torchrl 0.11.0__cp314-cp314t-manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cpython-314t-aarch64-linux-gnu.so +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/METADATA +1308 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,1199 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
import argparse
|
|
6
|
+
|
|
7
|
+
import pytest
|
|
8
|
+
import torch
|
|
9
|
+
from packaging import version
|
|
10
|
+
|
|
11
|
+
from tensordict import TensorDict
|
|
12
|
+
from tensordict.nn import (
|
|
13
|
+
composite_lp_aggregate,
|
|
14
|
+
InteractionType,
|
|
15
|
+
NormalParamExtractor,
|
|
16
|
+
ProbabilisticTensorDictModule as ProbMod,
|
|
17
|
+
ProbabilisticTensorDictSequential as ProbSeq,
|
|
18
|
+
TensorDictModule as Mod,
|
|
19
|
+
TensorDictSequential as Seq,
|
|
20
|
+
)
|
|
21
|
+
from torch.nn import functional as F
|
|
22
|
+
from torchrl.data.tensor_specs import Bounded, Unbounded
|
|
23
|
+
from torchrl.modules import MLP, QValueActor, TanhNormal
|
|
24
|
+
from torchrl.objectives import (
|
|
25
|
+
A2CLoss,
|
|
26
|
+
ClipPPOLoss,
|
|
27
|
+
CQLLoss,
|
|
28
|
+
DDPGLoss,
|
|
29
|
+
DQNLoss,
|
|
30
|
+
IQLLoss,
|
|
31
|
+
REDQLoss,
|
|
32
|
+
ReinforceLoss,
|
|
33
|
+
SACLoss,
|
|
34
|
+
TD3Loss,
|
|
35
|
+
)
|
|
36
|
+
from torchrl.objectives.deprecated import REDQLoss_deprecated
|
|
37
|
+
from torchrl.objectives.value import GAE
|
|
38
|
+
from torchrl.objectives.value.functional import (
|
|
39
|
+
generalized_advantage_estimate,
|
|
40
|
+
td0_return_estimate,
|
|
41
|
+
td1_return_estimate,
|
|
42
|
+
td_lambda_return_estimate,
|
|
43
|
+
vec_generalized_advantage_estimate,
|
|
44
|
+
vec_td1_return_estimate,
|
|
45
|
+
vec_td_lambda_return_estimate,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
TORCH_VERSION = torch.__version__
|
|
49
|
+
FULLGRAPH = version.parse(".".join(TORCH_VERSION.split(".")[:3])) >= version.parse(
|
|
50
|
+
"2.5.0"
|
|
51
|
+
) # Anything from 2.5, incl. nightlies, allows for fullgraph
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
# @pytest.fixture(scope="module", autouse=True)
|
|
55
|
+
# def set_default_device():
|
|
56
|
+
# cur_device = getattr(torch, "get_default_device", lambda: torch.device("cpu"))()
|
|
57
|
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
58
|
+
# torch.set_default_device(device)
|
|
59
|
+
# yield
|
|
60
|
+
# torch.set_default_device(cur_device)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class setup_value_fn:
|
|
64
|
+
def __init__(self, has_lmbda, has_state_value):
|
|
65
|
+
self.has_lmbda = has_lmbda
|
|
66
|
+
self.has_state_value = has_state_value
|
|
67
|
+
|
|
68
|
+
def __call__(
|
|
69
|
+
self,
|
|
70
|
+
b=300,
|
|
71
|
+
t=500,
|
|
72
|
+
d=1,
|
|
73
|
+
gamma=0.95,
|
|
74
|
+
lmbda=0.95,
|
|
75
|
+
):
|
|
76
|
+
torch.manual_seed(0)
|
|
77
|
+
device = "cuda:0" if torch.cuda.device_count() else "cpu"
|
|
78
|
+
values = torch.randn(b, t, d, device=device)
|
|
79
|
+
next_values = torch.randn(b, t, d, device=device)
|
|
80
|
+
reward = torch.randn(b, t, d, device=device)
|
|
81
|
+
done = torch.zeros(b, t, d, dtype=torch.bool, device=device).bernoulli_(0.1)
|
|
82
|
+
kwargs = {
|
|
83
|
+
"gamma": gamma,
|
|
84
|
+
"next_state_value": next_values,
|
|
85
|
+
"reward": reward,
|
|
86
|
+
"done": done,
|
|
87
|
+
}
|
|
88
|
+
if self.has_lmbda:
|
|
89
|
+
kwargs["lmbda"] = lmbda
|
|
90
|
+
|
|
91
|
+
if self.has_state_value:
|
|
92
|
+
kwargs["state_value"] = values
|
|
93
|
+
|
|
94
|
+
return ((), kwargs)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@pytest.mark.parametrize(
|
|
98
|
+
"val_fn,has_lmbda,has_state_value",
|
|
99
|
+
[
|
|
100
|
+
[generalized_advantage_estimate, True, True],
|
|
101
|
+
[vec_generalized_advantage_estimate, True, True],
|
|
102
|
+
[td0_return_estimate, False, False],
|
|
103
|
+
[td1_return_estimate, False, False],
|
|
104
|
+
[vec_td1_return_estimate, False, False],
|
|
105
|
+
[td_lambda_return_estimate, True, False],
|
|
106
|
+
[vec_td_lambda_return_estimate, True, False],
|
|
107
|
+
],
|
|
108
|
+
)
|
|
109
|
+
def test_values(benchmark, val_fn, has_lmbda, has_state_value):
|
|
110
|
+
benchmark.pedantic(
|
|
111
|
+
val_fn,
|
|
112
|
+
setup=setup_value_fn(
|
|
113
|
+
has_lmbda=has_lmbda,
|
|
114
|
+
has_state_value=has_state_value,
|
|
115
|
+
),
|
|
116
|
+
iterations=1,
|
|
117
|
+
rounds=50,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
@pytest.mark.parametrize(
|
|
122
|
+
"gae_fn,gamma_tensor,batches,timesteps",
|
|
123
|
+
[
|
|
124
|
+
[generalized_advantage_estimate, False, 1, 512],
|
|
125
|
+
[vec_generalized_advantage_estimate, True, 1, 512],
|
|
126
|
+
[vec_generalized_advantage_estimate, False, 1, 512],
|
|
127
|
+
[vec_generalized_advantage_estimate, True, 32, 512],
|
|
128
|
+
[vec_generalized_advantage_estimate, False, 32, 512],
|
|
129
|
+
],
|
|
130
|
+
)
|
|
131
|
+
def test_gae_speed(benchmark, gae_fn, gamma_tensor, batches, timesteps):
|
|
132
|
+
size = (batches, timesteps, 1)
|
|
133
|
+
|
|
134
|
+
torch.manual_seed(0)
|
|
135
|
+
device = "cuda:0" if torch.cuda.device_count() else "cpu"
|
|
136
|
+
values = torch.randn(*size, device=device)
|
|
137
|
+
next_values = torch.randn(*size, device=device)
|
|
138
|
+
reward = torch.randn(*size, device=device)
|
|
139
|
+
done = torch.zeros(*size, dtype=torch.bool, device=device).bernoulli_(0.1)
|
|
140
|
+
|
|
141
|
+
gamma = 0.99
|
|
142
|
+
if gamma_tensor:
|
|
143
|
+
gamma = torch.full(size, gamma, device=device)
|
|
144
|
+
lmbda = 0.95
|
|
145
|
+
|
|
146
|
+
benchmark(
|
|
147
|
+
gae_fn,
|
|
148
|
+
gamma=gamma,
|
|
149
|
+
lmbda=lmbda,
|
|
150
|
+
state_value=values,
|
|
151
|
+
next_state_value=next_values,
|
|
152
|
+
reward=reward,
|
|
153
|
+
done=done,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def _maybe_compile(fn, compile, td, fullgraph=FULLGRAPH, warmup=3):
|
|
158
|
+
if compile:
|
|
159
|
+
if isinstance(compile, str):
|
|
160
|
+
fn = torch.compile(fn, mode=compile, fullgraph=fullgraph)
|
|
161
|
+
else:
|
|
162
|
+
fn = torch.compile(fn, fullgraph=fullgraph)
|
|
163
|
+
|
|
164
|
+
for _ in range(warmup):
|
|
165
|
+
fn(td)
|
|
166
|
+
|
|
167
|
+
return fn
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
171
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
172
|
+
def test_dqn_speed(
|
|
173
|
+
benchmark, backward, compile, n_obs=8, n_act=4, depth=3, ncells=128, batch=128
|
|
174
|
+
):
|
|
175
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
176
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
177
|
+
if compile:
|
|
178
|
+
torch._dynamo.reset_code_caches()
|
|
179
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
180
|
+
net = MLP(
|
|
181
|
+
in_features=n_obs,
|
|
182
|
+
out_features=n_act,
|
|
183
|
+
depth=depth,
|
|
184
|
+
num_cells=ncells,
|
|
185
|
+
device=device,
|
|
186
|
+
)
|
|
187
|
+
action_space = "one-hot"
|
|
188
|
+
mod = QValueActor(net, in_keys=["obs"], action_space=action_space)
|
|
189
|
+
loss = DQNLoss(value_network=mod, action_space=action_space)
|
|
190
|
+
td = TensorDict(
|
|
191
|
+
{
|
|
192
|
+
"obs": torch.randn(batch, n_obs),
|
|
193
|
+
"action": F.one_hot(torch.randint(n_act, (batch,))),
|
|
194
|
+
"next": {
|
|
195
|
+
"obs": torch.randn(batch, n_obs),
|
|
196
|
+
"done": torch.zeros(batch, 1, dtype=torch.bool),
|
|
197
|
+
"reward": torch.randn(batch, 1),
|
|
198
|
+
},
|
|
199
|
+
},
|
|
200
|
+
[batch],
|
|
201
|
+
device=device,
|
|
202
|
+
)
|
|
203
|
+
loss(td)
|
|
204
|
+
|
|
205
|
+
loss = _maybe_compile(loss, compile, td)
|
|
206
|
+
|
|
207
|
+
if backward:
|
|
208
|
+
|
|
209
|
+
def loss_and_bw(td):
|
|
210
|
+
losses = loss(td)
|
|
211
|
+
sum(
|
|
212
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
213
|
+
).backward()
|
|
214
|
+
|
|
215
|
+
benchmark.pedantic(
|
|
216
|
+
loss_and_bw,
|
|
217
|
+
args=(td,),
|
|
218
|
+
setup=loss.zero_grad,
|
|
219
|
+
iterations=1,
|
|
220
|
+
warmup_rounds=5,
|
|
221
|
+
rounds=50,
|
|
222
|
+
)
|
|
223
|
+
else:
|
|
224
|
+
benchmark(loss, td)
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
228
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
229
|
+
def test_ddpg_speed(
|
|
230
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
231
|
+
):
|
|
232
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
233
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
234
|
+
if compile:
|
|
235
|
+
torch._dynamo.reset_code_caches()
|
|
236
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
237
|
+
common = MLP(
|
|
238
|
+
num_cells=ncells,
|
|
239
|
+
in_features=n_obs,
|
|
240
|
+
depth=3,
|
|
241
|
+
out_features=n_hidden,
|
|
242
|
+
device=device,
|
|
243
|
+
)
|
|
244
|
+
actor = MLP(
|
|
245
|
+
num_cells=ncells,
|
|
246
|
+
in_features=n_hidden,
|
|
247
|
+
depth=2,
|
|
248
|
+
out_features=n_act,
|
|
249
|
+
device=device,
|
|
250
|
+
)
|
|
251
|
+
value = MLP(
|
|
252
|
+
in_features=n_hidden + n_act,
|
|
253
|
+
num_cells=ncells,
|
|
254
|
+
depth=2,
|
|
255
|
+
out_features=1,
|
|
256
|
+
device=device,
|
|
257
|
+
)
|
|
258
|
+
batch = [batch]
|
|
259
|
+
td = TensorDict(
|
|
260
|
+
{
|
|
261
|
+
"obs": torch.randn(*batch, n_obs),
|
|
262
|
+
"action": torch.randn(*batch, n_act),
|
|
263
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
264
|
+
"next": {
|
|
265
|
+
"obs": torch.randn(*batch, n_obs),
|
|
266
|
+
"reward": torch.randn(*batch, 1),
|
|
267
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
268
|
+
},
|
|
269
|
+
},
|
|
270
|
+
batch,
|
|
271
|
+
device=device,
|
|
272
|
+
)
|
|
273
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
274
|
+
actor_head = Mod(actor, in_keys=["hidden"], out_keys=["action"])
|
|
275
|
+
actor = Seq(common, actor_head)
|
|
276
|
+
value = Mod(value, in_keys=["hidden", "action"], out_keys=["state_action_value"])
|
|
277
|
+
value(actor(td))
|
|
278
|
+
|
|
279
|
+
loss = DDPGLoss(actor, value)
|
|
280
|
+
|
|
281
|
+
loss(td)
|
|
282
|
+
|
|
283
|
+
loss = _maybe_compile(loss, compile, td)
|
|
284
|
+
|
|
285
|
+
if backward:
|
|
286
|
+
|
|
287
|
+
def loss_and_bw(td):
|
|
288
|
+
losses = loss(td)
|
|
289
|
+
sum(
|
|
290
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
291
|
+
).backward()
|
|
292
|
+
|
|
293
|
+
benchmark.pedantic(
|
|
294
|
+
loss_and_bw,
|
|
295
|
+
args=(td,),
|
|
296
|
+
setup=loss.zero_grad,
|
|
297
|
+
iterations=1,
|
|
298
|
+
warmup_rounds=5,
|
|
299
|
+
rounds=50,
|
|
300
|
+
)
|
|
301
|
+
else:
|
|
302
|
+
benchmark(loss, td)
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
306
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
307
|
+
def test_sac_speed(
|
|
308
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
309
|
+
):
|
|
310
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
311
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
312
|
+
if compile:
|
|
313
|
+
torch._dynamo.reset_code_caches()
|
|
314
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
315
|
+
common = MLP(
|
|
316
|
+
num_cells=ncells,
|
|
317
|
+
in_features=n_obs,
|
|
318
|
+
depth=3,
|
|
319
|
+
out_features=n_hidden,
|
|
320
|
+
device=device,
|
|
321
|
+
)
|
|
322
|
+
actor_net = MLP(
|
|
323
|
+
num_cells=ncells,
|
|
324
|
+
in_features=n_hidden,
|
|
325
|
+
depth=2,
|
|
326
|
+
out_features=2 * n_act,
|
|
327
|
+
device=device,
|
|
328
|
+
)
|
|
329
|
+
value = MLP(
|
|
330
|
+
in_features=n_hidden + n_act,
|
|
331
|
+
num_cells=ncells,
|
|
332
|
+
depth=2,
|
|
333
|
+
out_features=1,
|
|
334
|
+
device=device,
|
|
335
|
+
)
|
|
336
|
+
batch = [batch]
|
|
337
|
+
td = TensorDict(
|
|
338
|
+
{
|
|
339
|
+
"obs": torch.randn(*batch, n_obs),
|
|
340
|
+
"action": torch.randn(*batch, n_act),
|
|
341
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
342
|
+
"next": {
|
|
343
|
+
"obs": torch.randn(*batch, n_obs),
|
|
344
|
+
"reward": torch.randn(*batch, 1),
|
|
345
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
346
|
+
},
|
|
347
|
+
},
|
|
348
|
+
batch,
|
|
349
|
+
device=device,
|
|
350
|
+
)
|
|
351
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
352
|
+
actor = ProbSeq(
|
|
353
|
+
common,
|
|
354
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
355
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
356
|
+
ProbMod(
|
|
357
|
+
in_keys=["loc", "scale"],
|
|
358
|
+
out_keys=["action"],
|
|
359
|
+
distribution_class=TanhNormal,
|
|
360
|
+
distribution_kwargs={"safe_tanh": False},
|
|
361
|
+
),
|
|
362
|
+
)
|
|
363
|
+
value_head = Mod(
|
|
364
|
+
value, in_keys=["hidden", "action"], out_keys=["state_action_value"]
|
|
365
|
+
)
|
|
366
|
+
value = Seq(common, value_head)
|
|
367
|
+
value(actor(td.clone()))
|
|
368
|
+
|
|
369
|
+
loss = SACLoss(actor, value, action_spec=Unbounded(shape=(n_act,)))
|
|
370
|
+
|
|
371
|
+
loss(td)
|
|
372
|
+
|
|
373
|
+
loss = _maybe_compile(loss, compile, td)
|
|
374
|
+
|
|
375
|
+
if backward:
|
|
376
|
+
|
|
377
|
+
def loss_and_bw(td):
|
|
378
|
+
losses = loss(td)
|
|
379
|
+
sum(
|
|
380
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
381
|
+
).backward()
|
|
382
|
+
|
|
383
|
+
benchmark.pedantic(
|
|
384
|
+
loss_and_bw,
|
|
385
|
+
args=(td,),
|
|
386
|
+
setup=loss.zero_grad,
|
|
387
|
+
iterations=1,
|
|
388
|
+
warmup_rounds=5,
|
|
389
|
+
rounds=50,
|
|
390
|
+
)
|
|
391
|
+
else:
|
|
392
|
+
benchmark(loss, td)
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
# FIXME: fix this
|
|
396
|
+
@pytest.mark.skipif(torch.cuda.is_available(), reason="Currently fails on GPU")
|
|
397
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
398
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
399
|
+
def test_redq_speed(
|
|
400
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
401
|
+
):
|
|
402
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
403
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
404
|
+
if compile:
|
|
405
|
+
torch._dynamo.reset_code_caches()
|
|
406
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
407
|
+
common = MLP(
|
|
408
|
+
num_cells=ncells,
|
|
409
|
+
in_features=n_obs,
|
|
410
|
+
depth=3,
|
|
411
|
+
out_features=n_hidden,
|
|
412
|
+
device=device,
|
|
413
|
+
)
|
|
414
|
+
actor_net = MLP(
|
|
415
|
+
num_cells=ncells,
|
|
416
|
+
in_features=n_hidden,
|
|
417
|
+
depth=2,
|
|
418
|
+
out_features=2 * n_act,
|
|
419
|
+
device=device,
|
|
420
|
+
)
|
|
421
|
+
value = MLP(
|
|
422
|
+
in_features=n_hidden + n_act,
|
|
423
|
+
num_cells=ncells,
|
|
424
|
+
depth=2,
|
|
425
|
+
out_features=1,
|
|
426
|
+
device=device,
|
|
427
|
+
)
|
|
428
|
+
batch = [batch]
|
|
429
|
+
td = TensorDict(
|
|
430
|
+
{
|
|
431
|
+
"obs": torch.randn(*batch, n_obs),
|
|
432
|
+
"action": torch.randn(*batch, n_act),
|
|
433
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
434
|
+
"next": {
|
|
435
|
+
"obs": torch.randn(*batch, n_obs),
|
|
436
|
+
"reward": torch.randn(*batch, 1),
|
|
437
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
438
|
+
},
|
|
439
|
+
},
|
|
440
|
+
batch,
|
|
441
|
+
device=device,
|
|
442
|
+
)
|
|
443
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
444
|
+
actor = ProbSeq(
|
|
445
|
+
common,
|
|
446
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
447
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
448
|
+
ProbMod(
|
|
449
|
+
in_keys=["loc", "scale"],
|
|
450
|
+
out_keys=["action"],
|
|
451
|
+
distribution_class=TanhNormal,
|
|
452
|
+
return_log_prob=True,
|
|
453
|
+
distribution_kwargs={"safe_tanh": False},
|
|
454
|
+
),
|
|
455
|
+
)
|
|
456
|
+
value_head = Mod(
|
|
457
|
+
value, in_keys=["hidden", "action"], out_keys=["state_action_value"]
|
|
458
|
+
)
|
|
459
|
+
value = Seq(common, value_head)
|
|
460
|
+
value(actor(td.copy()))
|
|
461
|
+
|
|
462
|
+
loss = REDQLoss(actor, value, action_spec=Unbounded(shape=(n_act,)))
|
|
463
|
+
|
|
464
|
+
loss(td)
|
|
465
|
+
loss = _maybe_compile(loss, compile, td)
|
|
466
|
+
|
|
467
|
+
if backward:
|
|
468
|
+
|
|
469
|
+
def loss_and_bw(td):
|
|
470
|
+
losses = loss(td)
|
|
471
|
+
totalloss = sum(
|
|
472
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
473
|
+
)
|
|
474
|
+
totalloss.backward()
|
|
475
|
+
|
|
476
|
+
loss_and_bw(td)
|
|
477
|
+
|
|
478
|
+
benchmark.pedantic(
|
|
479
|
+
loss_and_bw,
|
|
480
|
+
args=(td,),
|
|
481
|
+
setup=loss.zero_grad,
|
|
482
|
+
iterations=1,
|
|
483
|
+
warmup_rounds=5,
|
|
484
|
+
rounds=50,
|
|
485
|
+
)
|
|
486
|
+
else:
|
|
487
|
+
benchmark(loss, td)
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
491
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
492
|
+
def test_redq_deprec_speed(
|
|
493
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
494
|
+
):
|
|
495
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
496
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
497
|
+
if compile:
|
|
498
|
+
torch._dynamo.reset_code_caches()
|
|
499
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
500
|
+
common = MLP(
|
|
501
|
+
num_cells=ncells,
|
|
502
|
+
in_features=n_obs,
|
|
503
|
+
depth=3,
|
|
504
|
+
out_features=n_hidden,
|
|
505
|
+
device=device,
|
|
506
|
+
)
|
|
507
|
+
actor_net = MLP(
|
|
508
|
+
num_cells=ncells,
|
|
509
|
+
in_features=n_hidden,
|
|
510
|
+
depth=2,
|
|
511
|
+
out_features=2 * n_act,
|
|
512
|
+
device=device,
|
|
513
|
+
)
|
|
514
|
+
value = MLP(
|
|
515
|
+
in_features=n_hidden + n_act,
|
|
516
|
+
num_cells=ncells,
|
|
517
|
+
depth=2,
|
|
518
|
+
out_features=1,
|
|
519
|
+
device=device,
|
|
520
|
+
)
|
|
521
|
+
batch = [batch]
|
|
522
|
+
td = TensorDict(
|
|
523
|
+
{
|
|
524
|
+
"obs": torch.randn(*batch, n_obs),
|
|
525
|
+
"action": torch.randn(*batch, n_act),
|
|
526
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
527
|
+
"next": {
|
|
528
|
+
"obs": torch.randn(*batch, n_obs),
|
|
529
|
+
"reward": torch.randn(*batch, 1),
|
|
530
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
531
|
+
},
|
|
532
|
+
},
|
|
533
|
+
batch,
|
|
534
|
+
device=device,
|
|
535
|
+
)
|
|
536
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
537
|
+
actor = ProbSeq(
|
|
538
|
+
common,
|
|
539
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
540
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
541
|
+
ProbMod(
|
|
542
|
+
in_keys=["loc", "scale"],
|
|
543
|
+
out_keys=["action"],
|
|
544
|
+
distribution_class=TanhNormal,
|
|
545
|
+
return_log_prob=True,
|
|
546
|
+
distribution_kwargs={"safe_tanh": False},
|
|
547
|
+
),
|
|
548
|
+
)
|
|
549
|
+
value_head = Mod(
|
|
550
|
+
value, in_keys=["hidden", "action"], out_keys=["state_action_value"]
|
|
551
|
+
)
|
|
552
|
+
value = Seq(common, value_head)
|
|
553
|
+
value(actor(td.copy()))
|
|
554
|
+
|
|
555
|
+
loss = REDQLoss_deprecated(actor, value, action_spec=Unbounded(shape=(n_act,)))
|
|
556
|
+
|
|
557
|
+
loss(td)
|
|
558
|
+
|
|
559
|
+
loss = _maybe_compile(loss, compile, td)
|
|
560
|
+
|
|
561
|
+
if backward:
|
|
562
|
+
|
|
563
|
+
def loss_and_bw(td):
|
|
564
|
+
losses = loss(td)
|
|
565
|
+
sum(
|
|
566
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
567
|
+
).backward()
|
|
568
|
+
|
|
569
|
+
benchmark.pedantic(
|
|
570
|
+
loss_and_bw,
|
|
571
|
+
args=(td,),
|
|
572
|
+
setup=loss.zero_grad,
|
|
573
|
+
iterations=1,
|
|
574
|
+
warmup_rounds=5,
|
|
575
|
+
rounds=50,
|
|
576
|
+
)
|
|
577
|
+
else:
|
|
578
|
+
benchmark(loss, td)
|
|
579
|
+
|
|
580
|
+
|
|
581
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
582
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
583
|
+
def test_td3_speed(
|
|
584
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
585
|
+
):
|
|
586
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
587
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
588
|
+
if compile:
|
|
589
|
+
torch._dynamo.reset_code_caches()
|
|
590
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
591
|
+
common = MLP(
|
|
592
|
+
num_cells=ncells,
|
|
593
|
+
in_features=n_obs,
|
|
594
|
+
depth=3,
|
|
595
|
+
out_features=n_hidden,
|
|
596
|
+
device=device,
|
|
597
|
+
)
|
|
598
|
+
actor_net = MLP(
|
|
599
|
+
num_cells=ncells,
|
|
600
|
+
in_features=n_hidden,
|
|
601
|
+
depth=2,
|
|
602
|
+
out_features=2 * n_act,
|
|
603
|
+
device=device,
|
|
604
|
+
)
|
|
605
|
+
value = MLP(
|
|
606
|
+
in_features=n_hidden + n_act,
|
|
607
|
+
num_cells=ncells,
|
|
608
|
+
depth=2,
|
|
609
|
+
out_features=1,
|
|
610
|
+
device=device,
|
|
611
|
+
)
|
|
612
|
+
batch = [batch]
|
|
613
|
+
td = TensorDict(
|
|
614
|
+
{
|
|
615
|
+
"obs": torch.randn(*batch, n_obs),
|
|
616
|
+
"action": torch.randn(*batch, n_act),
|
|
617
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
618
|
+
"next": {
|
|
619
|
+
"obs": torch.randn(*batch, n_obs),
|
|
620
|
+
"reward": torch.randn(*batch, 1),
|
|
621
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
622
|
+
},
|
|
623
|
+
},
|
|
624
|
+
batch,
|
|
625
|
+
device=device,
|
|
626
|
+
)
|
|
627
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
628
|
+
actor = ProbSeq(
|
|
629
|
+
common,
|
|
630
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
631
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
632
|
+
ProbMod(
|
|
633
|
+
in_keys=["loc", "scale"],
|
|
634
|
+
out_keys=["action"],
|
|
635
|
+
distribution_class=TanhNormal,
|
|
636
|
+
distribution_kwargs={"safe_tanh": False},
|
|
637
|
+
return_log_prob=True,
|
|
638
|
+
default_interaction_type=InteractionType.DETERMINISTIC,
|
|
639
|
+
),
|
|
640
|
+
)
|
|
641
|
+
value_head = Mod(
|
|
642
|
+
value, in_keys=["hidden", "action"], out_keys=["state_action_value"]
|
|
643
|
+
)
|
|
644
|
+
value = Seq(common, value_head)
|
|
645
|
+
value(actor(td.clone()))
|
|
646
|
+
|
|
647
|
+
loss = TD3Loss(
|
|
648
|
+
actor,
|
|
649
|
+
value,
|
|
650
|
+
action_spec=Bounded(shape=(n_act,), low=-1, high=1),
|
|
651
|
+
)
|
|
652
|
+
|
|
653
|
+
loss(td)
|
|
654
|
+
|
|
655
|
+
loss = _maybe_compile(loss, compile, td)
|
|
656
|
+
|
|
657
|
+
if backward:
|
|
658
|
+
|
|
659
|
+
def loss_and_bw(td):
|
|
660
|
+
losses = loss(td)
|
|
661
|
+
sum(
|
|
662
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
663
|
+
).backward()
|
|
664
|
+
|
|
665
|
+
benchmark.pedantic(
|
|
666
|
+
loss_and_bw,
|
|
667
|
+
args=(td,),
|
|
668
|
+
setup=loss.zero_grad,
|
|
669
|
+
iterations=1,
|
|
670
|
+
warmup_rounds=5,
|
|
671
|
+
rounds=50,
|
|
672
|
+
)
|
|
673
|
+
else:
|
|
674
|
+
benchmark.pedantic(loss, args=(td,), rounds=100, iterations=10)
|
|
675
|
+
|
|
676
|
+
|
|
677
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
678
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
679
|
+
def test_cql_speed(
|
|
680
|
+
benchmark, backward, compile, n_obs=8, n_act=4, ncells=128, batch=128, n_hidden=64
|
|
681
|
+
):
|
|
682
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
683
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
684
|
+
if compile:
|
|
685
|
+
torch._dynamo.reset_code_caches()
|
|
686
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
687
|
+
common = MLP(
|
|
688
|
+
num_cells=ncells,
|
|
689
|
+
in_features=n_obs,
|
|
690
|
+
depth=3,
|
|
691
|
+
out_features=n_hidden,
|
|
692
|
+
device=device,
|
|
693
|
+
)
|
|
694
|
+
actor_net = MLP(
|
|
695
|
+
num_cells=ncells,
|
|
696
|
+
in_features=n_hidden,
|
|
697
|
+
depth=2,
|
|
698
|
+
out_features=2 * n_act,
|
|
699
|
+
device=device,
|
|
700
|
+
)
|
|
701
|
+
value = MLP(
|
|
702
|
+
in_features=n_hidden + n_act,
|
|
703
|
+
num_cells=ncells,
|
|
704
|
+
depth=2,
|
|
705
|
+
out_features=1,
|
|
706
|
+
device=device,
|
|
707
|
+
)
|
|
708
|
+
batch = [batch]
|
|
709
|
+
td = TensorDict(
|
|
710
|
+
{
|
|
711
|
+
"obs": torch.randn(*batch, n_obs),
|
|
712
|
+
"action": torch.randn(*batch, n_act),
|
|
713
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
714
|
+
"next": {
|
|
715
|
+
"obs": torch.randn(*batch, n_obs),
|
|
716
|
+
"reward": torch.randn(*batch, 1),
|
|
717
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
718
|
+
},
|
|
719
|
+
},
|
|
720
|
+
batch,
|
|
721
|
+
device=device,
|
|
722
|
+
)
|
|
723
|
+
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
|
|
724
|
+
actor = ProbSeq(
|
|
725
|
+
common,
|
|
726
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
727
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
728
|
+
ProbMod(
|
|
729
|
+
in_keys=["loc", "scale"],
|
|
730
|
+
out_keys=["action"],
|
|
731
|
+
distribution_class=TanhNormal,
|
|
732
|
+
distribution_kwargs={"safe_tanh": False},
|
|
733
|
+
),
|
|
734
|
+
)
|
|
735
|
+
value_head = Mod(
|
|
736
|
+
value, in_keys=["hidden", "action"], out_keys=["state_action_value"]
|
|
737
|
+
)
|
|
738
|
+
value = Seq(common, value_head)
|
|
739
|
+
value(actor(td.copy()))
|
|
740
|
+
|
|
741
|
+
loss = CQLLoss(actor, value, action_spec=Unbounded(shape=(n_act,)))
|
|
742
|
+
|
|
743
|
+
loss(td)
|
|
744
|
+
|
|
745
|
+
loss = _maybe_compile(loss, compile, td)
|
|
746
|
+
|
|
747
|
+
if backward:
|
|
748
|
+
|
|
749
|
+
def loss_and_bw(td):
|
|
750
|
+
losses = loss(td)
|
|
751
|
+
sum(
|
|
752
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
753
|
+
).backward()
|
|
754
|
+
|
|
755
|
+
benchmark.pedantic(
|
|
756
|
+
loss_and_bw,
|
|
757
|
+
args=(td,),
|
|
758
|
+
setup=loss.zero_grad,
|
|
759
|
+
iterations=1,
|
|
760
|
+
warmup_rounds=5,
|
|
761
|
+
rounds=50,
|
|
762
|
+
)
|
|
763
|
+
else:
|
|
764
|
+
benchmark(loss, td)
|
|
765
|
+
|
|
766
|
+
|
|
767
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
768
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
769
|
+
def test_a2c_speed(
|
|
770
|
+
benchmark,
|
|
771
|
+
backward,
|
|
772
|
+
compile,
|
|
773
|
+
n_obs=8,
|
|
774
|
+
n_act=4,
|
|
775
|
+
n_hidden=64,
|
|
776
|
+
ncells=128,
|
|
777
|
+
batch=128,
|
|
778
|
+
T=10,
|
|
779
|
+
):
|
|
780
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
781
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
782
|
+
if compile:
|
|
783
|
+
torch._dynamo.reset_code_caches()
|
|
784
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
785
|
+
common_net = MLP(
|
|
786
|
+
num_cells=ncells,
|
|
787
|
+
in_features=n_obs,
|
|
788
|
+
depth=3,
|
|
789
|
+
out_features=n_hidden,
|
|
790
|
+
device=device,
|
|
791
|
+
)
|
|
792
|
+
actor_net = MLP(
|
|
793
|
+
num_cells=ncells,
|
|
794
|
+
in_features=n_hidden,
|
|
795
|
+
depth=2,
|
|
796
|
+
out_features=2 * n_act,
|
|
797
|
+
device=device,
|
|
798
|
+
)
|
|
799
|
+
value_net = MLP(
|
|
800
|
+
in_features=n_hidden,
|
|
801
|
+
num_cells=ncells,
|
|
802
|
+
depth=2,
|
|
803
|
+
out_features=1,
|
|
804
|
+
device=device,
|
|
805
|
+
)
|
|
806
|
+
batch = [batch, T]
|
|
807
|
+
if composite_lp_aggregate():
|
|
808
|
+
raise RuntimeError(
|
|
809
|
+
"Expected composite_lp_aggregate() to return False. Use set_composite_lp_aggregate or COMPOSITE_LP_AGGREGATE env variable."
|
|
810
|
+
)
|
|
811
|
+
td = TensorDict(
|
|
812
|
+
{
|
|
813
|
+
"obs": torch.randn(*batch, n_obs),
|
|
814
|
+
"action": torch.randn(*batch, n_act),
|
|
815
|
+
"action_log_prob": torch.randn(*batch),
|
|
816
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
817
|
+
"next": {
|
|
818
|
+
"obs": torch.randn(*batch, n_obs),
|
|
819
|
+
"reward": torch.randn(*batch, 1),
|
|
820
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
821
|
+
},
|
|
822
|
+
},
|
|
823
|
+
batch,
|
|
824
|
+
names=[None, "time"],
|
|
825
|
+
device=device,
|
|
826
|
+
)
|
|
827
|
+
common = Mod(common_net, in_keys=["obs"], out_keys=["hidden"])
|
|
828
|
+
actor = ProbSeq(
|
|
829
|
+
common,
|
|
830
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
831
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
832
|
+
ProbMod(
|
|
833
|
+
in_keys=["loc", "scale"],
|
|
834
|
+
out_keys=["action"],
|
|
835
|
+
distribution_class=TanhNormal,
|
|
836
|
+
distribution_kwargs={"safe_tanh": False},
|
|
837
|
+
),
|
|
838
|
+
)
|
|
839
|
+
critic = Seq(common, Mod(value_net, in_keys=["hidden"], out_keys=["state_value"]))
|
|
840
|
+
actor(td.clone())
|
|
841
|
+
critic(td.clone())
|
|
842
|
+
|
|
843
|
+
loss = A2CLoss(actor_network=actor, critic_network=critic)
|
|
844
|
+
advantage = GAE(
|
|
845
|
+
value_network=critic, gamma=0.99, lmbda=0.95, shifted=True, device=device
|
|
846
|
+
)
|
|
847
|
+
advantage(td)
|
|
848
|
+
loss(td)
|
|
849
|
+
|
|
850
|
+
loss = _maybe_compile(loss, compile, td)
|
|
851
|
+
|
|
852
|
+
if backward:
|
|
853
|
+
|
|
854
|
+
def loss_and_bw(td):
|
|
855
|
+
losses = loss(td)
|
|
856
|
+
sum(
|
|
857
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
858
|
+
).backward()
|
|
859
|
+
|
|
860
|
+
benchmark.pedantic(
|
|
861
|
+
loss_and_bw,
|
|
862
|
+
args=(td,),
|
|
863
|
+
setup=loss.zero_grad,
|
|
864
|
+
iterations=1,
|
|
865
|
+
warmup_rounds=5,
|
|
866
|
+
rounds=50,
|
|
867
|
+
)
|
|
868
|
+
else:
|
|
869
|
+
benchmark(loss, td)
|
|
870
|
+
|
|
871
|
+
|
|
872
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
873
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
874
|
+
def test_ppo_speed(
|
|
875
|
+
benchmark,
|
|
876
|
+
backward,
|
|
877
|
+
compile,
|
|
878
|
+
n_obs=8,
|
|
879
|
+
n_act=4,
|
|
880
|
+
n_hidden=64,
|
|
881
|
+
ncells=128,
|
|
882
|
+
batch=128,
|
|
883
|
+
T=10,
|
|
884
|
+
):
|
|
885
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
886
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
887
|
+
if compile:
|
|
888
|
+
torch._dynamo.reset_code_caches()
|
|
889
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
890
|
+
common_net = MLP(
|
|
891
|
+
num_cells=ncells,
|
|
892
|
+
in_features=n_obs,
|
|
893
|
+
depth=3,
|
|
894
|
+
out_features=n_hidden,
|
|
895
|
+
device=device,
|
|
896
|
+
)
|
|
897
|
+
actor_net = MLP(
|
|
898
|
+
num_cells=ncells,
|
|
899
|
+
in_features=n_hidden,
|
|
900
|
+
depth=2,
|
|
901
|
+
out_features=2 * n_act,
|
|
902
|
+
device=device,
|
|
903
|
+
)
|
|
904
|
+
value_net = MLP(
|
|
905
|
+
in_features=n_hidden,
|
|
906
|
+
num_cells=ncells,
|
|
907
|
+
depth=2,
|
|
908
|
+
out_features=1,
|
|
909
|
+
device=device,
|
|
910
|
+
)
|
|
911
|
+
batch = [batch, T]
|
|
912
|
+
if composite_lp_aggregate():
|
|
913
|
+
raise RuntimeError(
|
|
914
|
+
"Expected composite_lp_aggregate() to return False. Use set_composite_lp_aggregate or COMPOSITE_LP_AGGREGATE env variable."
|
|
915
|
+
)
|
|
916
|
+
td = TensorDict(
|
|
917
|
+
{
|
|
918
|
+
"obs": torch.randn(*batch, n_obs),
|
|
919
|
+
"action": torch.randn(*batch, n_act),
|
|
920
|
+
"action_log_prob": torch.randn(*batch),
|
|
921
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
922
|
+
"next": {
|
|
923
|
+
"obs": torch.randn(*batch, n_obs),
|
|
924
|
+
"reward": torch.randn(*batch, 1),
|
|
925
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
926
|
+
},
|
|
927
|
+
},
|
|
928
|
+
batch,
|
|
929
|
+
names=[None, "time"],
|
|
930
|
+
device=device,
|
|
931
|
+
)
|
|
932
|
+
common = Mod(common_net, in_keys=["obs"], out_keys=["hidden"])
|
|
933
|
+
actor = ProbSeq(
|
|
934
|
+
common,
|
|
935
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
936
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
937
|
+
ProbMod(
|
|
938
|
+
in_keys=["loc", "scale"],
|
|
939
|
+
out_keys=["action"],
|
|
940
|
+
distribution_class=TanhNormal,
|
|
941
|
+
distribution_kwargs={"safe_tanh": False},
|
|
942
|
+
),
|
|
943
|
+
)
|
|
944
|
+
critic = Seq(common, Mod(value_net, in_keys=["hidden"], out_keys=["state_value"]))
|
|
945
|
+
actor(td.clone())
|
|
946
|
+
critic(td.clone())
|
|
947
|
+
|
|
948
|
+
loss = ClipPPOLoss(actor_network=actor, critic_network=critic)
|
|
949
|
+
advantage = GAE(
|
|
950
|
+
value_network=critic, gamma=0.99, lmbda=0.95, shifted=True, device=device
|
|
951
|
+
)
|
|
952
|
+
advantage(td)
|
|
953
|
+
loss(td)
|
|
954
|
+
|
|
955
|
+
loss = _maybe_compile(loss, compile, td)
|
|
956
|
+
|
|
957
|
+
if backward:
|
|
958
|
+
|
|
959
|
+
def loss_and_bw(td):
|
|
960
|
+
losses = loss(td)
|
|
961
|
+
sum(
|
|
962
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
963
|
+
).backward()
|
|
964
|
+
|
|
965
|
+
benchmark.pedantic(
|
|
966
|
+
loss_and_bw,
|
|
967
|
+
args=(td,),
|
|
968
|
+
setup=loss.zero_grad,
|
|
969
|
+
iterations=1,
|
|
970
|
+
warmup_rounds=5,
|
|
971
|
+
rounds=50,
|
|
972
|
+
)
|
|
973
|
+
else:
|
|
974
|
+
benchmark(loss, td)
|
|
975
|
+
|
|
976
|
+
|
|
977
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
978
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
979
|
+
def test_reinforce_speed(
|
|
980
|
+
benchmark,
|
|
981
|
+
backward,
|
|
982
|
+
compile,
|
|
983
|
+
n_obs=8,
|
|
984
|
+
n_act=4,
|
|
985
|
+
n_hidden=64,
|
|
986
|
+
ncells=128,
|
|
987
|
+
batch=128,
|
|
988
|
+
T=10,
|
|
989
|
+
):
|
|
990
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
991
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
992
|
+
if compile:
|
|
993
|
+
torch._dynamo.reset_code_caches()
|
|
994
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
995
|
+
common_net = MLP(
|
|
996
|
+
num_cells=ncells,
|
|
997
|
+
in_features=n_obs,
|
|
998
|
+
depth=3,
|
|
999
|
+
out_features=n_hidden,
|
|
1000
|
+
device=device,
|
|
1001
|
+
)
|
|
1002
|
+
actor_net = MLP(
|
|
1003
|
+
num_cells=ncells,
|
|
1004
|
+
in_features=n_hidden,
|
|
1005
|
+
depth=2,
|
|
1006
|
+
out_features=2 * n_act,
|
|
1007
|
+
device=device,
|
|
1008
|
+
)
|
|
1009
|
+
value_net = MLP(
|
|
1010
|
+
in_features=n_hidden,
|
|
1011
|
+
num_cells=ncells,
|
|
1012
|
+
depth=2,
|
|
1013
|
+
out_features=1,
|
|
1014
|
+
device=device,
|
|
1015
|
+
)
|
|
1016
|
+
batch = [batch, T]
|
|
1017
|
+
if composite_lp_aggregate():
|
|
1018
|
+
raise RuntimeError(
|
|
1019
|
+
"Expected composite_lp_aggregate() to return False. Use set_composite_lp_aggregate or COMPOSITE_LP_AGGREGATE env variable."
|
|
1020
|
+
)
|
|
1021
|
+
td = TensorDict(
|
|
1022
|
+
{
|
|
1023
|
+
"obs": torch.randn(*batch, n_obs),
|
|
1024
|
+
"action": torch.randn(*batch, n_act),
|
|
1025
|
+
"action_log_prob": torch.randn(*batch),
|
|
1026
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1027
|
+
"next": {
|
|
1028
|
+
"obs": torch.randn(*batch, n_obs),
|
|
1029
|
+
"reward": torch.randn(*batch, 1),
|
|
1030
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1031
|
+
},
|
|
1032
|
+
},
|
|
1033
|
+
batch,
|
|
1034
|
+
names=[None, "time"],
|
|
1035
|
+
device=device,
|
|
1036
|
+
)
|
|
1037
|
+
common = Mod(common_net, in_keys=["obs"], out_keys=["hidden"])
|
|
1038
|
+
actor = ProbSeq(
|
|
1039
|
+
common,
|
|
1040
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
1041
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
1042
|
+
ProbMod(
|
|
1043
|
+
in_keys=["loc", "scale"],
|
|
1044
|
+
out_keys=["action"],
|
|
1045
|
+
distribution_class=TanhNormal,
|
|
1046
|
+
distribution_kwargs={"safe_tanh": False},
|
|
1047
|
+
),
|
|
1048
|
+
)
|
|
1049
|
+
critic = Seq(common, Mod(value_net, in_keys=["hidden"], out_keys=["state_value"]))
|
|
1050
|
+
actor(td.clone())
|
|
1051
|
+
critic(td.clone())
|
|
1052
|
+
|
|
1053
|
+
loss = ReinforceLoss(actor_network=actor, critic_network=critic)
|
|
1054
|
+
advantage = GAE(
|
|
1055
|
+
value_network=critic, gamma=0.99, lmbda=0.95, shifted=True, device=device
|
|
1056
|
+
)
|
|
1057
|
+
advantage(td)
|
|
1058
|
+
loss(td)
|
|
1059
|
+
|
|
1060
|
+
loss = _maybe_compile(loss, compile, td)
|
|
1061
|
+
|
|
1062
|
+
if backward:
|
|
1063
|
+
|
|
1064
|
+
def loss_and_bw(td):
|
|
1065
|
+
losses = loss(td)
|
|
1066
|
+
sum(
|
|
1067
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
1068
|
+
).backward()
|
|
1069
|
+
|
|
1070
|
+
benchmark.pedantic(
|
|
1071
|
+
loss_and_bw,
|
|
1072
|
+
args=(td,),
|
|
1073
|
+
setup=loss.zero_grad,
|
|
1074
|
+
iterations=1,
|
|
1075
|
+
warmup_rounds=5,
|
|
1076
|
+
rounds=50,
|
|
1077
|
+
)
|
|
1078
|
+
else:
|
|
1079
|
+
benchmark(loss, td)
|
|
1080
|
+
|
|
1081
|
+
|
|
1082
|
+
@pytest.mark.parametrize("backward", [None, "backward"])
|
|
1083
|
+
@pytest.mark.parametrize("compile", [False, True, "reduce-overhead"])
|
|
1084
|
+
def test_iql_speed(
|
|
1085
|
+
benchmark,
|
|
1086
|
+
backward,
|
|
1087
|
+
compile,
|
|
1088
|
+
n_obs=8,
|
|
1089
|
+
n_act=4,
|
|
1090
|
+
n_hidden=64,
|
|
1091
|
+
ncells=128,
|
|
1092
|
+
batch=128,
|
|
1093
|
+
T=10,
|
|
1094
|
+
):
|
|
1095
|
+
if compile == "reduce-overhead" and backward is not None:
|
|
1096
|
+
pytest.skip("reduce-overhead with backward causes segfaults in CI")
|
|
1097
|
+
if compile:
|
|
1098
|
+
torch._dynamo.reset_code_caches()
|
|
1099
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
1100
|
+
common_net = MLP(
|
|
1101
|
+
num_cells=ncells,
|
|
1102
|
+
in_features=n_obs,
|
|
1103
|
+
depth=3,
|
|
1104
|
+
out_features=n_hidden,
|
|
1105
|
+
device=device,
|
|
1106
|
+
)
|
|
1107
|
+
actor_net = MLP(
|
|
1108
|
+
num_cells=ncells,
|
|
1109
|
+
in_features=n_hidden,
|
|
1110
|
+
depth=2,
|
|
1111
|
+
out_features=2 * n_act,
|
|
1112
|
+
device=device,
|
|
1113
|
+
)
|
|
1114
|
+
value_net = MLP(
|
|
1115
|
+
in_features=n_hidden,
|
|
1116
|
+
num_cells=ncells,
|
|
1117
|
+
depth=2,
|
|
1118
|
+
out_features=1,
|
|
1119
|
+
device=device,
|
|
1120
|
+
)
|
|
1121
|
+
qvalue_net = MLP(
|
|
1122
|
+
in_features=n_hidden + n_act,
|
|
1123
|
+
num_cells=ncells,
|
|
1124
|
+
depth=2,
|
|
1125
|
+
out_features=1,
|
|
1126
|
+
device=device,
|
|
1127
|
+
)
|
|
1128
|
+
batch = [batch, T]
|
|
1129
|
+
if composite_lp_aggregate():
|
|
1130
|
+
raise RuntimeError(
|
|
1131
|
+
"Expected composite_lp_aggregate() to return False. Use set_composite_lp_aggregate or COMPOSITE_LP_AGGREGATE env variable."
|
|
1132
|
+
)
|
|
1133
|
+
td = TensorDict(
|
|
1134
|
+
{
|
|
1135
|
+
"obs": torch.randn(*batch, n_obs),
|
|
1136
|
+
"action": torch.randn(*batch, n_act),
|
|
1137
|
+
"action_log_prob": torch.randn(*batch),
|
|
1138
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1139
|
+
"next": {
|
|
1140
|
+
"obs": torch.randn(*batch, n_obs),
|
|
1141
|
+
"reward": torch.randn(*batch, 1),
|
|
1142
|
+
"done": torch.zeros(*batch, 1, dtype=torch.bool),
|
|
1143
|
+
},
|
|
1144
|
+
},
|
|
1145
|
+
batch,
|
|
1146
|
+
names=[None, "time"],
|
|
1147
|
+
device=device,
|
|
1148
|
+
)
|
|
1149
|
+
common = Mod(common_net, in_keys=["obs"], out_keys=["hidden"])
|
|
1150
|
+
actor = ProbSeq(
|
|
1151
|
+
common,
|
|
1152
|
+
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
|
|
1153
|
+
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
|
|
1154
|
+
ProbMod(
|
|
1155
|
+
in_keys=["loc", "scale"],
|
|
1156
|
+
out_keys=["action"],
|
|
1157
|
+
distribution_class=TanhNormal,
|
|
1158
|
+
distribution_kwargs={"safe_tanh": False},
|
|
1159
|
+
),
|
|
1160
|
+
)
|
|
1161
|
+
value = Seq(common, Mod(value_net, in_keys=["hidden"], out_keys=["state_value"]))
|
|
1162
|
+
qvalue = Seq(
|
|
1163
|
+
common,
|
|
1164
|
+
Mod(qvalue_net, in_keys=["hidden", "action"], out_keys=["state_action_value"]),
|
|
1165
|
+
)
|
|
1166
|
+
qvalue(actor(td.clone()))
|
|
1167
|
+
value(td.clone())
|
|
1168
|
+
|
|
1169
|
+
loss = IQLLoss(actor_network=actor, value_network=value, qvalue_network=qvalue)
|
|
1170
|
+
loss(td)
|
|
1171
|
+
|
|
1172
|
+
loss = _maybe_compile(loss, compile, td)
|
|
1173
|
+
|
|
1174
|
+
if backward:
|
|
1175
|
+
|
|
1176
|
+
def loss_and_bw(td):
|
|
1177
|
+
losses = loss(td)
|
|
1178
|
+
sum(
|
|
1179
|
+
[val for key, val in losses.items() if key.startswith("loss")]
|
|
1180
|
+
).backward()
|
|
1181
|
+
|
|
1182
|
+
benchmark.pedantic(
|
|
1183
|
+
loss_and_bw,
|
|
1184
|
+
args=(td,),
|
|
1185
|
+
setup=loss.zero_grad,
|
|
1186
|
+
iterations=1,
|
|
1187
|
+
warmup_rounds=5,
|
|
1188
|
+
rounds=50,
|
|
1189
|
+
)
|
|
1190
|
+
else:
|
|
1191
|
+
benchmark(loss, td)
|
|
1192
|
+
|
|
1193
|
+
|
|
1194
|
+
if __name__ == "__main__":
|
|
1195
|
+
args, unknown = argparse.ArgumentParser().parse_known_args()
|
|
1196
|
+
pytest.main(
|
|
1197
|
+
[__file__, "--capture", "no", "--exitfirst", "--benchmark-group-by", "func"]
|
|
1198
|
+
+ unknown
|
|
1199
|
+
)
|