torchmonarch-nightly 2025.9.6__cp310-cp310-manylinux2014_x86_64.whl → 2025.9.8__cp310-cp310-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
monarch/_rust_bindings.so CHANGED
Binary file
Binary file
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: torchmonarch-nightly
3
- Version: 2025.9.6
3
+ Version: 2025.9.8
4
4
  Summary: Monarch: Single controller library
5
5
  Author: Meta
6
6
  Author-email: oncall+monarch@xmail.facebook.com
@@ -35,8 +35,8 @@ Dynamic: summary
35
35
  actor messaging. It provides:
36
36
 
37
37
  1. Remote actors with scalable messaging: Actors are grouped into collections called meshes and messages can be broadcast to all members.
38
- 2. Fault tolerance through supervision trees: Actors and processes for a tree and failures propagate up the tree, providing good default error behavior and enabling fine-grained fault recovery.
39
- 3. Point-to-point RDMA transfers: cheap registration of any GPU or CPU memory in a process, with the one-sided tranfers based on libibverbs
38
+ 2. Fault tolerance through supervision trees: Actors and processes form a tree and failures propagate up the tree, providing good default error behavior and enabling fine-grained fault recovery.
39
+ 3. Point-to-point RDMA transfers: cheap registration of any GPU or CPU memory in a process, with the one-sided transfers based on libibverbs
40
40
  4. Distributed tensors: actors can work with tensor objects sharded across processes
41
41
 
42
42
  Monarch code imperatively describes how to create processes and actors using a simple python API:
@@ -57,7 +57,7 @@ class Trainer(Actor):
57
57
  # create the trainers
58
58
  trainers = training_procs.spawn("trainers", Trainer)
59
59
 
60
- # tell all the trainers to to take a step
60
+ # tell all the trainers to take a step
61
61
  fut = trainers.train.call(step=0)
62
62
 
63
63
  # wait for all trainers to complete
@@ -113,7 +113,7 @@ sudo dnf install cuda-toolkit-12-0 cuda-12-0
113
113
 
114
114
  # Install clang-dev and nccl-dev
115
115
  sudo dnf install clang-devel libnccl-devel
116
- # Or, in some envrionments, the following may be necessary instead
116
+ # Or, in some environments, the following may be necessary instead
117
117
  conda install -c conda-forge clangdev nccl
118
118
  conda update -n monarchenv --all -c conda-forge -y
119
119
 
@@ -1,5 +1,5 @@
1
1
  monarch/__init__.py,sha256=mgKiyD1kxky-1pvhMlNfF4VmxWnhi-FSYZNFzkW1BEM,7052
2
- monarch/_rust_bindings.so,sha256=QWxG1VSxC-Co9fWEjYOkAJ1siLMTHBfYu-QTOasLwYU,61381568
2
+ monarch/_rust_bindings.so,sha256=hou_B8RrmVidJysVaud6TnpF-Cme0t-xdDiUh99wPrk,61527000
3
3
  monarch/_testing.py,sha256=5BDMVA4hBMo780rsJ39vRmUZi6mTN8aYY7I9grJRjJ8,7841
4
4
  monarch/actor_mesh.py,sha256=VtPU9syi_vUdwDSJJ639Z4Y_EcWZUScyoj0lQ88RQPs,421
5
5
  monarch/bootstrap_main.py,sha256=39OZpNMrfvvNJf-iwuNzgslzYA_ItaRPHfXGn_V74N0,524
@@ -8,7 +8,7 @@ monarch/fetch.py,sha256=CssP25dMqyJnJAWoC41lwkMnSbvS-f2DL9PRbudJXfc,1704
8
8
  monarch/gradient_generator.py,sha256=b7PmoN_F3c5hQglfHeW_v5htYnePKvJGkzZN-tpHR4A,6396
9
9
  monarch/memory.py,sha256=ol86dBhFAJqg78iF25-BuK0wuwj1onR8FIioZ_B0gjw,1377
10
10
  monarch/mesh_controller.py,sha256=Y_26Cnmp72TccNbWdDQhq18j7de7pSw83E_fREJX9Yo,15372
11
- monarch/monarch_controller,sha256=dsyUnIQj3wZwQJHpn0YxEUHjQ1DVLEfOlj0-ouQsjug,32439784
11
+ monarch/monarch_controller,sha256=j-ESDbxX3Q84cebio9vLJ7MalbUwpskPauTpOMDCNdA,32572672
12
12
  monarch/notebook.py,sha256=zu9MKDFKf1-rCM2TqFSRJjMBeiWuKcJSyUFLvoZRQzs,25949
13
13
  monarch/opaque_module.py,sha256=jCcg0DjbcEVXA9WNG0NhUzGteLHOJLTZEBvrIYJIAns,10436
14
14
  monarch/opaque_object.py,sha256=x1LoX6RIMGh4ux52xIfhPgoh6PhZHdkf9bMccHW3DW0,2808
@@ -186,9 +186,9 @@ tests/simulator/test_profiling.py,sha256=TGYCfzTLdkpIwnOuO6KApprmrgPIRQe60KRX3wk
186
186
  tests/simulator/test_simulator.py,sha256=LO8lA0ssY-OGEBL5ipEu74f97Y765TEwfUOv-DtIptM,14568
187
187
  tests/simulator/test_task.py,sha256=ipqBDuDAysuo1xOB9S5psaFvwe6VATD43IovCTSs0t4,2327
188
188
  tests/simulator/test_worker.py,sha256=QrWWIJ3HDgDLkBPRc2mwYPlOQoXQcj1qRfc0WUfKkFY,3507
189
- torchmonarch_nightly-2025.9.6.dist-info/licenses/LICENSE,sha256=e0Eotbf_rHOYPuEUlppIbvwy4SN98CZnl_hqwvbDA4Q,1530
190
- torchmonarch_nightly-2025.9.6.dist-info/METADATA,sha256=dgMGmah0TvEQXJBwlkLcVOOJFCikFMaULyDkIZgn9JI,6474
191
- torchmonarch_nightly-2025.9.6.dist-info/WHEEL,sha256=_wZSFk0d90K9wOBp8Q-UGxshyiJ987JoPiyUBNC6VLk,104
192
- torchmonarch_nightly-2025.9.6.dist-info/entry_points.txt,sha256=60QVSpYVzkzS4iDOiLp0fsLxVp47X3J2l3v7W-59LMo,117
193
- torchmonarch_nightly-2025.9.6.dist-info/top_level.txt,sha256=E-ZssZzyM17glpVrh-S9--qJ-w9p2EjuYOuNw9tQ4Eg,33
194
- torchmonarch_nightly-2025.9.6.dist-info/RECORD,,
189
+ torchmonarch_nightly-2025.9.8.dist-info/licenses/LICENSE,sha256=e0Eotbf_rHOYPuEUlppIbvwy4SN98CZnl_hqwvbDA4Q,1530
190
+ torchmonarch_nightly-2025.9.8.dist-info/METADATA,sha256=7hmFosBGSgVwKVtit03yWAUuQjHWLhBtgjPi2sM6Fpo,6473
191
+ torchmonarch_nightly-2025.9.8.dist-info/WHEEL,sha256=_wZSFk0d90K9wOBp8Q-UGxshyiJ987JoPiyUBNC6VLk,104
192
+ torchmonarch_nightly-2025.9.8.dist-info/entry_points.txt,sha256=60QVSpYVzkzS4iDOiLp0fsLxVp47X3J2l3v7W-59LMo,117
193
+ torchmonarch_nightly-2025.9.8.dist-info/top_level.txt,sha256=E-ZssZzyM17glpVrh-S9--qJ-w9p2EjuYOuNw9tQ4Eg,33
194
+ torchmonarch_nightly-2025.9.8.dist-info/RECORD,,