cautious.py +181 -0
- torchzero/modules/momentum/ema.py +173 -0
- torchzero/modules/momentum/experimental.py +189 -0
- torchzero/modules/momentum/matrix_momentum.py +124 -0
- torchzero/modules/momentum/momentum.py +43 -106
- torchzero/modules/ops/__init__.py +103 -0
- torchzero/modules/ops/accumulate.py +65 -0
- torchzero/modules/ops/binary.py +240 -0
- torchzero/modules/ops/debug.py +25 -0
- torchzero/modules/ops/misc.py +419 -0
- torchzero/modules/ops/multi.py +137 -0
- torchzero/modules/ops/reduce.py +149 -0
- torchzero/modules/ops/split.py +75 -0
- torchzero/modules/ops/switch.py +68 -0
- torchzero/modules/ops/unary.py +115 -0
- torchzero/modules/ops/utility.py +112 -0
- torchzero/modules/optimizers/__init__.py +18 -10
- torchzero/modules/optimizers/adagrad.py +146 -49
- torchzero/modules/optimizers/adam.py +112 -118
- torchzero/modules/optimizers/lion.py +18 -11
- torchzero/modules/optimizers/muon.py +222 -0
- torchzero/modules/optimizers/orthograd.py +55 -0
- torchzero/modules/optimizers/rmsprop.py +103 -51
- torchzero/modules/optimizers/rprop.py +342 -99
- torchzero/modules/optimizers/shampoo.py +197 -0
- torchzero/modules/optimizers/soap.py +286 -0
- torchzero/modules/optimizers/sophia_h.py +129 -0
- torchzero/modules/projections/__init__.py +5 -0
- torchzero/modules/projections/dct.py +73 -0
- torchzero/modules/projections/fft.py +73 -0
- torchzero/modules/projections/galore.py +10 -0
- torchzero/modules/projections/projection.py +218 -0
- torchzero/modules/projections/structural.py +151 -0
- torchzero/modules/quasi_newton/__init__.py +7 -4
- torchzero/modules/quasi_newton/cg.py +218 -0
- torchzero/modules/quasi_newton/experimental/__init__.py +1 -0
- torchzero/modules/quasi_newton/experimental/modular_lbfgs.py +265 -0
- torchzero/modules/quasi_newton/lbfgs.py +228 -0
- torchzero/modules/quasi_newton/lsr1.py +170 -0
- torchzero/modules/quasi_newton/olbfgs.py +196 -0
- torchzero/modules/quasi_newton/quasi_newton.py +475 -0
- torchzero/modules/second_order/__init__.py +3 -4
- torchzero/modules/second_order/newton.py +142 -165
- torchzero/modules/second_order/newton_cg.py +84 -0
- torchzero/modules/second_order/nystrom.py +168 -0
- torchzero/modules/smoothing/__init__.py +2 -5
- torchzero/modules/smoothing/gaussian.py +164 -0
- torchzero/modules/smoothing/{laplacian_smoothing.py → laplacian.py} +115 -128
- torchzero/modules/weight_decay/__init__.py +1 -0
- torchzero/modules/weight_decay/weight_decay.py +52 -0
- torchzero/modules/wrappers/__init__.py +1 -0
- torchzero/modules/wrappers/optim_wrapper.py +91 -0
- torchzero/optim/__init__.py +2 -10
- torchzero/optim/utility/__init__.py +1 -0
- torchzero/optim/utility/split.py +45 -0
- torchzero/optim/wrappers/nevergrad.py +2 -28
- torchzero/optim/wrappers/nlopt.py +31 -16
- torchzero/optim/wrappers/scipy.py +79 -156
- torchzero/utils/__init__.py +27 -0
- torchzero/utils/compile.py +175 -37
- torchzero/utils/derivatives.py +513 -99
- torchzero/utils/linalg/__init__.py +5 -0
- torchzero/utils/linalg/matrix_funcs.py +87 -0
- torchzero/utils/linalg/orthogonalize.py +11 -0
- torchzero/utils/linalg/qr.py +71 -0
- torchzero/utils/linalg/solve.py +168 -0
- torchzero/utils/linalg/svd.py +20 -0
- torchzero/utils/numberlist.py +132 -0
- torchzero/utils/ops.py +10 -0
- torchzero/utils/optimizer.py +284 -0
- torchzero/utils/optuna_tools.py +40 -0
- torchzero/utils/params.py +149 -0
- torchzero/utils/python_tools.py +40 -25
- torchzero/utils/tensorlist.py +1081 -0
- torchzero/utils/torch_tools.py +48 -12
- torchzero-0.3.2.dist-info/METADATA +379 -0
- torchzero-0.3.2.dist-info/RECORD +128 -0
- {torchzero-0.1.8.dist-info → torchzero-0.3.2.dist-info}/WHEEL +1 -1
- {torchzero-0.1.8.dist-info → torchzero-0.3.2.dist-info/licenses}/LICENSE +0 -0
- torchzero-0.3.2.dist-info/top_level.txt +3 -0
- torchzero/core/tensorlist_optimizer.py +0 -219
- torchzero/modules/adaptive/__init__.py +0 -4
- torchzero/modules/adaptive/adaptive.py +0 -192
- torchzero/modules/experimental/experimental.py +0 -294
- torchzero/modules/experimental/quad_interp.py +0 -104
- torchzero/modules/experimental/subspace.py +0 -259
- torchzero/modules/gradient_approximation/__init__.py +0 -7
- torchzero/modules/gradient_approximation/_fd_formulas.py +0 -3
- torchzero/modules/gradient_approximation/base_approximator.py +0 -105
- torchzero/modules/gradient_approximation/fdm.py +0 -125
- torchzero/modules/gradient_approximation/forward_gradient.py +0 -163
- torchzero/modules/gradient_approximation/newton_fdm.py +0 -198
- torchzero/modules/gradient_approximation/rfdm.py +0 -125
- torchzero/modules/line_search/armijo.py +0 -56
- torchzero/modules/line_search/base_ls.py +0 -139
- torchzero/modules/line_search/directional_newton.py +0 -217
- torchzero/modules/line_search/grid_ls.py +0 -158
- torchzero/modules/line_search/scipy_minimize_scalar.py +0 -62
- torchzero/modules/meta/__init__.py +0 -12
- torchzero/modules/meta/alternate.py +0 -65
- torchzero/modules/meta/grafting.py +0 -195
- torchzero/modules/meta/optimizer_wrapper.py +0 -173
- torchzero/modules/meta/return_overrides.py +0 -46
- torchzero/modules/misc/__init__.py +0 -10
- torchzero/modules/misc/accumulate.py +0 -43
- torchzero/modules/misc/basic.py +0 -115
- torchzero/modules/misc/lr.py +0 -96
- torchzero/modules/misc/multistep.py +0 -51
- torchzero/modules/misc/on_increase.py +0 -53
- torchzero/modules/operations/__init__.py +0 -29
- torchzero/modules/operations/multi.py +0 -298
- torchzero/modules/operations/reduction.py +0 -134
- torchzero/modules/operations/singular.py +0 -113
- torchzero/modules/optimizers/sgd.py +0 -54
- torchzero/modules/orthogonalization/__init__.py +0 -2
- torchzero/modules/orthogonalization/newtonschulz.py +0 -159
- torchzero/modules/orthogonalization/svd.py +0 -86
- torchzero/modules/regularization/__init__.py +0 -22
- torchzero/modules/regularization/dropout.py +0 -34
- torchzero/modules/regularization/noise.py +0 -77
- torchzero/modules/regularization/normalization.py +0 -328
- torchzero/modules/regularization/ortho_grad.py +0 -78
- torchzero/modules/regularization/weight_decay.py +0 -92
- torchzero/modules/scheduling/__init__.py +0 -2
- torchzero/modules/scheduling/lr_schedulers.py +0 -131
- torchzero/modules/scheduling/step_size.py +0 -80
- torchzero/modules/smoothing/gaussian_smoothing.py +0 -90
- torchzero/modules/weight_averaging/__init__.py +0 -2
- torchzero/modules/weight_averaging/ema.py +0 -72
- torchzero/modules/weight_averaging/swa.py +0 -171
- torchzero/optim/experimental/__init__.py +0 -20
- torchzero/optim/experimental/experimental.py +0 -343
- torchzero/optim/experimental/ray_search.py +0 -83
- torchzero/optim/first_order/__init__.py +0 -18
- torchzero/optim/first_order/cautious.py +0 -158
- torchzero/optim/first_order/forward_gradient.py +0 -70
- torchzero/optim/first_order/optimizers.py +0 -570
- torchzero/optim/modular.py +0 -148
- torchzero/optim/quasi_newton/__init__.py +0 -1
- torchzero/optim/quasi_newton/directional_newton.py +0 -58
- torchzero/optim/second_order/__init__.py +0 -1
- torchzero/optim/second_order/newton.py +0 -94
- torchzero/optim/zeroth_order/__init__.py +0 -4
- torchzero/optim/zeroth_order/fdm.py +0 -87
- torchzero/optim/zeroth_order/newton_fdm.py +0 -146
- torchzero/optim/zeroth_order/rfdm.py +0 -217
- torchzero/optim/zeroth_order/rs.py +0 -85
- torchzero/random/__init__.py +0 -1
- torchzero/random/random.py +0 -46
- torchzero/tensorlist.py +0 -826
- torchzero-0.1.8.dist-info/METADATA +0 -130
- torchzero-0.1.8.dist-info/RECORD +0 -104
- torchzero-0.1.8.dist-info/top_level.txt +0 -1
tests/test_opts.py
ADDED
|
@@ -0,0 +1,884 @@
|
|
|
1
|
+
"""snity tests to make sure everything works and converges on basic functions"""
|
|
2
|
+
from collections.abc import Callable
|
|
3
|
+
from functools import partial
|
|
4
|
+
|
|
5
|
+
import pytest
|
|
6
|
+
import torch
|
|
7
|
+
import torchzero as tz
|
|
8
|
+
|
|
9
|
+
PRINT = False # set to true in nbs
|
|
10
|
+
|
|
11
|
+
def _booth(x, y):
|
|
12
|
+
return (x + 2 * y - 7) ** 2 + (2 * x + y - 5) ** 2
|
|
13
|
+
|
|
14
|
+
def _rosen(x, y):
|
|
15
|
+
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
|
|
16
|
+
|
|
17
|
+
def _ill(x, y):
|
|
18
|
+
return x**2 + y**2 + 1.99999*x*y
|
|
19
|
+
|
|
20
|
+
def _lstsq(x,y): # specifically for CG and quasi newton methods, staircase effect is more pronounced there
|
|
21
|
+
return (2*x + 3*y - 5)**2 + (5*x - 2*y - 3)**2
|
|
22
|
+
|
|
23
|
+
funcs = {"booth": (_booth, (0, -8)), "rosen": (_rosen, (-1.1, 2.5)), "ill": (_ill, (-9, 2.5)), "lstsq": (_lstsq, (-0.9, 0))}
|
|
24
|
+
"""{"name": (function, x0)}"""
|
|
25
|
+
|
|
26
|
+
class _TestModel(torch.nn.Module):
|
|
27
|
+
"""sphere with all kinds of parameter shapes, initial loss is 521.2754"""
|
|
28
|
+
def __init__(self):
|
|
29
|
+
super().__init__()
|
|
30
|
+
generator = torch.Generator().manual_seed(0)
|
|
31
|
+
randn = partial(torch.randn, generator=generator)
|
|
32
|
+
params = [
|
|
33
|
+
torch.tensor(1.), torch.tensor([1.]), torch.tensor([[1.]]),
|
|
34
|
+
randn(10), randn(1,10), randn(10,1), randn(1,1,10),randn(1,10,1),randn(1,1,10),
|
|
35
|
+
randn(10,10), randn(4,4,4), randn(3,3,3,3), randn(2,2,2,2,2,2,2),
|
|
36
|
+
randn(10,1,3,1,1),
|
|
37
|
+
torch.zeros(2,2), torch.ones(2,2),
|
|
38
|
+
]
|
|
39
|
+
self.params = torch.nn.ParameterList(torch.nn.Parameter(t) for t in params)
|
|
40
|
+
|
|
41
|
+
def forward(self):
|
|
42
|
+
return torch.sum(torch.stack([p.pow(2).sum() for p in self.params]))
|
|
43
|
+
|
|
44
|
+
def _run_objective(opt: tz.Modular, objective: Callable, use_closure: bool, steps: int, clear: bool):
|
|
45
|
+
"""generic function to run opt on objective and return lowest recorded loss"""
|
|
46
|
+
losses = []
|
|
47
|
+
for i in range(steps):
|
|
48
|
+
if clear and i == steps//2:
|
|
49
|
+
for m in opt.unrolled_modules: m.reset() # clear on middle step to see if there are any issues with it
|
|
50
|
+
|
|
51
|
+
if use_closure:
|
|
52
|
+
def closure(backward=True):
|
|
53
|
+
loss = objective()
|
|
54
|
+
if backward:
|
|
55
|
+
opt.zero_grad()
|
|
56
|
+
loss.backward()
|
|
57
|
+
return loss
|
|
58
|
+
loss = opt.step(closure)
|
|
59
|
+
assert loss is not None
|
|
60
|
+
assert torch.isfinite(loss), f"{opt}: Inifinite loss - {[l.item() for l in losses]}"
|
|
61
|
+
losses.append(loss)
|
|
62
|
+
|
|
63
|
+
else:
|
|
64
|
+
loss = objective()
|
|
65
|
+
opt.zero_grad()
|
|
66
|
+
loss.backward()
|
|
67
|
+
opt.step()
|
|
68
|
+
assert torch.isfinite(loss), f"{opt}: Inifinite loss - {[l.item() for l in losses]}"
|
|
69
|
+
losses.append(loss)
|
|
70
|
+
|
|
71
|
+
return torch.stack(losses).nan_to_num(0,10000,10000).min()
|
|
72
|
+
|
|
73
|
+
def _run_func(opt_fn: Callable, func:str, merge: bool, use_closure: bool, steps: int):
|
|
74
|
+
"""run optimizer on a test function and return lowest loss"""
|
|
75
|
+
fn, x0 = funcs[func]
|
|
76
|
+
X = torch.tensor(x0, dtype=torch.float32, requires_grad=True)
|
|
77
|
+
if merge:
|
|
78
|
+
opt = opt_fn([X])
|
|
79
|
+
else:
|
|
80
|
+
x,y = [i.clone().detach().requires_grad_() for i in X]
|
|
81
|
+
X = (x,y)
|
|
82
|
+
opt = opt_fn(X)
|
|
83
|
+
|
|
84
|
+
def objective():
|
|
85
|
+
return fn(*X)
|
|
86
|
+
|
|
87
|
+
return _run_objective(opt, objective, use_closure, steps, clear=False), opt
|
|
88
|
+
|
|
89
|
+
def _run_sphere(opt_fn: Callable, use_closure:bool, steps:int):
|
|
90
|
+
"""run optimizer on sphere test module to test different parameter shapes (common cause of mistakes)"""
|
|
91
|
+
sphere = _TestModel()
|
|
92
|
+
opt = opt_fn(sphere.parameters())
|
|
93
|
+
return _run_objective(opt, sphere, use_closure, steps, clear=True), opt
|
|
94
|
+
|
|
95
|
+
def _run(func_opt: Callable, sphere_opt: Callable, needs_closure: bool, func:str, steps: int, loss: float, merge_invariant: bool, sphere_steps: int, sphere_loss: float):
|
|
96
|
+
"""Run optimizer on function and sphere test module and check that loss is low enough"""
|
|
97
|
+
tested_sphere = {True: False, False: False} # because shere has no merge
|
|
98
|
+
merged_losses = []
|
|
99
|
+
unmerged_losses = []
|
|
100
|
+
sphere_losses = []
|
|
101
|
+
|
|
102
|
+
for merge in [True, False]:
|
|
103
|
+
for use_closure in [True] if needs_closure else [True, False]:
|
|
104
|
+
if PRINT: print(f"testing with {merge = }, {use_closure = }")
|
|
105
|
+
v,opt = _run_func(func_opt, func, merge, use_closure, steps)
|
|
106
|
+
if PRINT: print(f'{func} loss after {steps} steps is {v}, target is {loss}')
|
|
107
|
+
assert v <= loss, f"{opt}: Loss on {func} is {v}, which is above target {loss}. {merge = }, {use_closure = }"
|
|
108
|
+
if merge: merged_losses.append(v)
|
|
109
|
+
else: unmerged_losses.append(v)
|
|
110
|
+
|
|
111
|
+
if not tested_sphere[use_closure]:
|
|
112
|
+
tested_sphere[use_closure] = True
|
|
113
|
+
v,opt = _run_sphere(sphere_opt, use_closure, sphere_steps)
|
|
114
|
+
if PRINT: print(f'sphere loss after {sphere_steps} is {v}, target is {sphere_loss}')
|
|
115
|
+
assert v <= sphere_loss, f"{opt}: Loss on sphere is {v}, which is above target {sphere_loss}. {merge = }, {use_closure = }"
|
|
116
|
+
sphere_losses.append(v)
|
|
117
|
+
if PRINT: print()
|
|
118
|
+
|
|
119
|
+
# test if losses match
|
|
120
|
+
if merge_invariant: losses = merged_losses + unmerged_losses
|
|
121
|
+
else: losses = merged_losses
|
|
122
|
+
l = losses[0]
|
|
123
|
+
assert all(i == l for i in losses), f"{func} losses don't match: {[l.item() for l in losses]}"
|
|
124
|
+
|
|
125
|
+
l = unmerged_losses[0]
|
|
126
|
+
assert all(i == l for i in unmerged_losses), f"Sphere losses don't match: {[l.item() for l in unmerged_losses]}"
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
l = sphere_losses[0]
|
|
130
|
+
assert all(i == l for i in sphere_losses), f"Sphere losses don't match: {[l.item() for l in sphere_losses]}"
|
|
131
|
+
|
|
132
|
+
RUNS = []
|
|
133
|
+
"""Whenever a Run is created (__init__ is called) it gets appened to this"""
|
|
134
|
+
|
|
135
|
+
class Run:
|
|
136
|
+
"""
|
|
137
|
+
Holds arguments for a test.
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
func_opt (Callable): opt for test function e.g. :code:`lambda p: tz.Modular(p, tz.m.Adam())`
|
|
141
|
+
sphere_opt (Callable): opt for sphere e.g. :code:`lambda p: tz.Modular(p, tz.m.Adam(), tz.m.LR(0.1))`
|
|
142
|
+
needs_closure (bool): set to True if opt_fn requires closure
|
|
143
|
+
func (str): what test function to use ("booth", "rosen", "ill")
|
|
144
|
+
steps (int): number of steps to run test function for.
|
|
145
|
+
loss (float): if minimal loss is higher than this then test fails
|
|
146
|
+
merge_invariant (bool): whether the optimizer is invariant to parameters merged or separated.
|
|
147
|
+
sphere_steps (int): how many steps to run sphere for (it has like 1000 params)
|
|
148
|
+
sphere_loss (float): if minimal loss is higher than this then test fails
|
|
149
|
+
"""
|
|
150
|
+
def __init__(self, func_opt: Callable, sphere_opt: Callable, needs_closure: bool, func: str, steps: int, loss:float, merge_invariant: bool, sphere_steps:int, sphere_loss:float):
|
|
151
|
+
self.kwargs = locals().copy()
|
|
152
|
+
del self.kwargs['self']
|
|
153
|
+
RUNS.append(self)
|
|
154
|
+
def test(self): _run(**self.kwargs)
|
|
155
|
+
|
|
156
|
+
# target losses for all of those are set to just above what they reach
|
|
157
|
+
# ---------------------------------------------------------------------------- #
|
|
158
|
+
# tests #
|
|
159
|
+
# ---------------------------------------------------------------------------- #
|
|
160
|
+
# ----------------------------- clipping/clipping ---------------------------- #
|
|
161
|
+
ClipValue = Run(
|
|
162
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipValue(1), tz.m.LR(1)),
|
|
163
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipValue(1), tz.m.LR(1)),
|
|
164
|
+
needs_closure=False,
|
|
165
|
+
func='booth', steps=50, loss=0, merge_invariant=True,
|
|
166
|
+
sphere_steps=10, sphere_loss=50,
|
|
167
|
+
)
|
|
168
|
+
ClipNorm = Run(
|
|
169
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNorm(1), tz.m.LR(1)),
|
|
170
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNorm(1), tz.m.LR(0.5)),
|
|
171
|
+
needs_closure=False,
|
|
172
|
+
func='booth', steps=50, loss=2, merge_invariant=False,
|
|
173
|
+
sphere_steps=10, sphere_loss=0,
|
|
174
|
+
)
|
|
175
|
+
ClipNorm_global = Run(
|
|
176
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNorm(1, dim='global'), tz.m.LR(1)),
|
|
177
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNorm(1, dim='global'), tz.m.LR(3)),
|
|
178
|
+
needs_closure=False,
|
|
179
|
+
func='booth', steps=50, loss=2, merge_invariant=True,
|
|
180
|
+
sphere_steps=10, sphere_loss=2,
|
|
181
|
+
)
|
|
182
|
+
Normalize = Run(
|
|
183
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Normalize(1), tz.m.LR(1)),
|
|
184
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Normalize(1), tz.m.LR(0.5)),
|
|
185
|
+
needs_closure=False,
|
|
186
|
+
func='booth', steps=50, loss=2, merge_invariant=False,
|
|
187
|
+
sphere_steps=10, sphere_loss=15,
|
|
188
|
+
)
|
|
189
|
+
Normalize_global = Run(
|
|
190
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Normalize(1, dim='global'), tz.m.LR(1)),
|
|
191
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Normalize(1, dim='global'), tz.m.LR(4)),
|
|
192
|
+
needs_closure=False,
|
|
193
|
+
func='booth', steps=50, loss=2, merge_invariant=True,
|
|
194
|
+
sphere_steps=10, sphere_loss=2,
|
|
195
|
+
)
|
|
196
|
+
Centralize = Run(
|
|
197
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Centralize(min_size=3), tz.m.LR(0.1)),
|
|
198
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Centralize(), tz.m.LR(0.1)),
|
|
199
|
+
needs_closure=False,
|
|
200
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=False,
|
|
201
|
+
sphere_steps=10, sphere_loss=10,
|
|
202
|
+
)
|
|
203
|
+
Centralize_global = Run(
|
|
204
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Centralize(min_size=3, dim='global'), tz.m.LR(0.1)),
|
|
205
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Centralize(dim='global'), tz.m.LR(0.1)),
|
|
206
|
+
needs_closure=False,
|
|
207
|
+
func='booth', steps=1, loss=1000, merge_invariant=True,
|
|
208
|
+
sphere_steps=10, sphere_loss=10,
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
# --------------------------- clipping/ema_clipping -------------------------- #
|
|
212
|
+
ClipNormByEMA = Run(
|
|
213
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNormByEMA(), tz.m.LR(0.1)),
|
|
214
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNormByEMA(), tz.m.LR(5)),
|
|
215
|
+
needs_closure=False,
|
|
216
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=False,
|
|
217
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
218
|
+
)
|
|
219
|
+
ClipNormByEMA_global = Run(
|
|
220
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNormByEMA(tensorwise=False), tz.m.LR(0.1)),
|
|
221
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNormByEMA(tensorwise=False), tz.m.LR(5)),
|
|
222
|
+
needs_closure=False,
|
|
223
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=True,
|
|
224
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
225
|
+
)
|
|
226
|
+
NormalizeByEMA = Run(
|
|
227
|
+
func_opt=lambda p: tz.Modular(p, tz.m.NormalizeByEMA(), tz.m.LR(0.05)),
|
|
228
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.NormalizeByEMA(), tz.m.LR(5)),
|
|
229
|
+
needs_closure=False,
|
|
230
|
+
func='booth', steps=50, loss=1, merge_invariant=False,
|
|
231
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
232
|
+
)
|
|
233
|
+
NormalizeByEMA_global = Run(
|
|
234
|
+
func_opt=lambda p: tz.Modular(p, tz.m.NormalizeByEMA(tensorwise=False), tz.m.LR(0.05)),
|
|
235
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.NormalizeByEMA(tensorwise=False), tz.m.LR(5)),
|
|
236
|
+
needs_closure=False,
|
|
237
|
+
func='booth', steps=50, loss=1, merge_invariant=True,
|
|
238
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
239
|
+
)
|
|
240
|
+
ClipValueByEMA = Run(
|
|
241
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipValueByEMA(), tz.m.LR(0.1)),
|
|
242
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipValueByEMA(), tz.m.LR(4)),
|
|
243
|
+
needs_closure=False,
|
|
244
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=True,
|
|
245
|
+
sphere_steps=10, sphere_loss=0.03,
|
|
246
|
+
)
|
|
247
|
+
# ------------------------- clipping/growth_clipping ------------------------- #
|
|
248
|
+
ClipValueGrowth = Run(
|
|
249
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipValueGrowth(), tz.m.LR(0.1)),
|
|
250
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipValueGrowth(), tz.m.LR(0.1)),
|
|
251
|
+
needs_closure=False,
|
|
252
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=True,
|
|
253
|
+
sphere_steps=10, sphere_loss=100,
|
|
254
|
+
)
|
|
255
|
+
ClipValueGrowth_additive = Run(
|
|
256
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipValueGrowth(add=1, mul=None), tz.m.LR(0.1)),
|
|
257
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipValueGrowth(add=1, mul=None), tz.m.LR(0.1)),
|
|
258
|
+
needs_closure=False,
|
|
259
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=True,
|
|
260
|
+
sphere_steps=10, sphere_loss=10,
|
|
261
|
+
)
|
|
262
|
+
ClipNormGrowth = Run(
|
|
263
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(), tz.m.LR(0.1)),
|
|
264
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(), tz.m.LR(0.1)),
|
|
265
|
+
needs_closure=False,
|
|
266
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=False,
|
|
267
|
+
sphere_steps=10, sphere_loss=10,
|
|
268
|
+
)
|
|
269
|
+
ClipNormGrowth_additive = Run(
|
|
270
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(add=1,mul=None), tz.m.LR(0.1)),
|
|
271
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(add=1,mul=None), tz.m.LR(0.1)),
|
|
272
|
+
needs_closure=False,
|
|
273
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=False,
|
|
274
|
+
sphere_steps=10, sphere_loss=10,
|
|
275
|
+
)
|
|
276
|
+
ClipNormGrowth_global = Run(
|
|
277
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(parameterwise=False), tz.m.LR(0.1)),
|
|
278
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ClipNormGrowth(parameterwise=False), tz.m.LR(0.1)),
|
|
279
|
+
needs_closure=False,
|
|
280
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=True,
|
|
281
|
+
sphere_steps=10, sphere_loss=10,
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
# -------------------------- grad_approximation/fdm -------------------------- #
|
|
285
|
+
FDM_central2 = Run(
|
|
286
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='central2'), tz.m.LR(0.1)),
|
|
287
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(), tz.m.LR(0.1)),
|
|
288
|
+
needs_closure=True,
|
|
289
|
+
func='booth', steps=50, loss=1e-7, merge_invariant=True,
|
|
290
|
+
sphere_steps=2, sphere_loss=340,
|
|
291
|
+
)
|
|
292
|
+
FDM_forward2 = Run(
|
|
293
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='forward2'), tz.m.LR(0.1)),
|
|
294
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='forward2'), tz.m.LR(0.1)),
|
|
295
|
+
needs_closure=True,
|
|
296
|
+
func='booth', steps=50, loss=1e-7, merge_invariant=True,
|
|
297
|
+
sphere_steps=2, sphere_loss=340,
|
|
298
|
+
)
|
|
299
|
+
FDM_backward2 = Run(
|
|
300
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='backward2'), tz.m.LR(0.1)),
|
|
301
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='backward2'), tz.m.LR(0.1)),
|
|
302
|
+
needs_closure=True,
|
|
303
|
+
func='booth', steps=50, loss=2e-7, merge_invariant=True,
|
|
304
|
+
sphere_steps=2, sphere_loss=340,
|
|
305
|
+
)
|
|
306
|
+
FDM_forward3 = Run(
|
|
307
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='forward3'), tz.m.LR(0.1)),
|
|
308
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='forward3'), tz.m.LR(0.1)),
|
|
309
|
+
needs_closure=True,
|
|
310
|
+
func='booth', steps=50, loss=3e-7, merge_invariant=True,
|
|
311
|
+
sphere_steps=2, sphere_loss=340,
|
|
312
|
+
)
|
|
313
|
+
FDM_backward3 = Run(
|
|
314
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='backward3'), tz.m.LR(0.1)),
|
|
315
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='backward3'), tz.m.LR(0.1)),
|
|
316
|
+
needs_closure=True,
|
|
317
|
+
func='booth', steps=50, loss=3e-7, merge_invariant=True,
|
|
318
|
+
sphere_steps=2, sphere_loss=340,
|
|
319
|
+
)
|
|
320
|
+
FDM_central4 = Run(
|
|
321
|
+
func_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='central4'), tz.m.LR(0.1)),
|
|
322
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.FDM(formula='central4'), tz.m.LR(0.1)),
|
|
323
|
+
needs_closure=True,
|
|
324
|
+
func='booth', steps=50, loss=2e-8, merge_invariant=True,
|
|
325
|
+
sphere_steps=2, sphere_loss=340,
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
# -------------------------- grad_approximation/rfdm ------------------------- #
|
|
329
|
+
RandomizedFDM_central2 = Run(
|
|
330
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(seed=0), tz.m.LR(0.01)),
|
|
331
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(seed=0), tz.m.LR(0.001)),
|
|
332
|
+
needs_closure=True,
|
|
333
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
334
|
+
sphere_steps=100, sphere_loss=450,
|
|
335
|
+
)
|
|
336
|
+
RandomizedFDM_forward2 = Run(
|
|
337
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='forward2', seed=0), tz.m.LR(0.01)),
|
|
338
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='forward2', seed=0), tz.m.LR(0.001)),
|
|
339
|
+
needs_closure=True,
|
|
340
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
341
|
+
sphere_steps=100, sphere_loss=450,
|
|
342
|
+
)
|
|
343
|
+
RandomizedFDM_backward2 = Run(
|
|
344
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='backward2', seed=0), tz.m.LR(0.01)),
|
|
345
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='backward2', seed=0), tz.m.LR(0.001)),
|
|
346
|
+
needs_closure=True,
|
|
347
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
348
|
+
sphere_steps=100, sphere_loss=450,
|
|
349
|
+
)
|
|
350
|
+
RandomizedFDM_forward3 = Run(
|
|
351
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='forward3', seed=0), tz.m.LR(0.01)),
|
|
352
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='forward3', seed=0), tz.m.LR(0.001)),
|
|
353
|
+
needs_closure=True,
|
|
354
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
355
|
+
sphere_steps=100, sphere_loss=450,
|
|
356
|
+
)
|
|
357
|
+
RandomizedFDM_backward3 = Run(
|
|
358
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='backward3', seed=0), tz.m.LR(0.01)),
|
|
359
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='backward3', seed=0), tz.m.LR(0.001)),
|
|
360
|
+
needs_closure=True,
|
|
361
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
362
|
+
sphere_steps=100, sphere_loss=450,
|
|
363
|
+
)
|
|
364
|
+
RandomizedFDM_central4 = Run(
|
|
365
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='central4', seed=0), tz.m.LR(0.01)),
|
|
366
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(formula='central4', seed=0), tz.m.LR(0.001)),
|
|
367
|
+
needs_closure=True,
|
|
368
|
+
func='booth', steps=50, loss=10, merge_invariant=True,
|
|
369
|
+
sphere_steps=100, sphere_loss=450,
|
|
370
|
+
)
|
|
371
|
+
|
|
372
|
+
RandomizedFDM_4samples = Run(
|
|
373
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, seed=0), tz.m.LR(0.1)),
|
|
374
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, seed=0), tz.m.LR(0.001)),
|
|
375
|
+
needs_closure=True,
|
|
376
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=True,
|
|
377
|
+
sphere_steps=100, sphere_loss=400,
|
|
378
|
+
)
|
|
379
|
+
RandomizedFDM_4samples_lerp = Run(
|
|
380
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, beta=0.99, seed=0), tz.m.LR(0.1)),
|
|
381
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, beta=0.9, seed=0), tz.m.LR(0.001)),
|
|
382
|
+
needs_closure=True,
|
|
383
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=True,
|
|
384
|
+
sphere_steps=100, sphere_loss=505,
|
|
385
|
+
)
|
|
386
|
+
RandomizedFDM_4samples_no_pre_generate = Run(
|
|
387
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, pre_generate=False, seed=0), tz.m.LR(0.1)),
|
|
388
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomizedFDM(n_samples=4, pre_generate=False, seed=0), tz.m.LR(0.001)),
|
|
389
|
+
needs_closure=True,
|
|
390
|
+
func='booth', steps=50, loss=1e-5, merge_invariant=True,
|
|
391
|
+
sphere_steps=100, sphere_loss=400,
|
|
392
|
+
)
|
|
393
|
+
MeZO = Run(
|
|
394
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MeZO(), tz.m.LR(0.01)),
|
|
395
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MeZO(), tz.m.LR(0.001)),
|
|
396
|
+
needs_closure=True,
|
|
397
|
+
func='booth', steps=50, loss=5, merge_invariant=True,
|
|
398
|
+
sphere_steps=100, sphere_loss=450,
|
|
399
|
+
)
|
|
400
|
+
MeZO_4samples = Run(
|
|
401
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MeZO(n_samples=4), tz.m.LR(0.02)),
|
|
402
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MeZO(n_samples=4), tz.m.LR(0.005)),
|
|
403
|
+
needs_closure=True,
|
|
404
|
+
func='booth', steps=50, loss=1, merge_invariant=True,
|
|
405
|
+
sphere_steps=100, sphere_loss=250,
|
|
406
|
+
)
|
|
407
|
+
# -------------------- grad_approximation/forward_gradient ------------------- #
|
|
408
|
+
ForwardGradient = Run(
|
|
409
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0), tz.m.LR(0.01)),
|
|
410
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0), tz.m.LR(0.001)),
|
|
411
|
+
needs_closure=True,
|
|
412
|
+
func='booth', steps=50, loss=40, merge_invariant=True,
|
|
413
|
+
sphere_steps=100, sphere_loss=450,
|
|
414
|
+
)
|
|
415
|
+
ForwardGradient_forward = Run(
|
|
416
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0, jvp_method='forward'), tz.m.LR(0.01)),
|
|
417
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0, jvp_method='forward'), tz.m.LR(0.001)),
|
|
418
|
+
needs_closure=True,
|
|
419
|
+
func='booth', steps=50, loss=40, merge_invariant=True,
|
|
420
|
+
sphere_steps=100, sphere_loss=450,
|
|
421
|
+
)
|
|
422
|
+
ForwardGradient_central = Run(
|
|
423
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0, jvp_method='central'), tz.m.LR(0.01)),
|
|
424
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(seed=0, jvp_method='central'), tz.m.LR(0.001)),
|
|
425
|
+
needs_closure=True,
|
|
426
|
+
func='booth', steps=50, loss=40, merge_invariant=True,
|
|
427
|
+
sphere_steps=100, sphere_loss=450,
|
|
428
|
+
)
|
|
429
|
+
ForwardGradient_4samples = Run(
|
|
430
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(n_samples=4, seed=0), tz.m.LR(0.1)),
|
|
431
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(n_samples=4, seed=0), tz.m.LR(0.001)),
|
|
432
|
+
needs_closure=True,
|
|
433
|
+
func='booth', steps=50, loss=0.1, merge_invariant=True,
|
|
434
|
+
sphere_steps=100, sphere_loss=400,
|
|
435
|
+
)
|
|
436
|
+
ForwardGradient_4samples_no_pre_generate = Run(
|
|
437
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(n_samples=4, seed=0, pre_generate=False), tz.m.LR(0.1)),
|
|
438
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ForwardGradient(n_samples=4, seed=0, pre_generate=False), tz.m.LR(0.001)),
|
|
439
|
+
needs_closure=True,
|
|
440
|
+
func='booth', steps=50, loss=0.1, merge_invariant=True,
|
|
441
|
+
sphere_steps=100, sphere_loss=400,
|
|
442
|
+
)
|
|
443
|
+
|
|
444
|
+
# ------------------------- line_search/backtracking ------------------------- #
|
|
445
|
+
Backtracking = Run(
|
|
446
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Backtracking()),
|
|
447
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Backtracking()),
|
|
448
|
+
needs_closure=True,
|
|
449
|
+
func='booth', steps=50, loss=0, merge_invariant=True,
|
|
450
|
+
sphere_steps=2, sphere_loss=0,
|
|
451
|
+
)
|
|
452
|
+
Backtracking_try_negative = Run(
|
|
453
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Mul(-1), tz.m.Backtracking(try_negative=True)),
|
|
454
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Mul(-1), tz.m.Backtracking(try_negative=True)),
|
|
455
|
+
needs_closure=True,
|
|
456
|
+
func='booth', steps=50, loss=1e-9, merge_invariant=True,
|
|
457
|
+
sphere_steps=2, sphere_loss=1e-10,
|
|
458
|
+
)
|
|
459
|
+
AdaptiveBacktracking = Run(
|
|
460
|
+
func_opt=lambda p: tz.Modular(p, tz.m.AdaptiveBacktracking()),
|
|
461
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.AdaptiveBacktracking()),
|
|
462
|
+
needs_closure=True,
|
|
463
|
+
func='booth', steps=50, loss=0, merge_invariant=True,
|
|
464
|
+
sphere_steps=2, sphere_loss=0,
|
|
465
|
+
)
|
|
466
|
+
AdaptiveBacktracking_try_negative = Run(
|
|
467
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Mul(-1), tz.m.AdaptiveBacktracking(try_negative=True)),
|
|
468
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Mul(-1), tz.m.AdaptiveBacktracking(try_negative=True)),
|
|
469
|
+
needs_closure=True,
|
|
470
|
+
func='booth', steps=50, loss=1e-8, merge_invariant=True,
|
|
471
|
+
sphere_steps=2, sphere_loss=1e-10,
|
|
472
|
+
)
|
|
473
|
+
# ----------------------------- line_search/scipy ---------------------------- #
|
|
474
|
+
ScipyMinimizeScalar = Run(
|
|
475
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ScipyMinimizeScalar(maxiter=10)),
|
|
476
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.AdaptiveBacktracking(maxiter=10)),
|
|
477
|
+
needs_closure=True,
|
|
478
|
+
func='booth', steps=50, loss=1e-2, merge_invariant=True,
|
|
479
|
+
sphere_steps=2, sphere_loss=0,
|
|
480
|
+
)
|
|
481
|
+
|
|
482
|
+
# ------------------------- line_search/strong_wolfe ------------------------- #
|
|
483
|
+
StrongWolfe = Run(
|
|
484
|
+
func_opt=lambda p: tz.Modular(p, tz.m.StrongWolfe()),
|
|
485
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.StrongWolfe()),
|
|
486
|
+
needs_closure=True,
|
|
487
|
+
func='booth', steps=50, loss=0, merge_invariant=True,
|
|
488
|
+
sphere_steps=2, sphere_loss=0,
|
|
489
|
+
)
|
|
490
|
+
|
|
491
|
+
# ------------------------- line_search/trust_region ------------------------- #
|
|
492
|
+
TrustRegion = Run(
|
|
493
|
+
func_opt=lambda p: tz.Modular(p, tz.m.TrustRegion()),
|
|
494
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.TrustRegion(init=0.1)),
|
|
495
|
+
needs_closure=True,
|
|
496
|
+
func='booth', steps=50, loss=0.1, merge_invariant=True,
|
|
497
|
+
sphere_steps=10, sphere_loss=1e-5,
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
# ----------------------------------- lr/lr ---------------------------------- #
|
|
501
|
+
LR = Run(
|
|
502
|
+
func_opt=lambda p: tz.Modular(p, tz.m.LR(0.1)),
|
|
503
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.LR(0.5)),
|
|
504
|
+
needs_closure=False,
|
|
505
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=True,
|
|
506
|
+
sphere_steps=10, sphere_loss=0,
|
|
507
|
+
)
|
|
508
|
+
StepSize = Run(
|
|
509
|
+
func_opt=lambda p: tz.Modular(p, tz.m.StepSize(0.1)),
|
|
510
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.StepSize(0.5)),
|
|
511
|
+
needs_closure=False,
|
|
512
|
+
func='booth', steps=50, loss=1e-6, merge_invariant=True,
|
|
513
|
+
sphere_steps=10, sphere_loss=0,
|
|
514
|
+
)
|
|
515
|
+
Warmup = Run(
|
|
516
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Warmup(steps=50, end_lr=0.1)),
|
|
517
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Warmup(steps=10)),
|
|
518
|
+
needs_closure=False,
|
|
519
|
+
func='booth', steps=50, loss=0.003, merge_invariant=True,
|
|
520
|
+
sphere_steps=10, sphere_loss=0.05,
|
|
521
|
+
)
|
|
522
|
+
# ------------------------------- lr/step_size ------------------------------- #
|
|
523
|
+
PolyakStepSize = Run(
|
|
524
|
+
func_opt=lambda p: tz.Modular(p, tz.m.PolyakStepSize()),
|
|
525
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.PolyakStepSize()),
|
|
526
|
+
needs_closure=True,
|
|
527
|
+
func='booth', steps=50, loss=1e-11, merge_invariant=True,
|
|
528
|
+
sphere_steps=10, sphere_loss=0.002,
|
|
529
|
+
)
|
|
530
|
+
RandomStepSize = Run(
|
|
531
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomStepSize(0,0.1, seed=0)),
|
|
532
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomStepSize(0,0.1, seed=0)),
|
|
533
|
+
needs_closure=False,
|
|
534
|
+
func='booth', steps=50, loss=0.0005, merge_invariant=True,
|
|
535
|
+
sphere_steps=10, sphere_loss=100,
|
|
536
|
+
)
|
|
537
|
+
RandomStepSize_parameterwise = Run(
|
|
538
|
+
func_opt=lambda p: tz.Modular(p, tz.m.RandomStepSize(0,0.1, parameterwise=True, seed=0)),
|
|
539
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.RandomStepSize(0,0.1, parameterwise=True, seed=0)),
|
|
540
|
+
needs_closure=False,
|
|
541
|
+
func='booth', steps=50, loss=0.0005, merge_invariant=False,
|
|
542
|
+
sphere_steps=10, sphere_loss=100,
|
|
543
|
+
)
|
|
544
|
+
|
|
545
|
+
# ---------------------------- momentum/averaging ---------------------------- #
|
|
546
|
+
Averaging = Run(
|
|
547
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Averaging(10), tz.m.LR(0.02)),
|
|
548
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Averaging(10), tz.m.LR(0.2)),
|
|
549
|
+
needs_closure=False,
|
|
550
|
+
func='booth', steps=50, loss=0.5, merge_invariant=True,
|
|
551
|
+
sphere_steps=10, sphere_loss=0.05,
|
|
552
|
+
)
|
|
553
|
+
WeightedAveraging = Run(
|
|
554
|
+
func_opt=lambda p: tz.Modular(p, tz.m.WeightedAveraging([1,0.75,0.5,0.25,0]), tz.m.LR(0.05)),
|
|
555
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.WeightedAveraging([1,0.75,0.5,0.25,0]), tz.m.LR(0.5)),
|
|
556
|
+
needs_closure=False,
|
|
557
|
+
func='booth', steps=50, loss=1, merge_invariant=True,
|
|
558
|
+
sphere_steps=10, sphere_loss=2,
|
|
559
|
+
)
|
|
560
|
+
MedianAveraging = Run(
|
|
561
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MedianAveraging(10), tz.m.LR(0.05)),
|
|
562
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MedianAveraging(10), tz.m.LR(0.5)),
|
|
563
|
+
needs_closure=False,
|
|
564
|
+
func='booth', steps=50, loss=0.005, merge_invariant=True,
|
|
565
|
+
sphere_steps=10, sphere_loss=0,
|
|
566
|
+
)
|
|
567
|
+
|
|
568
|
+
# ----------------------------- momentum/cautious ---------------------------- #
|
|
569
|
+
Cautious = Run(
|
|
570
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.Cautious(), tz.m.LR(0.1)),
|
|
571
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.Cautious(), tz.m.LR(0.1)),
|
|
572
|
+
needs_closure=False,
|
|
573
|
+
func='booth', steps=50, loss=0.003, merge_invariant=True,
|
|
574
|
+
sphere_steps=10, sphere_loss=2,
|
|
575
|
+
)
|
|
576
|
+
UpdateGradientSignConsistency = Run(
|
|
577
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.Mul(tz.m.UpdateGradientSignConsistency()), tz.m.LR(0.1)),
|
|
578
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.Mul(tz.m.UpdateGradientSignConsistency()), tz.m.LR(0.1)),
|
|
579
|
+
needs_closure=False,
|
|
580
|
+
func='booth', steps=50, loss=0.003, merge_invariant=True,
|
|
581
|
+
sphere_steps=10, sphere_loss=2,
|
|
582
|
+
)
|
|
583
|
+
IntermoduleCautious = Run(
|
|
584
|
+
func_opt=lambda p: tz.Modular(p, tz.m.IntermoduleCautious(tz.m.NAG(), tz.m.BFGS()), tz.m.LR(0.01)),
|
|
585
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.IntermoduleCautious(tz.m.NAG(), tz.m.BFGS()), tz.m.LR(0.1)),
|
|
586
|
+
needs_closure=False,
|
|
587
|
+
func='booth', steps=50, loss=1e-4, merge_invariant=True,
|
|
588
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
589
|
+
)
|
|
590
|
+
ScaleByGradCosineSimilarity = Run(
|
|
591
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.ScaleByGradCosineSimilarity(), tz.m.LR(0.01)),
|
|
592
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(0.9), tz.m.ScaleByGradCosineSimilarity(), tz.m.LR(0.1)),
|
|
593
|
+
needs_closure=False,
|
|
594
|
+
func='booth', steps=50, loss=0.1, merge_invariant=True,
|
|
595
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
596
|
+
)
|
|
597
|
+
ScaleModulesByCosineSimilarity = Run(
|
|
598
|
+
func_opt=lambda p: tz.Modular(p, tz.m.ScaleModulesByCosineSimilarity(tz.m.HeavyBall(0.9), tz.m.BFGS()),tz.m.LR(0.05)),
|
|
599
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.ScaleModulesByCosineSimilarity(tz.m.HeavyBall(0.9), tz.m.BFGS()),tz.m.LR(0.1)),
|
|
600
|
+
needs_closure=False,
|
|
601
|
+
func='booth', steps=50, loss=0.005, merge_invariant=True,
|
|
602
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
603
|
+
)
|
|
604
|
+
|
|
605
|
+
# ------------------------- momentum/matrix_momentum ------------------------- #
|
|
606
|
+
MatrixMomentum_forward = Run(
|
|
607
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='forward'), tz.m.LR(0.01)),
|
|
608
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='forward'), tz.m.LR(0.5)),
|
|
609
|
+
needs_closure=True,
|
|
610
|
+
func='booth', steps=50, loss=0.05, merge_invariant=True,
|
|
611
|
+
sphere_steps=10, sphere_loss=0,
|
|
612
|
+
)
|
|
613
|
+
MatrixMomentum_forward = Run(
|
|
614
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='central'), tz.m.LR(0.01)),
|
|
615
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='central'), tz.m.LR(0.5)),
|
|
616
|
+
needs_closure=True,
|
|
617
|
+
func='booth', steps=50, loss=0.05, merge_invariant=True,
|
|
618
|
+
sphere_steps=10, sphere_loss=0,
|
|
619
|
+
)
|
|
620
|
+
MatrixMomentum_forward = Run(
|
|
621
|
+
func_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='autograd'), tz.m.LR(0.01)),
|
|
622
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.MatrixMomentum(hvp_mode='autograd'), tz.m.LR(0.5)),
|
|
623
|
+
needs_closure=True,
|
|
624
|
+
func='booth', steps=50, loss=0.05, merge_invariant=True,
|
|
625
|
+
sphere_steps=10, sphere_loss=0,
|
|
626
|
+
)
|
|
627
|
+
|
|
628
|
+
AdaptiveMatrixMomentum_forward = Run(
|
|
629
|
+
func_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='forward'), tz.m.LR(0.05)),
|
|
630
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='forward'), tz.m.LR(0.5)),
|
|
631
|
+
needs_closure=True,
|
|
632
|
+
func='booth', steps=50, loss=0.002, merge_invariant=True,
|
|
633
|
+
sphere_steps=10, sphere_loss=0,
|
|
634
|
+
)
|
|
635
|
+
AdaptiveMatrixMomentum_central = Run(
|
|
636
|
+
func_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='central'), tz.m.LR(0.05)),
|
|
637
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='central'), tz.m.LR(0.5)),
|
|
638
|
+
needs_closure=True,
|
|
639
|
+
func='booth', steps=50, loss=0.002, merge_invariant=True,
|
|
640
|
+
sphere_steps=10, sphere_loss=0,
|
|
641
|
+
)
|
|
642
|
+
AdaptiveMatrixMomentum_autograd = Run(
|
|
643
|
+
func_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='autograd'), tz.m.LR(0.05)),
|
|
644
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.AdaptiveMatrixMomentum(hvp_mode='autograd'), tz.m.LR(0.5)),
|
|
645
|
+
needs_closure=True,
|
|
646
|
+
func='booth', steps=50, loss=0.002, merge_invariant=True,
|
|
647
|
+
sphere_steps=10, sphere_loss=0,
|
|
648
|
+
)
|
|
649
|
+
|
|
650
|
+
# EMA, momentum are covered by test_identical
|
|
651
|
+
# --------------------------------- ops/misc --------------------------------- #
|
|
652
|
+
Previous = Run(
|
|
653
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Previous(10), tz.m.LR(0.05)),
|
|
654
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Previous(3), tz.m.LR(0.5)),
|
|
655
|
+
needs_closure=False,
|
|
656
|
+
func='booth', steps=50, loss=15, merge_invariant=True,
|
|
657
|
+
sphere_steps=10, sphere_loss=0,
|
|
658
|
+
)
|
|
659
|
+
GradSign = Run(
|
|
660
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.GradSign(), tz.m.LR(0.05)),
|
|
661
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.GradSign(), tz.m.LR(0.5)),
|
|
662
|
+
needs_closure=False,
|
|
663
|
+
func='booth', steps=50, loss=0.0002, merge_invariant=True,
|
|
664
|
+
sphere_steps=10, sphere_loss=0.1,
|
|
665
|
+
)
|
|
666
|
+
UpdateSign = Run(
|
|
667
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.UpdateSign(), tz.m.LR(0.05)),
|
|
668
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.UpdateSign(), tz.m.LR(0.5)),
|
|
669
|
+
needs_closure=False,
|
|
670
|
+
func='booth', steps=50, loss=0.01, merge_invariant=True,
|
|
671
|
+
sphere_steps=10, sphere_loss=0,
|
|
672
|
+
)
|
|
673
|
+
GradAccumulation = Run(
|
|
674
|
+
func_opt=lambda p: tz.Modular(p, tz.m.GradientAccumulation(tz.m.LR(0.05), 10), ),
|
|
675
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.GradientAccumulation(tz.m.LR(0.5), 10), ),
|
|
676
|
+
needs_closure=False,
|
|
677
|
+
func='booth', steps=50, loss=25, merge_invariant=True,
|
|
678
|
+
sphere_steps=20, sphere_loss=1e-11,
|
|
679
|
+
)
|
|
680
|
+
NegateOnLossIncrease = Run(
|
|
681
|
+
func_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.LR(0.02), tz.m.NegateOnLossIncrease(),),
|
|
682
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.HeavyBall(), tz.m.LR(0.1), tz.m.NegateOnLossIncrease(),),
|
|
683
|
+
needs_closure=True,
|
|
684
|
+
func='booth', steps=50, loss=0.1, merge_invariant=True,
|
|
685
|
+
sphere_steps=20, sphere_loss=0.001,
|
|
686
|
+
)
|
|
687
|
+
# -------------------------------- misc/switch ------------------------------- #
|
|
688
|
+
Alternate = Run(
|
|
689
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Alternate(tz.m.Adagrad(), tz.m.Adam(), tz.m.RMSprop()), tz.m.LR(1)),
|
|
690
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Alternate(tz.m.Adagrad(), tz.m.Adam(), tz.m.RMSprop()), tz.m.LR(1)),
|
|
691
|
+
needs_closure=False,
|
|
692
|
+
func='booth', steps=50, loss=1, merge_invariant=True,
|
|
693
|
+
sphere_steps=20, sphere_loss=20,
|
|
694
|
+
)
|
|
695
|
+
|
|
696
|
+
# ------------------------------ optimizers/adam ----------------------------- #
|
|
697
|
+
Adam = Run(
|
|
698
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Adam(), tz.m.LR(0.5)),
|
|
699
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Adam(), tz.m.LR(0.2)),
|
|
700
|
+
needs_closure=False,
|
|
701
|
+
func='rosen', steps=50, loss=4, merge_invariant=True,
|
|
702
|
+
sphere_steps=20, sphere_loss=4,
|
|
703
|
+
)
|
|
704
|
+
# ------------------------------ optimizers/soap ----------------------------- #
|
|
705
|
+
SOAP = Run(
|
|
706
|
+
func_opt=lambda p: tz.Modular(p, tz.m.SOAP(), tz.m.LR(0.4)),
|
|
707
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.SOAP(), tz.m.LR(1)),
|
|
708
|
+
needs_closure=False,
|
|
709
|
+
func='rosen', steps=50, loss=4, merge_invariant=False,
|
|
710
|
+
sphere_steps=20, sphere_loss=25, # merge and unmerge lrs are very different so need to test convergence separately somewhere
|
|
711
|
+
)
|
|
712
|
+
# ------------------------------ optimizers/lion ----------------------------- #
|
|
713
|
+
Lion = Run(
|
|
714
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Lion(), tz.m.LR(1)),
|
|
715
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Lion(), tz.m.LR(0.1)),
|
|
716
|
+
needs_closure=False,
|
|
717
|
+
func='booth', steps=50, loss=0, merge_invariant=True,
|
|
718
|
+
sphere_steps=20, sphere_loss=25,
|
|
719
|
+
)
|
|
720
|
+
# ---------------------------- optimizers/shampoo ---------------------------- #
|
|
721
|
+
Shampoo = Run(
|
|
722
|
+
func_opt=lambda p: tz.Modular(p, tz.m.GraftModules(tz.m.Shampoo(), tz.m.RMSprop()), tz.m.LR(0.1)),
|
|
723
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.GraftModules(tz.m.Shampoo(), tz.m.RMSprop()), tz.m.LR(0.2)),
|
|
724
|
+
needs_closure=False,
|
|
725
|
+
func='booth', steps=50, loss=200, merge_invariant=False,
|
|
726
|
+
sphere_steps=20, sphere_loss=1e-4, # merge and unmerge lrs are very different so need to test convergence separately somewhere
|
|
727
|
+
)
|
|
728
|
+
|
|
729
|
+
# ------------------------- quasi_newton/quasi_newton ------------------------ #
|
|
730
|
+
BFGS = Run(
|
|
731
|
+
func_opt=lambda p: tz.Modular(p, tz.m.BFGS(), tz.m.StrongWolfe()),
|
|
732
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.BFGS(), tz.m.StrongWolfe()),
|
|
733
|
+
needs_closure=True,
|
|
734
|
+
func='rosen', steps=50, loss=0, merge_invariant=True,
|
|
735
|
+
sphere_steps=10, sphere_loss=0,
|
|
736
|
+
)
|
|
737
|
+
SR1 = Run(
|
|
738
|
+
func_opt=lambda p: tz.Modular(p, tz.m.SR1(), tz.m.StrongWolfe()),
|
|
739
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.SR1(), tz.m.StrongWolfe()),
|
|
740
|
+
needs_closure=True,
|
|
741
|
+
func='rosen', steps=50, loss=1e-12, merge_invariant=True,
|
|
742
|
+
sphere_steps=10, sphere_loss=0,
|
|
743
|
+
)
|
|
744
|
+
SSVM = Run(
|
|
745
|
+
func_opt=lambda p: tz.Modular(p, tz.m.SSVM(1), tz.m.StrongWolfe()),
|
|
746
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.SSVM(1), tz.m.StrongWolfe()),
|
|
747
|
+
needs_closure=True,
|
|
748
|
+
func='rosen', steps=50, loss=1e-12, merge_invariant=True,
|
|
749
|
+
sphere_steps=10, sphere_loss=0,
|
|
750
|
+
)
|
|
751
|
+
|
|
752
|
+
# ---------------------------- quasi_newton/lbfgs ---------------------------- #
|
|
753
|
+
LBFGS = Run(
|
|
754
|
+
func_opt=lambda p: tz.Modular(p, tz.m.LBFGS(), tz.m.StrongWolfe()),
|
|
755
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.LBFGS(), tz.m.StrongWolfe()),
|
|
756
|
+
needs_closure=True,
|
|
757
|
+
func='rosen', steps=50, loss=0, merge_invariant=True,
|
|
758
|
+
sphere_steps=10, sphere_loss=0,
|
|
759
|
+
)
|
|
760
|
+
|
|
761
|
+
# ----------------------------- quasi_newton/lsr1 ---------------------------- #
|
|
762
|
+
LSR1 = Run(
|
|
763
|
+
func_opt=lambda p: tz.Modular(p, tz.m.LSR1(), tz.m.StrongWolfe()),
|
|
764
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.LSR1(), tz.m.StrongWolfe()),
|
|
765
|
+
needs_closure=True,
|
|
766
|
+
func='rosen', steps=50, loss=0, merge_invariant=True,
|
|
767
|
+
sphere_steps=10, sphere_loss=0,
|
|
768
|
+
)
|
|
769
|
+
|
|
770
|
+
# ---------------------------- quasi_newton/olbfgs --------------------------- #
|
|
771
|
+
OnlineLBFGS = Run(
|
|
772
|
+
func_opt=lambda p: tz.Modular(p, tz.m.OnlineLBFGS(), tz.m.StrongWolfe()),
|
|
773
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.OnlineLBFGS(), tz.m.StrongWolfe()),
|
|
774
|
+
needs_closure=True,
|
|
775
|
+
func='rosen', steps=50, loss=0, merge_invariant=True,
|
|
776
|
+
sphere_steps=10, sphere_loss=0,
|
|
777
|
+
)
|
|
778
|
+
|
|
779
|
+
# ---------------------------- second_order/newton --------------------------- #
|
|
780
|
+
Newton = Run(
|
|
781
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Newton(), tz.m.StrongWolfe()),
|
|
782
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Newton(), tz.m.StrongWolfe()),
|
|
783
|
+
needs_closure=True,
|
|
784
|
+
func='rosen', steps=20, loss=1e-7, merge_invariant=True,
|
|
785
|
+
sphere_steps=2, sphere_loss=1e-9,
|
|
786
|
+
)
|
|
787
|
+
|
|
788
|
+
# --------------------------- second_order/newton_cg -------------------------- #
|
|
789
|
+
NewtonCG = Run(
|
|
790
|
+
func_opt=lambda p: tz.Modular(p, tz.m.NewtonCG(), tz.m.StrongWolfe()),
|
|
791
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.NewtonCG(), tz.m.StrongWolfe()),
|
|
792
|
+
needs_closure=True,
|
|
793
|
+
func='rosen', steps=20, loss=1e-7, merge_invariant=True,
|
|
794
|
+
sphere_steps=2, sphere_loss=1e-6,
|
|
795
|
+
)
|
|
796
|
+
|
|
797
|
+
# ---------------------------- smoothing/gaussian ---------------------------- #
|
|
798
|
+
GaussianHomotopy = Run(
|
|
799
|
+
func_opt=lambda p: tz.Modular(p, tz.m.GaussianHomotopy(10, 1, tol=1e-1, seed=0), tz.m.BFGS(), tz.m.StrongWolfe()),
|
|
800
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.GaussianHomotopy(10, 1, tol=1e-1, seed=0), tz.m.BFGS(), tz.m.StrongWolfe()),
|
|
801
|
+
needs_closure=True,
|
|
802
|
+
func='booth', steps=20, loss=0.1, merge_invariant=True,
|
|
803
|
+
sphere_steps=10, sphere_loss=150, # merge and unmerge lrs are very different so need to test convergence separately somewhere
|
|
804
|
+
)
|
|
805
|
+
|
|
806
|
+
# ---------------------------- smoothing/laplacian --------------------------- #
|
|
807
|
+
LaplacianSmoothing = Run(
|
|
808
|
+
func_opt=lambda p: tz.Modular(p, tz.m.LaplacianSmoothing(min_numel=1), tz.m.LR(0.1)),
|
|
809
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.LaplacianSmoothing(min_numel=1), tz.m.LR(0.5)),
|
|
810
|
+
needs_closure=False,
|
|
811
|
+
func='booth', steps=50, loss=0.4, merge_invariant=False,
|
|
812
|
+
sphere_steps=10, sphere_loss=3, # merge and unmerge lrs are very different so need to test convergence separately somewhere
|
|
813
|
+
)
|
|
814
|
+
|
|
815
|
+
LaplacianSmoothing_global = Run(
|
|
816
|
+
func_opt=lambda p: tz.Modular(p, tz.m.LaplacianSmoothing(layerwise=False), tz.m.LR(0.1)),
|
|
817
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.LaplacianSmoothing(layerwise=False), tz.m.LR(0.5)),
|
|
818
|
+
needs_closure=False,
|
|
819
|
+
func='booth', steps=50, loss=0.4, merge_invariant=True,
|
|
820
|
+
sphere_steps=10, sphere_loss=3, # merge and unmerge lrs are very different so need to test convergence separately somewhere
|
|
821
|
+
)
|
|
822
|
+
|
|
823
|
+
# -------------------------- wrappers/optim_wrapper -------------------------- #
|
|
824
|
+
Wrap = Run(
|
|
825
|
+
func_opt=lambda p: tz.Modular(p, tz.m.Wrap(torch.optim.Adam, lr=1), tz.m.LR(0.5)),
|
|
826
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.Wrap(torch.optim.Adam, lr=1), tz.m.LR(0.2)),
|
|
827
|
+
needs_closure=False,
|
|
828
|
+
func='rosen', steps=50, loss=4, merge_invariant=True,
|
|
829
|
+
sphere_steps=20, sphere_loss=4,
|
|
830
|
+
)
|
|
831
|
+
|
|
832
|
+
# --------------------------- second_order/nystrom --------------------------- #
|
|
833
|
+
NystromSketchAndSolve = Run(
|
|
834
|
+
func_opt=lambda p: tz.Modular(p, tz.m.NystromSketchAndSolve(2, seed=0), tz.m.StrongWolfe()),
|
|
835
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.NystromSketchAndSolve(10, seed=0), tz.m.StrongWolfe()),
|
|
836
|
+
needs_closure=True,
|
|
837
|
+
func='booth', steps=3, loss=1e-8, merge_invariant=True,
|
|
838
|
+
sphere_steps=10, sphere_loss=1e-12,
|
|
839
|
+
)
|
|
840
|
+
NystromPCG = Run(
|
|
841
|
+
func_opt=lambda p: tz.Modular(p, tz.m.NystromPCG(2, seed=0), tz.m.StrongWolfe()),
|
|
842
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.NystromPCG(10, seed=0), tz.m.StrongWolfe()),
|
|
843
|
+
needs_closure=True,
|
|
844
|
+
func='ill', steps=2, loss=1e-5, merge_invariant=True,
|
|
845
|
+
sphere_steps=2, sphere_loss=1e-9,
|
|
846
|
+
)
|
|
847
|
+
|
|
848
|
+
# ---------------------------- optimizers/sophia_h --------------------------- #
|
|
849
|
+
SophiaH = Run(
|
|
850
|
+
func_opt=lambda p: tz.Modular(p, tz.m.SophiaH(seed=0), tz.m.LR(0.1)),
|
|
851
|
+
sphere_opt=lambda p: tz.Modular(p, tz.m.SophiaH(seed=0), tz.m.LR(0.3)),
|
|
852
|
+
needs_closure=True,
|
|
853
|
+
func='ill', steps=50, loss=0.02, merge_invariant=True,
|
|
854
|
+
sphere_steps=10, sphere_loss=40,
|
|
855
|
+
)
|
|
856
|
+
|
|
857
|
+
# ------------------------------------ CGs ----------------------------------- #
|
|
858
|
+
for CG in (tz.m.PolakRibiere, tz.m.FletcherReeves, tz.m.HestenesStiefel, tz.m.DaiYuan, tz.m.LiuStorey, tz.m.ConjugateDescent, tz.m.HagerZhang, tz.m.HybridHS_DY):
|
|
859
|
+
for func_steps,sphere_steps_ in ([3,2], [10,10]): # CG should converge on 2D quadratic after 2nd step
|
|
860
|
+
# but also test 10 to make sure it doesn't explode after converging
|
|
861
|
+
Run(
|
|
862
|
+
func_opt=lambda p: tz.Modular(p, CG(), tz.m.StrongWolfe(c2=0.1)),
|
|
863
|
+
sphere_opt=lambda p: tz.Modular(p, CG(), tz.m.StrongWolfe(c2=0.1)),
|
|
864
|
+
needs_closure=True,
|
|
865
|
+
func='lstsq', steps=func_steps, loss=1e-10, merge_invariant=False, # strong wolfe adds float imprecision
|
|
866
|
+
sphere_steps=sphere_steps_, sphere_loss=0,
|
|
867
|
+
)
|
|
868
|
+
|
|
869
|
+
# ------------------------------- QN stability ------------------------------- #
|
|
870
|
+
# stability test
|
|
871
|
+
for QN in (tz.m.BFGS, tz.m.SR1, tz.m.DFP, tz.m.BroydenGood, tz.m.BroydenBad, tz.m.Greenstadt1, tz.m.Greenstadt2, tz.m.ColumnUpdatingMethod, tz.m.ThomasOptimalMethod, tz.m.PSB, tz.m.Pearson2, tz.m.SSVM):
|
|
872
|
+
Run(
|
|
873
|
+
func_opt=lambda p: tz.Modular(p, QN(scale_first=False), tz.m.StrongWolfe()),
|
|
874
|
+
sphere_opt=lambda p: tz.Modular(p, QN(scale_first=False), tz.m.StrongWolfe()),
|
|
875
|
+
needs_closure=True,
|
|
876
|
+
func='lstsq', steps=50, loss=1e-10, merge_invariant=False,
|
|
877
|
+
sphere_steps=10, sphere_loss=1e-20,
|
|
878
|
+
)
|
|
879
|
+
|
|
880
|
+
# ---------------------------------------------------------------------------- #
|
|
881
|
+
# run #
|
|
882
|
+
# ---------------------------------------------------------------------------- #
|
|
883
|
+
@pytest.mark.parametrize("run", RUNS)
|
|
884
|
+
def test_opt(run: Run): run.test()
|