torchtextclassifiers 0.0.1__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. torchTextClassifiers/__init__.py +12 -48
  2. torchTextClassifiers/dataset/__init__.py +1 -0
  3. torchTextClassifiers/dataset/dataset.py +152 -0
  4. torchTextClassifiers/model/__init__.py +2 -0
  5. torchTextClassifiers/model/components/__init__.py +12 -0
  6. torchTextClassifiers/model/components/attention.py +126 -0
  7. torchTextClassifiers/model/components/categorical_var_net.py +128 -0
  8. torchTextClassifiers/model/components/classification_head.py +61 -0
  9. torchTextClassifiers/model/components/text_embedder.py +220 -0
  10. torchTextClassifiers/model/lightning.py +170 -0
  11. torchTextClassifiers/model/model.py +151 -0
  12. torchTextClassifiers/tokenizers/WordPiece.py +92 -0
  13. torchTextClassifiers/tokenizers/__init__.py +10 -0
  14. torchTextClassifiers/tokenizers/base.py +205 -0
  15. torchTextClassifiers/tokenizers/ngram.py +472 -0
  16. torchTextClassifiers/torchTextClassifiers.py +500 -413
  17. torchTextClassifiers/utilities/__init__.py +0 -3
  18. torchTextClassifiers/utilities/plot_explainability.py +184 -0
  19. torchtextclassifiers-1.0.0.dist-info/METADATA +87 -0
  20. torchtextclassifiers-1.0.0.dist-info/RECORD +21 -0
  21. {torchtextclassifiers-0.0.1.dist-info → torchtextclassifiers-1.0.0.dist-info}/WHEEL +1 -1
  22. torchTextClassifiers/classifiers/base.py +0 -83
  23. torchTextClassifiers/classifiers/fasttext/__init__.py +0 -25
  24. torchTextClassifiers/classifiers/fasttext/core.py +0 -269
  25. torchTextClassifiers/classifiers/fasttext/model.py +0 -752
  26. torchTextClassifiers/classifiers/fasttext/tokenizer.py +0 -346
  27. torchTextClassifiers/classifiers/fasttext/wrapper.py +0 -216
  28. torchTextClassifiers/classifiers/simple_text_classifier.py +0 -191
  29. torchTextClassifiers/factories.py +0 -34
  30. torchTextClassifiers/utilities/checkers.py +0 -108
  31. torchTextClassifiers/utilities/preprocess.py +0 -82
  32. torchTextClassifiers/utilities/utils.py +0 -346
  33. torchtextclassifiers-0.0.1.dist-info/METADATA +0 -187
  34. torchtextclassifiers-0.0.1.dist-info/RECORD +0 -17
@@ -11,58 +11,22 @@ Key Features:
11
11
  - Extensible architecture for adding new classifier types
12
12
  - Support for both text-only and mixed text/categorical features
13
13
 
14
- Quick Start:
15
- >>> from torchTextClassifiers import create_fasttext
16
- >>> import numpy as np
17
- >>>
18
- >>> # Create classifier
19
- >>> classifier = create_fasttext(
20
- ... embedding_dim=100,
21
- ... sparse=False,
22
- ... num_tokens=10000,
23
- ... min_count=2,
24
- ... min_n=3,
25
- ... max_n=6,
26
- ... len_word_ngrams=2,
27
- ... num_classes=2
28
- ... )
29
- >>>
30
- >>> # Prepare data
31
- >>> X_train = np.array(["positive text", "negative text"])
32
- >>> y_train = np.array([1, 0])
33
- >>> X_val = np.array(["validation text"])
34
- >>> y_val = np.array([1])
35
- >>>
36
- >>> # Build and train
37
- >>> classifier.build(X_train, y_train)
38
- >>> classifier.train(X_train, y_train, X_val, y_val, num_epochs=10, batch_size=32)
39
- >>>
40
- >>> # Predict
41
- >>> predictions = classifier.predict(np.array(["new text sample"]))
42
14
  """
43
15
 
44
- from .torchTextClassifiers import torchTextClassifiers
45
-
46
- # Convenience imports for FastText
47
- try:
48
- from .classifiers.fasttext.core import FastTextFactory
49
-
50
- # Expose FastText convenience methods at package level for easy access
51
- create_fasttext = FastTextFactory.create_fasttext
52
- build_fasttext_from_tokenizer = FastTextFactory.build_from_tokenizer
53
-
54
- except ImportError:
55
- # FastText module not available - define placeholder functions
56
- def create_fasttext(*args, **kwargs):
57
- raise ImportError("FastText module not available")
58
-
59
- def build_fasttext_from_tokenizer(*args, **kwargs):
60
- raise ImportError("FastText module not available")
16
+ from .torchTextClassifiers import (
17
+ ModelConfig as ModelConfig,
18
+ )
19
+ from .torchTextClassifiers import (
20
+ TrainingConfig as TrainingConfig,
21
+ )
22
+ from .torchTextClassifiers import (
23
+ torchTextClassifiers as torchTextClassifiers,
24
+ )
61
25
 
62
26
  __all__ = [
63
27
  "torchTextClassifiers",
64
- "create_fasttext",
65
- "build_fasttext_from_tokenizer",
28
+ "ModelConfig",
29
+ "TrainingConfig",
66
30
  ]
67
31
 
68
- __version__ = "1.0.0"
32
+ __version__ = "1.0.0"
@@ -0,0 +1 @@
1
+ from .dataset import TextClassificationDataset as TextClassificationDataset
@@ -0,0 +1,152 @@
1
+ import logging
2
+ import os
3
+ from typing import List, Union
4
+
5
+ import numpy as np
6
+ import torch
7
+ from torch.utils.data import DataLoader, Dataset
8
+
9
+ from torchTextClassifiers.tokenizers import BaseTokenizer
10
+
11
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class TextClassificationDataset(Dataset):
16
+ def __init__(
17
+ self,
18
+ texts: List[str],
19
+ categorical_variables: Union[List[List[int]], np.array, None],
20
+ tokenizer: BaseTokenizer,
21
+ labels: Union[List[int], List[List[int]], np.array, None] = None,
22
+ ragged_multilabel: bool = False,
23
+ ):
24
+ self.categorical_variables = categorical_variables
25
+
26
+ self.texts = texts
27
+
28
+ if hasattr(tokenizer, "trained") and not tokenizer.trained:
29
+ raise RuntimeError(
30
+ f"Tokenizer {type(tokenizer)} must be trained before creating dataset."
31
+ )
32
+
33
+ self.tokenizer = tokenizer
34
+
35
+ self.texts = texts
36
+ self.tokenizer = tokenizer
37
+ self.labels = labels
38
+ self.ragged_multilabel = ragged_multilabel
39
+
40
+ if self.ragged_multilabel and self.labels is not None:
41
+ max_value = int(max(max(row) for row in labels if row))
42
+ self.num_classes = max_value + 1
43
+
44
+ if max_value == 1:
45
+ try:
46
+ labels = np.array(labels)
47
+ logger.critical(
48
+ """ragged_multilabel set to True but max label value is 1 and all samples have the same number of labels.
49
+ If your labels are already one-hot encoded, set ragged_multilabel to False. Otherwise computations are likely to be wrong."""
50
+ )
51
+ except ValueError:
52
+ logger.warning(
53
+ "ragged_multilabel set to True but max label value is 1. If your labels are already one-hot encoded, set ragged_multilabel to False. Otherwise computations are likely to be wrong."
54
+ )
55
+
56
+ def __len__(self):
57
+ return len(self.texts)
58
+
59
+ def __getitem__(self, idx):
60
+ if self.labels is not None:
61
+ return (
62
+ str(self.texts[idx]),
63
+ (
64
+ self.categorical_variables[idx]
65
+ if self.categorical_variables is not None
66
+ else None
67
+ ),
68
+ self.labels[idx],
69
+ )
70
+ else:
71
+ return (
72
+ str(self.texts[idx]),
73
+ (
74
+ self.categorical_variables[idx]
75
+ if self.categorical_variables is not None
76
+ else None
77
+ ),
78
+ None,
79
+ )
80
+
81
+ def collate_fn(self, batch):
82
+ text, *categorical_vars, labels = zip(*batch)
83
+
84
+ if self.labels is not None:
85
+ if self.ragged_multilabel:
86
+ # Pad labels to the max length in the batch
87
+ labels_padded = torch.nn.utils.rnn.pad_sequence(
88
+ [torch.tensor(label) for label in labels],
89
+ batch_first=True,
90
+ padding_value=-1, # use impossible class
91
+ ).int()
92
+
93
+ labels_tensor = torch.zeros(labels_padded.size(0), 6).float()
94
+ mask = labels_padded != -1
95
+
96
+ batch_size = labels_padded.size(0)
97
+ rows = torch.arange(batch_size).unsqueeze(1).expand_as(labels_padded)[mask]
98
+ cols = labels_padded[mask]
99
+
100
+ labels_tensor[rows, cols] = 1
101
+
102
+ else:
103
+ labels_tensor = torch.tensor(labels)
104
+ else:
105
+ labels_tensor = None
106
+
107
+ tokenize_output = self.tokenizer.tokenize(list(text))
108
+
109
+ if self.categorical_variables is not None:
110
+ categorical_tensors = torch.stack(
111
+ [
112
+ torch.tensor(cat_var, dtype=torch.float32)
113
+ for cat_var in categorical_vars[
114
+ 0
115
+ ] # Access first element since zip returns tuple
116
+ ]
117
+ )
118
+ else:
119
+ categorical_tensors = None
120
+
121
+ return {
122
+ "input_ids": tokenize_output.input_ids,
123
+ "attention_mask": tokenize_output.attention_mask,
124
+ "categorical_vars": categorical_tensors,
125
+ "labels": labels_tensor,
126
+ }
127
+
128
+ def create_dataloader(
129
+ self,
130
+ batch_size: int,
131
+ shuffle: bool = False,
132
+ drop_last: bool = False,
133
+ num_workers: int = os.cpu_count() - 1,
134
+ pin_memory: bool = False,
135
+ persistent_workers: bool = True,
136
+ **kwargs,
137
+ ):
138
+ # persistent_workers requires num_workers > 0
139
+ if num_workers == 0:
140
+ persistent_workers = False
141
+
142
+ return DataLoader(
143
+ dataset=self,
144
+ batch_size=batch_size,
145
+ collate_fn=self.collate_fn,
146
+ shuffle=shuffle,
147
+ drop_last=drop_last,
148
+ pin_memory=pin_memory,
149
+ num_workers=num_workers,
150
+ persistent_workers=persistent_workers,
151
+ **kwargs,
152
+ )
@@ -0,0 +1,2 @@
1
+ from .lightning import TextClassificationModule as TextClassificationModule
2
+ from .model import TextClassificationModel as TextClassificationModel
@@ -0,0 +1,12 @@
1
+ from .attention import (
2
+ AttentionConfig as AttentionConfig,
3
+ )
4
+ from .categorical_var_net import (
5
+ CategoricalForwardType as CategoricalForwardType,
6
+ )
7
+ from .categorical_var_net import (
8
+ CategoricalVariableNet as CategoricalVariableNet,
9
+ )
10
+ from .classification_head import ClassificationHead as ClassificationHead
11
+ from .text_embedder import TextEmbedder as TextEmbedder
12
+ from .text_embedder import TextEmbedderConfig as TextEmbedderConfig
@@ -0,0 +1,126 @@
1
+ """Largely inspired from Andrej Karpathy's nanochat, see here https://github.com/karpathy/nanochat/blob/master/nanochat/gpt.py"""
2
+
3
+ from dataclasses import dataclass
4
+ from typing import Optional
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ ### Some utils used in text_embedder.py for the attention blocks ###
11
+
12
+
13
+ def apply_rotary_emb(x, cos, sin):
14
+ assert x.ndim == 4 # multihead attention
15
+
16
+ d = x.shape[3] // 2
17
+ x1, x2 = x[..., :d], x[..., d:] # split up last time into two halves
18
+ y1 = x1 * cos + x2 * sin # rotate pairs of dims
19
+ y2 = x1 * (-sin) + x2 * cos
20
+ out = torch.cat([y1, y2], 3) # re-assemble
21
+ out = out.to(x.dtype) # ensure input/output dtypes match
22
+ return out
23
+
24
+
25
+ def norm(x):
26
+ # Purely functional rmsnorm with no learnable params
27
+ return F.rms_norm(x, (x.size(-1),))
28
+
29
+
30
+ #### Config #####
31
+ @dataclass
32
+ class AttentionConfig:
33
+ n_layers: int
34
+ n_head: int
35
+ n_kv_head: int
36
+ sequence_len: Optional[int] = None
37
+ positional_encoding: bool = True
38
+ aggregation_method: str = "mean" # or 'last', or 'first'
39
+
40
+
41
+ #### Attention Block #####
42
+
43
+ # Composed of SelfAttentionLayer and MLP with residual connections
44
+
45
+
46
+ class Block(nn.Module):
47
+ def __init__(self, config: AttentionConfig, layer_idx: int):
48
+ super().__init__()
49
+
50
+ self.layer_idx = layer_idx
51
+ self.attn = SelfAttentionLayer(config, layer_idx)
52
+ self.mlp = MLP(config)
53
+
54
+ def forward(self, x, cos_sin):
55
+ x = x + self.attn(norm(x), cos_sin)
56
+ x = x + self.mlp(norm(x))
57
+ return x
58
+
59
+
60
+ ##### Components of the Block #####
61
+
62
+
63
+ class SelfAttentionLayer(nn.Module):
64
+ def __init__(self, config: AttentionConfig, layer_idx):
65
+ super().__init__()
66
+ self.layer_idx = layer_idx
67
+ self.n_head = config.n_head
68
+ self.n_kv_head = config.n_kv_head
69
+ self.enable_gqa = (
70
+ self.n_head != self.n_kv_head
71
+ ) # Group Query Attention (GQA): duplicate key/value heads to match query heads if desired
72
+ self.n_embd = config.n_embd
73
+ self.head_dim = self.n_embd // self.n_head
74
+ assert self.n_embd % self.n_head == 0
75
+ assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
76
+ self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
77
+ self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
78
+ self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
79
+ self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
80
+
81
+ self.apply_positional_encoding = config.positional_encoding
82
+
83
+ def forward(self, x, cos_sin=None):
84
+ B, T, C = x.size()
85
+
86
+ # Project the input to get queries, keys, and values
87
+ q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
88
+ k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
89
+ v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
90
+
91
+ if self.apply_positional_encoding:
92
+ assert cos_sin is not None, "Rotary embeddings require precomputed cos/sin tensors"
93
+ cos, sin = cos_sin
94
+ q, k = (
95
+ apply_rotary_emb(q, cos, sin),
96
+ apply_rotary_emb(k, cos, sin),
97
+ ) # QK rotary embedding
98
+
99
+ q, k = norm(q), norm(k) # QK norm
100
+ q, k, v = (
101
+ q.transpose(1, 2),
102
+ k.transpose(1, 2),
103
+ v.transpose(1, 2),
104
+ ) # make head be batch dim, i.e. (B, T, H, D) -> (B, H, T, D)
105
+
106
+ # is_causal=False for non-autoregressive models (BERT-like)
107
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=False, enable_gqa=self.enable_gqa)
108
+
109
+ # Re-assemble the heads side by side and project back to residual stream
110
+ y = y.transpose(1, 2).contiguous().view(B, T, -1)
111
+ y = self.c_proj(y)
112
+
113
+ return y
114
+
115
+
116
+ class MLP(nn.Module):
117
+ def __init__(self, config):
118
+ super().__init__()
119
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
120
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
121
+
122
+ def forward(self, x):
123
+ x = self.c_fc(x)
124
+ x = F.relu(x).square()
125
+ x = self.c_proj(x)
126
+ return x
@@ -0,0 +1,128 @@
1
+ from enum import Enum
2
+ from typing import List, Optional, Union
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class CategoricalForwardType(Enum):
9
+ SUM_TO_TEXT = "EMBEDDING_SUM_TO_TEXT"
10
+ AVERAGE_AND_CONCAT = "EMBEDDING_AVERAGE_AND_CONCAT"
11
+ CONCATENATE_ALL = "EMBEDDING_CONCATENATE_ALL"
12
+
13
+
14
+ class CategoricalVariableNet(nn.Module):
15
+ def __init__(
16
+ self,
17
+ categorical_vocabulary_sizes: List[int],
18
+ categorical_embedding_dims: Optional[Union[List[int], int]] = None,
19
+ text_embedding_dim: Optional[int] = None,
20
+ ):
21
+ super().__init__()
22
+
23
+ self.categorical_vocabulary_sizes = categorical_vocabulary_sizes
24
+ self.categorical_embedding_dims = categorical_embedding_dims
25
+ self.text_embedding_dim = text_embedding_dim
26
+
27
+ self._validate_categorical_inputs()
28
+ assert isinstance(
29
+ self.forward_type, CategoricalForwardType
30
+ ), "forward_type must be set after validation"
31
+ assert isinstance(self.output_dim, int), "output_dim must be set as int after validation"
32
+
33
+ self.categorical_embedding_layers = {}
34
+
35
+ for var_idx, num_rows in enumerate(self.categorical_vocabulary_sizes):
36
+ emb_layer = nn.Embedding(
37
+ num_embeddings=num_rows,
38
+ embedding_dim=self.categorical_embedding_dims[var_idx],
39
+ )
40
+ self.categorical_embedding_layers[var_idx] = emb_layer
41
+ setattr(self, f"categorical_embedding_{var_idx}", emb_layer)
42
+
43
+ def forward(self, categorical_vars_tensor: torch.Tensor) -> torch.Tensor:
44
+ cat_embeds = self._get_cat_embeds(categorical_vars_tensor)
45
+ if self.forward_type == CategoricalForwardType.SUM_TO_TEXT:
46
+ x_combined = torch.stack(cat_embeds, dim=0).sum(dim=0) # (bs, text_embed_dim)
47
+ elif self.forward_type == CategoricalForwardType.AVERAGE_AND_CONCAT:
48
+ x_combined = torch.stack(cat_embeds, dim=0).mean(dim=0) # (bs, embed_dim)
49
+ elif self.forward_type == CategoricalForwardType.CONCATENATE_ALL:
50
+ x_combined = torch.cat(cat_embeds, dim=1) # (bs, sum of all cat embed dims)
51
+ else:
52
+ raise ValueError(f"Unknown forward type: {self.forward_type}")
53
+
54
+ assert (
55
+ x_combined.dim() == 2
56
+ ), "Output combined tensor must be 2-dimensional (batch_size, embed_dim)"
57
+ assert x_combined.size(1) == self.output_dim
58
+
59
+ return x_combined
60
+
61
+ def _get_cat_embeds(self, categorical_vars_tensor: torch.Tensor):
62
+ if categorical_vars_tensor.dtype != torch.long:
63
+ categorical_vars_tensor = categorical_vars_tensor.to(torch.long)
64
+ cat_embeds = []
65
+
66
+ for i, embed_layer in self.categorical_embedding_layers.items():
67
+ cat_var_tensor = categorical_vars_tensor[:, i]
68
+
69
+ # Check if categorical values are within valid range
70
+ vocab_size = embed_layer.num_embeddings
71
+ max_val = cat_var_tensor.max().item()
72
+ min_val = cat_var_tensor.min().item()
73
+
74
+ if max_val >= vocab_size or min_val < 0:
75
+ raise ValueError(
76
+ f"Categorical feature {i}: values range [{min_val}, {max_val}] exceed vocabulary size {vocab_size}."
77
+ )
78
+
79
+ cat_embed = embed_layer(cat_var_tensor)
80
+ if cat_embed.dim() > 2:
81
+ cat_embed = cat_embed.squeeze(1)
82
+ cat_embeds.append(cat_embed)
83
+
84
+ return cat_embeds
85
+
86
+ def _validate_categorical_inputs(self):
87
+ categorical_vocabulary_sizes = self.categorical_vocabulary_sizes
88
+ categorical_embedding_dims = self.categorical_embedding_dims
89
+
90
+ if not isinstance(categorical_vocabulary_sizes, list):
91
+ raise TypeError("categorical_vocabulary_sizes must be a list of int")
92
+
93
+ if isinstance(categorical_embedding_dims, list):
94
+ if len(categorical_vocabulary_sizes) != len(categorical_embedding_dims):
95
+ raise ValueError(
96
+ "Categorical vocabulary sizes and their embedding dimensions must have the same length"
97
+ )
98
+
99
+ num_categorical_features = len(categorical_vocabulary_sizes)
100
+
101
+ # "Transform" embedding dims into a suitable list, or stay None
102
+ if categorical_embedding_dims is not None:
103
+ if isinstance(categorical_embedding_dims, int):
104
+ self.forward_type = CategoricalForwardType.AVERAGE_AND_CONCAT
105
+ self.output_dim = categorical_embedding_dims
106
+ categorical_embedding_dims = [categorical_embedding_dims] * num_categorical_features
107
+
108
+ elif isinstance(categorical_embedding_dims, list):
109
+ self.forward_type = CategoricalForwardType.CONCATENATE_ALL
110
+ self.output_dim = sum(categorical_embedding_dims)
111
+ else:
112
+ raise TypeError("categorical_embedding_dims must be an int, a list of int or None")
113
+ else:
114
+ if self.text_embedding_dim is None:
115
+ raise ValueError(
116
+ "If categorical_embedding_dims is None, text_embedding_dim must be provided"
117
+ )
118
+ self.forward_type = CategoricalForwardType.SUM_TO_TEXT
119
+ self.output_dim = self.text_embedding_dim
120
+ categorical_embedding_dims = [self.text_embedding_dim] * num_categorical_features
121
+
122
+ assert (
123
+ isinstance(categorical_embedding_dims, list) or categorical_embedding_dims is None
124
+ ), "categorical_embedding_dims must be a list of int at this point"
125
+
126
+ self.categorical_vocabulary_sizes = categorical_vocabulary_sizes
127
+ self.categorical_embedding_dims = categorical_embedding_dims
128
+ self.num_categorical_features = num_categorical_features
@@ -0,0 +1,61 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+
7
+ class ClassificationHead(nn.Module):
8
+ def __init__(
9
+ self,
10
+ input_dim: Optional[int] = None,
11
+ num_classes: Optional[int] = None,
12
+ net: Optional[nn.Module] = None,
13
+ ):
14
+ """
15
+ Classification head for text classification tasks.
16
+ It is a nn.Module that can either be a simple Linear layer or a custom neural network module.
17
+
18
+ Args:
19
+ input_dim (int, optional): Dimension of the input features. Required if net is not provided.
20
+ num_classes (int, optional): Number of output classes. Required if net is not provided.
21
+ net (nn.Module, optional): Custom neural network module to be used as the classification head.
22
+ If provided, input_dim and num_classes are inferred from this module.
23
+ Should be either an nn.Sequential with first and last layers being Linears or nn.Linear.
24
+ """
25
+ super().__init__()
26
+ if net is not None:
27
+ self.net = net
28
+
29
+ # --- Custom net should either be a Sequential or a Linear ---
30
+ if not (isinstance(net, nn.Sequential) or isinstance(net, nn.Linear)):
31
+ raise ValueError("net must be an nn.Sequential when provided.")
32
+
33
+ # --- If Sequential, Check first and last layers are Linear ---
34
+
35
+ if isinstance(net, nn.Sequential):
36
+ first = net[0]
37
+ last = net[-1]
38
+
39
+ if not isinstance(first, nn.Linear):
40
+ raise TypeError(f"First layer must be nn.Linear, got {type(first).__name__}.")
41
+
42
+ if not isinstance(last, nn.Linear):
43
+ raise TypeError(f"Last layer must be nn.Linear, got {type(last).__name__}.")
44
+
45
+ # --- Extract features ---
46
+ self.input_dim = first.in_features
47
+ self.num_classes = last.out_features
48
+ else: # if not Sequential, it is a Linear
49
+ self.input_dim = net.in_features
50
+ self.num_classes = net.out_features
51
+
52
+ else:
53
+ assert (
54
+ input_dim is not None and num_classes is not None
55
+ ), "Either net or both input_dim and num_classes must be provided."
56
+ self.net = nn.Linear(input_dim, num_classes)
57
+ self.input_dim = input_dim
58
+ self.num_classes = num_classes
59
+
60
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
61
+ return self.net(x)