torchmonarch-nightly 2025.6.4__cp310-cp310-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- monarch/__init__.py +189 -0
- monarch/_monarch/__init__.py +5 -0
- monarch/_monarch/hyperactor/__init__.py +74 -0
- monarch/_monarch/selection/__init__.py +13 -0
- monarch/_monarch/worker/__init__.py +0 -0
- monarch/_monarch/worker/debugger.py +117 -0
- monarch/_monarch/worker/logging.py +107 -0
- monarch/_rust_bindings.so +0 -0
- monarch/_testing.py +198 -0
- monarch/actor_mesh.py +692 -0
- monarch/allocator.py +62 -0
- monarch/bootstrap_main.py +75 -0
- monarch/builtins/__init__.py +14 -0
- monarch/builtins/log.py +22 -0
- monarch/builtins/random.py +69 -0
- monarch/cached_remote_function.py +257 -0
- monarch/common/_C.pyi +11 -0
- monarch/common/_C.so +0 -0
- monarch/common/__init__.py +0 -0
- monarch/common/_coalescing.py +308 -0
- monarch/common/_device_utils.py +18 -0
- monarch/common/_tensor_to_table.py +172 -0
- monarch/common/base_tensor.py +28 -0
- monarch/common/borrows.py +143 -0
- monarch/common/client.py +646 -0
- monarch/common/constants.py +10 -0
- monarch/common/context_manager.py +40 -0
- monarch/common/controller_api.py +104 -0
- monarch/common/device_mesh.py +443 -0
- monarch/common/fake.py +55 -0
- monarch/common/function.py +160 -0
- monarch/common/function_caching.py +164 -0
- monarch/common/future.py +168 -0
- monarch/common/invocation.py +125 -0
- monarch/common/mast.py +221 -0
- monarch/common/messages.py +572 -0
- monarch/common/mock_cuda.py +41 -0
- monarch/common/opaque_ref.py +98 -0
- monarch/common/pickle_flatten.py +48 -0
- monarch/common/pipe.py +152 -0
- monarch/common/process_group.py +55 -0
- monarch/common/recording.py +127 -0
- monarch/common/reference.py +33 -0
- monarch/common/remote.py +304 -0
- monarch/common/selection.py +9 -0
- monarch/common/shape.py +204 -0
- monarch/common/stream.py +111 -0
- monarch/common/tensor.py +793 -0
- monarch/common/tensor_factory.py +31 -0
- monarch/common/tree.py +73 -0
- monarch/controller/__init__.py +7 -0
- monarch/controller/backend.py +223 -0
- monarch/controller/controller.py +223 -0
- monarch/controller/debugger.py +47 -0
- monarch/controller/history.py +90 -0
- monarch/controller/rust_backend/__init__.py +7 -0
- monarch/controller/rust_backend/controller.py +245 -0
- monarch/fetch.py +55 -0
- monarch/future.py +25 -0
- monarch/gradient/__init__.py +11 -0
- monarch/gradient/_gradient_generator.pyi +22 -0
- monarch/gradient/_gradient_generator.so +0 -0
- monarch/gradient_generator.py +185 -0
- monarch/memory.py +43 -0
- monarch/monarch_controller +0 -0
- monarch/notebook.py +761 -0
- monarch/opaque_module.py +235 -0
- monarch/opaque_object.py +88 -0
- monarch/parallel/__init__.py +9 -0
- monarch/parallel/pipelining/__init__.py +7 -0
- monarch/parallel/pipelining/runtime.py +847 -0
- monarch/parallel/pipelining/schedule_ir.py +692 -0
- monarch/parallel/pipelining/scheduler.py +249 -0
- monarch/proc_mesh.py +188 -0
- monarch/profiler.py +160 -0
- monarch/python_local_mesh.py +107 -0
- monarch/random.py +61 -0
- monarch/rdma.py +190 -0
- monarch/remote_class.py +114 -0
- monarch/rust_backend_mesh.py +280 -0
- monarch/rust_local_mesh.py +1402 -0
- monarch/sim_mesh.py +357 -0
- monarch/simulator/__init__.py +7 -0
- monarch/simulator/command_history.py +424 -0
- monarch/simulator/config.py +21 -0
- monarch/simulator/interface.py +59 -0
- monarch/simulator/ir.py +770 -0
- monarch/simulator/mock_controller.py +214 -0
- monarch/simulator/profiling.py +424 -0
- monarch/simulator/simulator.py +1052 -0
- monarch/simulator/task.py +255 -0
- monarch/simulator/tensor.py +373 -0
- monarch/simulator/trace.py +395 -0
- monarch/simulator/utils.py +41 -0
- monarch/simulator/worker.py +389 -0
- monarch/tensor_worker_main.py +260 -0
- monarch/tensorboard.py +84 -0
- monarch/timer/__init__.py +21 -0
- monarch/timer/example_monarch.py +78 -0
- monarch/timer/example_spmd.py +55 -0
- monarch/timer/execution_timer.py +199 -0
- monarch/timer/execution_timer_test.py +131 -0
- monarch/tools/__init__.py +7 -0
- monarch/tools/cli.py +167 -0
- monarch/tools/commands.py +189 -0
- monarch/tools/components/__init__.py +7 -0
- monarch/tools/components/hyperactor.py +57 -0
- monarch/tools/config/__init__.py +20 -0
- monarch/tools/config/defaults.py +54 -0
- monarch/tools/mesh_spec.py +121 -0
- monarch/worker/__init__.py +7 -0
- monarch/worker/_testing_function.py +481 -0
- monarch/worker/compiled_block.py +270 -0
- monarch/worker/debugger.py +125 -0
- monarch/worker/lines.py +47 -0
- monarch/worker/monitor.py +53 -0
- monarch/worker/worker.py +1191 -0
- monarch/world_mesh.py +34 -0
- monarch_supervisor/__init__.py +1044 -0
- monarch_supervisor/_testing.py +44 -0
- monarch_supervisor/function_call.py +30 -0
- monarch_supervisor/host.py +386 -0
- monarch_supervisor/launchers.py +145 -0
- monarch_supervisor/log_pstree.py +48 -0
- monarch_supervisor/logging.py +103 -0
- monarch_supervisor/python_executable.py +42 -0
- tests/__init__.py +0 -0
- tests/dispatch_bench.py +124 -0
- tests/dispatch_bench_helper.py +25 -0
- tests/error_test_binary.py +139 -0
- tests/simulator/__init__.py +0 -0
- tests/simulator/test_profiling.py +136 -0
- tests/simulator/test_simulator.py +411 -0
- tests/simulator/test_task.py +64 -0
- tests/simulator/test_worker.py +102 -0
- tests/sleep_binary.py +35 -0
- tests/test_actor_error.py +112 -0
- tests/test_alloc.py +25 -0
- tests/test_coalescing.py +492 -0
- tests/test_controller.py +835 -0
- tests/test_device_mesh.py +132 -0
- tests/test_fault_tolerance.py +398 -0
- tests/test_future.py +94 -0
- tests/test_grad_generator.py +121 -0
- tests/test_mock_cuda.py +74 -0
- tests/test_pdb_actor.py +110 -0
- tests/test_python_actors.py +372 -0
- tests/test_remote_functions.py +1271 -0
- tests/test_rust_backend.py +182 -0
- tests/test_signal_safe_block_on.py +103 -0
- tests/test_sim_backend.py +54 -0
- torchmonarch_nightly-2025.6.4.dist-info/METADATA +94 -0
- torchmonarch_nightly-2025.6.4.dist-info/RECORD +157 -0
- torchmonarch_nightly-2025.6.4.dist-info/WHEEL +5 -0
- torchmonarch_nightly-2025.6.4.dist-info/entry_points.txt +3 -0
- torchmonarch_nightly-2025.6.4.dist-info/licenses/LICENSE +29 -0
- torchmonarch_nightly-2025.6.4.dist-info/top_level.txt +3 -0
@@ -0,0 +1,245 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-strict
|
8
|
+
|
9
|
+
import logging
|
10
|
+
import traceback
|
11
|
+
from collections import deque
|
12
|
+
from logging import Logger
|
13
|
+
from typing import List, NamedTuple, Optional, Sequence, Union
|
14
|
+
|
15
|
+
from monarch._rust_bindings.monarch_extension import (
|
16
|
+
client,
|
17
|
+
controller,
|
18
|
+
debugger,
|
19
|
+
tensor_worker,
|
20
|
+
)
|
21
|
+
from monarch._rust_bindings.monarch_extension.client import ( # @manual=//monarch/monarch_extension:monarch_extension
|
22
|
+
ClientActor,
|
23
|
+
SystemSnapshotFilter,
|
24
|
+
WorldState,
|
25
|
+
)
|
26
|
+
from monarch._rust_bindings.monarch_hyperactor.proc import ( # @manual=//monarch/monarch_extension:monarch_extension
|
27
|
+
ActorId,
|
28
|
+
Proc,
|
29
|
+
)
|
30
|
+
|
31
|
+
from monarch._rust_bindings.monarch_messages.debugger import DebuggerAction
|
32
|
+
from monarch.common.controller_api import LogMessage, MessageResult
|
33
|
+
from monarch.common.device_mesh import no_mesh
|
34
|
+
from monarch.common.invocation import DeviceException, RemoteException
|
35
|
+
from monarch.common.messages import SupportsToRustMessage
|
36
|
+
from monarch.common.shape import NDSlice
|
37
|
+
from monarch.common.tensor import Tensor
|
38
|
+
from monarch.controller.debugger import read as debugger_read, write as debugger_write
|
39
|
+
from pyre_extensions import none_throws
|
40
|
+
|
41
|
+
logger: Logger = logging.getLogger(__name__)
|
42
|
+
|
43
|
+
|
44
|
+
class RustController:
|
45
|
+
def __init__(
|
46
|
+
self,
|
47
|
+
proc: Proc,
|
48
|
+
client_actor: ClientActor,
|
49
|
+
controller_id: ActorId,
|
50
|
+
worker_world_name: str,
|
51
|
+
) -> None:
|
52
|
+
self._controller_actor = controller_id
|
53
|
+
self._proc = proc
|
54
|
+
self._actor = client_actor
|
55
|
+
# Attach the client to the controller
|
56
|
+
# Errors will be raised if someone else has attached it already.
|
57
|
+
self._actor.attach(self._controller_actor)
|
58
|
+
self._worker_world_name = worker_world_name
|
59
|
+
|
60
|
+
# Buffer for messages unrelated to debugging that are received while a
|
61
|
+
# debugger session is active.
|
62
|
+
self._non_debugger_pending_messages: deque[
|
63
|
+
Optional[client.LogMessage | client.WorkerResponse]
|
64
|
+
] = deque()
|
65
|
+
self._pending_debugger_sessions: deque[ActorId] = deque()
|
66
|
+
|
67
|
+
def send(
|
68
|
+
self,
|
69
|
+
ranks: Union[NDSlice, List[NDSlice]],
|
70
|
+
msg: NamedTuple,
|
71
|
+
) -> None:
|
72
|
+
self._actor.send_obj(self._controller_actor, ranks, msg)
|
73
|
+
|
74
|
+
def drop_refs(self, refs: Sequence[tensor_worker.Ref]) -> None:
|
75
|
+
self._actor.drop_refs(self._controller_actor, list(refs))
|
76
|
+
|
77
|
+
def node(
|
78
|
+
self,
|
79
|
+
seq: int,
|
80
|
+
defs: Sequence["Tensor"],
|
81
|
+
uses: Sequence["Tensor"],
|
82
|
+
) -> None:
|
83
|
+
node = controller.Node(
|
84
|
+
seq=seq,
|
85
|
+
defs=[tensor_worker.Ref(id=t.ref) for t in defs if t.ref is not None],
|
86
|
+
uses=[tensor_worker.Ref(id=t.ref) for t in uses if t.ref is not None],
|
87
|
+
)
|
88
|
+
|
89
|
+
self._actor.send(self._controller_actor, node.serialize())
|
90
|
+
|
91
|
+
def next_message(
|
92
|
+
self, timeout: Optional[float]
|
93
|
+
) -> Optional[LogMessage | MessageResult]:
|
94
|
+
if self._non_debugger_pending_messages:
|
95
|
+
msg = self._non_debugger_pending_messages.popleft()
|
96
|
+
else:
|
97
|
+
msg = self._actor.get_next_message(
|
98
|
+
timeout_msec=int((timeout or 0.0) * 1000.0)
|
99
|
+
)
|
100
|
+
if msg is None:
|
101
|
+
return None
|
102
|
+
|
103
|
+
if isinstance(msg, client.WorkerResponse):
|
104
|
+
return _worker_response_to_result(msg)
|
105
|
+
elif isinstance(msg, client.LogMessage):
|
106
|
+
return LogMessage(msg.level, msg.message)
|
107
|
+
elif isinstance(msg, client.DebuggerMessage):
|
108
|
+
self._run_debugger_loop(msg)
|
109
|
+
|
110
|
+
def stop_mesh(self) -> None:
|
111
|
+
logger.info("rust controller stopping the system")
|
112
|
+
self._actor.stop_worlds(
|
113
|
+
[self._controller_actor.world_name, self._worker_world_name]
|
114
|
+
)
|
115
|
+
|
116
|
+
def drain_and_stop(
|
117
|
+
self,
|
118
|
+
) -> List[LogMessage | MessageResult | client.DebuggerMessage]:
|
119
|
+
logger.info("rust controller shutting down")
|
120
|
+
results = []
|
121
|
+
for msg in self._actor.drain_and_stop():
|
122
|
+
if isinstance(msg, client.WorkerResponse):
|
123
|
+
results.append(_worker_response_to_result(msg))
|
124
|
+
elif isinstance(msg, client.LogMessage):
|
125
|
+
results.append(LogMessage(msg.level, msg.message))
|
126
|
+
elif isinstance(msg, client.DebuggerMessage):
|
127
|
+
results.append(msg)
|
128
|
+
else:
|
129
|
+
raise RuntimeError(f"Unexpected message type {type(msg)}")
|
130
|
+
return results
|
131
|
+
|
132
|
+
def _run_debugger_loop(self, message: client.DebuggerMessage) -> None:
|
133
|
+
if not isinstance(message.action, DebuggerAction.Paused):
|
134
|
+
raise RuntimeError(
|
135
|
+
f"Unexpected debugger message {message} when no debugger session is running"
|
136
|
+
)
|
137
|
+
|
138
|
+
self._pending_debugger_sessions.append(message.debugger_actor_id)
|
139
|
+
while self._pending_debugger_sessions:
|
140
|
+
debugger_actor_id = self._pending_debugger_sessions.popleft()
|
141
|
+
rank = debugger_actor_id.rank
|
142
|
+
proc_id = debugger_actor_id.proc_id
|
143
|
+
debugger_write(
|
144
|
+
f"pdb attached to proc {proc_id} with rank {rank}, debugger actor {debugger_actor_id} \n"
|
145
|
+
)
|
146
|
+
|
147
|
+
self._actor.send(
|
148
|
+
debugger_actor_id,
|
149
|
+
debugger.DebuggerMessage(action=DebuggerAction.Attach()).serialize(),
|
150
|
+
)
|
151
|
+
|
152
|
+
while True:
|
153
|
+
# TODO: Add appropriate timeout.
|
154
|
+
msg = self._actor.get_next_message(timeout_msec=None)
|
155
|
+
|
156
|
+
if not isinstance(msg, client.DebuggerMessage):
|
157
|
+
self._non_debugger_pending_messages.append(msg)
|
158
|
+
continue
|
159
|
+
|
160
|
+
if msg.debugger_actor_id != debugger_actor_id:
|
161
|
+
if isinstance(msg.action, DebuggerAction.Paused):
|
162
|
+
self._pending_debugger_sessions.append(msg.debugger_actor_id)
|
163
|
+
continue
|
164
|
+
else:
|
165
|
+
raise RuntimeError(
|
166
|
+
f"unexpected debugger message {msg} from rank {msg.debugger_actor_id.rank} "
|
167
|
+
f"when debugging rank {debugger_actor_id.rank}"
|
168
|
+
)
|
169
|
+
|
170
|
+
action = msg.action
|
171
|
+
if isinstance(action, DebuggerAction.Detach):
|
172
|
+
break
|
173
|
+
elif isinstance(action, DebuggerAction.Read):
|
174
|
+
self._actor.send(
|
175
|
+
debugger_actor_id,
|
176
|
+
debugger.DebuggerMessage(
|
177
|
+
action=DebuggerAction.Write(
|
178
|
+
bytes=debugger_read(action.requested_size)
|
179
|
+
)
|
180
|
+
).serialize(),
|
181
|
+
)
|
182
|
+
elif isinstance(action, DebuggerAction.Write):
|
183
|
+
debugger_write(
|
184
|
+
debugger.get_bytes_from_write_action(action).decode()
|
185
|
+
)
|
186
|
+
else:
|
187
|
+
raise RuntimeError(
|
188
|
+
f"unexpected debugger message {msg} when debugging rank {debugger_actor_id.rank}"
|
189
|
+
)
|
190
|
+
|
191
|
+
def worker_world_state(self) -> WorldState:
|
192
|
+
worlds_state = self._actor.world_state(
|
193
|
+
SystemSnapshotFilter(worlds=[self._worker_world_name])
|
194
|
+
)
|
195
|
+
|
196
|
+
return worlds_state[self._worker_world_name]
|
197
|
+
|
198
|
+
|
199
|
+
# TODO: Handling conversion of the response can move to a separate module over time
|
200
|
+
# especially as we have structured error messages.
|
201
|
+
def _worker_response_to_result(result: client.WorkerResponse) -> MessageResult:
|
202
|
+
if not result.is_exception():
|
203
|
+
# The result of the message needs to be unwrapped on a real device.
|
204
|
+
# Staying as a fake tensor will fail the tensor deserialization.
|
205
|
+
with no_mesh.activate():
|
206
|
+
return MessageResult(result.seq, result.result(), None)
|
207
|
+
exc = none_throws(result.exception())
|
208
|
+
if isinstance(exc, client.Error):
|
209
|
+
worker_frames = [
|
210
|
+
traceback.FrameSummary("<unknown>", None, frame)
|
211
|
+
for frame in exc.backtrace.split("\\n")
|
212
|
+
]
|
213
|
+
logger.error(f"Worker {exc.actor_id} failed")
|
214
|
+
return MessageResult(
|
215
|
+
seq=result.seq,
|
216
|
+
result=None,
|
217
|
+
error=RemoteException(
|
218
|
+
seq=exc.caused_by_seq,
|
219
|
+
exception=RuntimeError(exc.backtrace),
|
220
|
+
controller_frame_index=0, # TODO: fix this once we have recording support in rust
|
221
|
+
controller_frames=None,
|
222
|
+
worker_frames=worker_frames,
|
223
|
+
source_actor_id=exc.actor_id,
|
224
|
+
message=f"Worker {exc.actor_id} failed",
|
225
|
+
),
|
226
|
+
)
|
227
|
+
elif isinstance(exc, client.Failure):
|
228
|
+
frames = [
|
229
|
+
traceback.FrameSummary("<unknown>", None, frame)
|
230
|
+
for frame in exc.backtrace.split("\n")
|
231
|
+
]
|
232
|
+
reason = f"Actor {exc.actor_id} crashed on {exc.address}, check the host log for details"
|
233
|
+
logger.error(reason)
|
234
|
+
return MessageResult(
|
235
|
+
seq=0, # seq is not consumed for DeviceException; it will be directly thrown by the client
|
236
|
+
result=None,
|
237
|
+
error=DeviceException(
|
238
|
+
exception=RuntimeError(reason),
|
239
|
+
frames=frames,
|
240
|
+
source_actor_id=exc.actor_id,
|
241
|
+
message=reason,
|
242
|
+
),
|
243
|
+
)
|
244
|
+
else:
|
245
|
+
raise RuntimeError(f"Unknown exception type: {type(exc)}")
|
monarch/fetch.py
ADDED
@@ -0,0 +1,55 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-unsafe
|
8
|
+
"""
|
9
|
+
This is a utility file for fetching a shard of a tensor from remote.
|
10
|
+
"""
|
11
|
+
|
12
|
+
from typing import TypeVar
|
13
|
+
|
14
|
+
from monarch.common.device_mesh import no_mesh
|
15
|
+
|
16
|
+
from monarch.common.future import Future
|
17
|
+
|
18
|
+
from monarch.common.remote import _call_on_shard_and_fetch
|
19
|
+
|
20
|
+
T = TypeVar("T")
|
21
|
+
|
22
|
+
|
23
|
+
def fetch_shard(
|
24
|
+
obj: T, shard: dict[str, int] | None = None, **kwargs: int
|
25
|
+
) -> Future[T]:
|
26
|
+
"""
|
27
|
+
Retrieve the shard at `coordinates` of the current device mesh of each
|
28
|
+
tensor in obj. All tensors in `obj` will be fetched to the CPU device.
|
29
|
+
obj - a pytree containing the tensors the fetch
|
30
|
+
shard - a dictionary from mesh dimension name to coordinate of the shard
|
31
|
+
If None, this will fetch from coordinate 0 for all dimensions (useful after all_reduce/all_gather)
|
32
|
+
preprocess - a
|
33
|
+
**kwargs - additional keyword arguments are added as entries to the shard dictionary
|
34
|
+
"""
|
35
|
+
if kwargs:
|
36
|
+
if shard is None:
|
37
|
+
shard = {}
|
38
|
+
shard.update(kwargs)
|
39
|
+
|
40
|
+
return _call_on_shard_and_fetch(
|
41
|
+
None, lambda *args, **kwargs: None, obj, shard=shard
|
42
|
+
)
|
43
|
+
|
44
|
+
|
45
|
+
def show(obj: T, shard: dict[str, int] | None = None, **kwargs: int) -> object:
|
46
|
+
v = inspect(obj, shard=shard, **kwargs)
|
47
|
+
# pyre-ignore
|
48
|
+
from torchshow import show # @manual
|
49
|
+
|
50
|
+
with no_mesh.activate():
|
51
|
+
return show(v)
|
52
|
+
|
53
|
+
|
54
|
+
def inspect(obj: T, shard: dict[str, int] | None = None, **kwargs: int) -> T:
|
55
|
+
return fetch_shard(obj, shard=shard, **kwargs).result()
|
monarch/future.py
ADDED
@@ -0,0 +1,25 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
import asyncio
|
8
|
+
from typing import Generator, Generic, TypeVar
|
9
|
+
|
10
|
+
R = TypeVar("R")
|
11
|
+
|
12
|
+
|
13
|
+
# TODO: consolidate with monarch.common.future
|
14
|
+
class ActorFuture(Generic[R]):
|
15
|
+
def __init__(self, impl, blocking_impl=None):
|
16
|
+
self._impl = impl
|
17
|
+
self._blocking_impl = blocking_impl
|
18
|
+
|
19
|
+
def get(self) -> R:
|
20
|
+
if self._blocking_impl is not None:
|
21
|
+
return self._blocking_impl()
|
22
|
+
return asyncio.run(self._impl())
|
23
|
+
|
24
|
+
def __await__(self) -> Generator[R, None, R]:
|
25
|
+
return self._impl().__await__()
|
@@ -0,0 +1,11 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-strict
|
8
|
+
|
9
|
+
from ._gradient_generator import GradientGenerator
|
10
|
+
|
11
|
+
__all__ = ["GradientGenerator"]
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-unsafe
|
8
|
+
from typing import Any, Optional
|
9
|
+
|
10
|
+
import torch
|
11
|
+
|
12
|
+
class GradientGenerator:
|
13
|
+
def __init__(
|
14
|
+
self,
|
15
|
+
roots_list: Any,
|
16
|
+
with_respect_to: Any,
|
17
|
+
grad_roots: Any,
|
18
|
+
context_restorer: Any,
|
19
|
+
): ...
|
20
|
+
# pyre-ignore[11]: Annotation `torch.Tensor` is not defined as a type.
|
21
|
+
def __next__(self) -> Optional[torch.Tensor]: ...
|
22
|
+
def __iter__(self) -> "GradientGenerator": ...
|
Binary file
|
@@ -0,0 +1,185 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-unsafe
|
8
|
+
import math
|
9
|
+
from contextlib import nullcontext
|
10
|
+
from functools import partial
|
11
|
+
from types import CellType, FunctionType
|
12
|
+
from typing import Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
13
|
+
|
14
|
+
import torch
|
15
|
+
import torch.autograd.graph
|
16
|
+
|
17
|
+
from monarch.common import device_mesh, stream
|
18
|
+
from monarch.common.tensor import Tensor
|
19
|
+
from monarch.common.tree import flatten
|
20
|
+
from monarch.gradient import GradientGenerator as _GradientGenerator
|
21
|
+
from torch._C._autograd import _get_sequence_nr # @manual
|
22
|
+
from torch.autograd.graph import get_gradient_edge, GradientEdge
|
23
|
+
|
24
|
+
TensorOrEdge = Union[torch.Tensor, GradientEdge]
|
25
|
+
|
26
|
+
|
27
|
+
class Context(NamedTuple):
|
28
|
+
device_mesh: "Optional[device_mesh.DeviceMesh]"
|
29
|
+
stream: "stream.Stream"
|
30
|
+
|
31
|
+
def enable(self):
|
32
|
+
if device_mesh is None:
|
33
|
+
activate_mesh = device_mesh.no_mesh.activate()
|
34
|
+
elif self.device_mesh is not device_mesh._active:
|
35
|
+
# XXX: something about activating device meshes from this object
|
36
|
+
# doesn't work correctly and somehow inactivates the device mesh
|
37
|
+
# if it is already enabled. This is a temporary workaround for
|
38
|
+
# the demo.
|
39
|
+
activate_mesh = self.device_mesh.activate()
|
40
|
+
else:
|
41
|
+
activate_mesh = nullcontext()
|
42
|
+
with activate_mesh, self.stream.activate(), torch.no_grad():
|
43
|
+
yield
|
44
|
+
|
45
|
+
|
46
|
+
_sequence_nr_to_context: Dict[int, Context] = {}
|
47
|
+
_sequence_nr_end = 0
|
48
|
+
|
49
|
+
|
50
|
+
def restore_context(t: Optional[Tensor], sn: Optional[int], last: bool):
|
51
|
+
if sn is not None:
|
52
|
+
_update_context_map(Context(device_mesh._active, stream._active))
|
53
|
+
ctx = _sequence_nr_to_context.pop(sn) if last else _sequence_nr_to_context[sn]
|
54
|
+
return ctx.enable()
|
55
|
+
if t is not None:
|
56
|
+
return Context(t.mesh, t.stream).enable()
|
57
|
+
return Context(device_mesh._active, stream._active).enable()
|
58
|
+
|
59
|
+
|
60
|
+
def _update_context_map(ctx: Context):
|
61
|
+
global _sequence_nr_end
|
62
|
+
next_sequence_nr = _get_sequence_nr()
|
63
|
+
for i in range(_sequence_nr_end, next_sequence_nr):
|
64
|
+
_sequence_nr_to_context[i] = ctx
|
65
|
+
_sequence_nr_end = _get_sequence_nr()
|
66
|
+
|
67
|
+
|
68
|
+
device_mesh._on_change.append(
|
69
|
+
lambda old, mesh: _update_context_map(Context(old, stream._active))
|
70
|
+
)
|
71
|
+
stream._on_change.append(
|
72
|
+
lambda old, stream: _update_context_map(Context(device_mesh._active, old))
|
73
|
+
)
|
74
|
+
|
75
|
+
|
76
|
+
def grad_generator(
|
77
|
+
roots: Union[torch.Tensor, Sequence[TensorOrEdge]] = (),
|
78
|
+
with_respect_to: Sequence[TensorOrEdge] = (),
|
79
|
+
grad_roots: Sequence[Optional[torch.Tensor]] = (),
|
80
|
+
):
|
81
|
+
if isinstance(roots, torch.Tensor):
|
82
|
+
roots = [roots]
|
83
|
+
return _GradientGenerator(
|
84
|
+
list(roots), list(with_respect_to), list(grad_roots), restore_context
|
85
|
+
)
|
86
|
+
|
87
|
+
|
88
|
+
def _gradient_edge(a: TensorOrEdge) -> GradientEdge:
|
89
|
+
if isinstance(a, GradientEdge):
|
90
|
+
return a
|
91
|
+
return get_gradient_edge(a)
|
92
|
+
|
93
|
+
|
94
|
+
class GradGenerator:
|
95
|
+
def __init__(self):
|
96
|
+
self.roots: List[torch.autograd.graph.GradientEdge] = []
|
97
|
+
self.with_respect_to: List[torch.autograd.graph.GradientEdge] = []
|
98
|
+
self.grad_roots: List[Optional[torch.Tensor]] = []
|
99
|
+
self.unflattens: List[Tuple[int, Any]] = []
|
100
|
+
|
101
|
+
def grad(self, tree: Any):
|
102
|
+
tensors, unflatten = flatten(tree, lambda x: isinstance(x, torch.Tensor))
|
103
|
+
self.unflattens.append((len(tensors), unflatten))
|
104
|
+
self.with_respect_to.extend(_gradient_edge(t) for t in tensors)
|
105
|
+
|
106
|
+
def root(self, r: TensorOrEdge, grad: Optional[torch.Tensor] = None):
|
107
|
+
self.roots.append(_gradient_edge(r))
|
108
|
+
self.grad_roots.append(grad)
|
109
|
+
|
110
|
+
def __iter__(self):
|
111
|
+
gi = _GradientGenerator(
|
112
|
+
self.roots,
|
113
|
+
list(reversed(self.with_respect_to)),
|
114
|
+
self.grad_roots,
|
115
|
+
restore_context,
|
116
|
+
)
|
117
|
+
for n, unflatten in reversed(self.unflattens):
|
118
|
+
yield unflatten(reversed([next(gi) for _ in range(n)]))
|
119
|
+
|
120
|
+
|
121
|
+
class GradFunction(torch.autograd.Function):
|
122
|
+
@staticmethod
|
123
|
+
def forward(ctx, fn, *args, **kwargs):
|
124
|
+
result, backward_continuation = fn(*args, **kwargs)
|
125
|
+
ctx.backward_continuation = backward_continuation
|
126
|
+
values = []
|
127
|
+
if backward_continuation.__closure__ is not None:
|
128
|
+
for cell in backward_continuation.__closure__:
|
129
|
+
values.append(cell.cell_contents)
|
130
|
+
cell.cell_contents = None
|
131
|
+
tensors, ctx.unflatten = flatten(values, lambda x: isinstance(x, torch.Tensor))
|
132
|
+
ctx.save_for_backward(*tensors)
|
133
|
+
return result
|
134
|
+
|
135
|
+
@staticmethod
|
136
|
+
def backward(ctx, *args, **kwargs):
|
137
|
+
closure = tuple(CellType(v) for v in ctx.unflatten(ctx.saved_tensors))
|
138
|
+
orig = ctx.backward_continuation
|
139
|
+
fn = FunctionType(
|
140
|
+
orig.__code__, orig.__globals__, orig.__name__, orig.__defaults__, closure
|
141
|
+
)
|
142
|
+
output = fn(*args, **kwargs)
|
143
|
+
if isinstance(output, tuple):
|
144
|
+
return None, *output
|
145
|
+
else:
|
146
|
+
return None, output
|
147
|
+
|
148
|
+
|
149
|
+
def grad_function(fn):
|
150
|
+
return partial(GradFunction.apply, fn)
|
151
|
+
|
152
|
+
|
153
|
+
def gradient_execution_order(
|
154
|
+
roots: Sequence[TensorOrEdge], with_respect_to: Sequence[TensorOrEdge]
|
155
|
+
) -> List[int]:
|
156
|
+
"""
|
157
|
+
Returns the order in which the gradients for `with_respect_to` would become available
|
158
|
+
if autograd were run on `roots`. This is the reverse order of each tensors
|
159
|
+
first use in the gradient computation.
|
160
|
+
"""
|
161
|
+
with_respect_to = [_gradient_edge(g) for g in with_respect_to]
|
162
|
+
min_sequence_nr: Dict[Any, float] = {e: math.inf for e in with_respect_to}
|
163
|
+
|
164
|
+
to_scan = [_gradient_edge(r).node for r in roots]
|
165
|
+
scanned = set()
|
166
|
+
while to_scan:
|
167
|
+
node = to_scan.pop()
|
168
|
+
if node in scanned:
|
169
|
+
continue
|
170
|
+
scanned.add(node)
|
171
|
+
for key in node.next_functions:
|
172
|
+
nnode = key[0]
|
173
|
+
if nnode is None:
|
174
|
+
continue
|
175
|
+
to_scan.append(nnode)
|
176
|
+
value = min_sequence_nr.get(key)
|
177
|
+
if value is not None:
|
178
|
+
# pyre-ignore
|
179
|
+
min_sequence_nr[key] = min(node._sequence_nr(), value)
|
180
|
+
|
181
|
+
return sorted(
|
182
|
+
range(len(with_respect_to)),
|
183
|
+
key=lambda i: min_sequence_nr[with_respect_to[i]],
|
184
|
+
reverse=True,
|
185
|
+
)
|
monarch/memory.py
ADDED
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
6
|
+
|
7
|
+
# pyre-unsafe
|
8
|
+
import itertools
|
9
|
+
import os
|
10
|
+
from pathlib import Path
|
11
|
+
|
12
|
+
import torch
|
13
|
+
from monarch.common.remote import remote
|
14
|
+
|
15
|
+
|
16
|
+
PATH_KEY = "dir_snapshots"
|
17
|
+
_counter = itertools.count()
|
18
|
+
|
19
|
+
|
20
|
+
@remote(propagate="inspect")
|
21
|
+
def record_memory_history() -> None:
|
22
|
+
torch.cuda.memory._record_memory_history()
|
23
|
+
|
24
|
+
|
25
|
+
def dump_memory_snapshot(*args, **kwargs) -> None:
|
26
|
+
"""
|
27
|
+
This function wraps torch.cuda.memory._dump_snapshot() to dump memory snapshot remotely.
|
28
|
+
"""
|
29
|
+
assert isinstance(
|
30
|
+
kwargs.get(PATH_KEY, None), str
|
31
|
+
), f"{PATH_KEY} must be passed and must be a string to represent the path to save the memory snapshots."
|
32
|
+
id = next(_counter)
|
33
|
+
_memory_controller_dump(id, *args, **kwargs)
|
34
|
+
|
35
|
+
|
36
|
+
@remote(propagate="inspect")
|
37
|
+
def _memory_controller_dump(ident, *args, **kwargs) -> None:
|
38
|
+
dir_path = Path(kwargs[PATH_KEY]).absolute()
|
39
|
+
os.makedirs(dir_path, exist_ok=True)
|
40
|
+
# This is not a synchronized call, so it is okay to call without device mesh.
|
41
|
+
rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
|
42
|
+
snapshot_path = f"{dir_path}/snapshot_{rank}.pickle"
|
43
|
+
torch.cuda.memory._dump_snapshot(filename=snapshot_path)
|
Binary file
|