torchcodec 0.3.0__cp313-cp313t-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchcodec might be problematic. Click here for more details.

Files changed (57) hide show
  1. torchcodec/__init__.py +16 -0
  2. torchcodec/_core/AVIOBytesContext.cpp +70 -0
  3. torchcodec/_core/AVIOBytesContext.h +32 -0
  4. torchcodec/_core/AVIOContextHolder.cpp +50 -0
  5. torchcodec/_core/AVIOContextHolder.h +65 -0
  6. torchcodec/_core/AVIOFileLikeContext.cpp +80 -0
  7. torchcodec/_core/AVIOFileLikeContext.h +54 -0
  8. torchcodec/_core/CMakeLists.txt +237 -0
  9. torchcodec/_core/CudaDeviceInterface.cpp +289 -0
  10. torchcodec/_core/CudaDeviceInterface.h +34 -0
  11. torchcodec/_core/DeviceInterface.cpp +88 -0
  12. torchcodec/_core/DeviceInterface.h +66 -0
  13. torchcodec/_core/Encoder.cpp +319 -0
  14. torchcodec/_core/Encoder.h +39 -0
  15. torchcodec/_core/FFMPEGCommon.cpp +264 -0
  16. torchcodec/_core/FFMPEGCommon.h +180 -0
  17. torchcodec/_core/Frame.h +47 -0
  18. torchcodec/_core/Metadata.h +70 -0
  19. torchcodec/_core/SingleStreamDecoder.cpp +1947 -0
  20. torchcodec/_core/SingleStreamDecoder.h +462 -0
  21. torchcodec/_core/StreamOptions.h +49 -0
  22. torchcodec/_core/__init__.py +39 -0
  23. torchcodec/_core/_metadata.py +277 -0
  24. torchcodec/_core/custom_ops.cpp +681 -0
  25. torchcodec/_core/fetch_and_expose_non_gpl_ffmpeg_libs.cmake +226 -0
  26. torchcodec/_core/ops.py +381 -0
  27. torchcodec/_core/pybind_ops.cpp +45 -0
  28. torchcodec/_frame.py +145 -0
  29. torchcodec/_internally_replaced_utils.py +53 -0
  30. torchcodec/_samplers/__init__.py +7 -0
  31. torchcodec/_samplers/video_clip_sampler.py +430 -0
  32. torchcodec/decoders/__init__.py +11 -0
  33. torchcodec/decoders/_audio_decoder.py +168 -0
  34. torchcodec/decoders/_decoder_utils.py +52 -0
  35. torchcodec/decoders/_video_decoder.py +399 -0
  36. torchcodec/libtorchcodec_custom_ops4.so +0 -0
  37. torchcodec/libtorchcodec_custom_ops5.so +0 -0
  38. torchcodec/libtorchcodec_custom_ops6.so +0 -0
  39. torchcodec/libtorchcodec_custom_ops7.so +0 -0
  40. torchcodec/libtorchcodec_decoder4.so +0 -0
  41. torchcodec/libtorchcodec_decoder5.so +0 -0
  42. torchcodec/libtorchcodec_decoder6.so +0 -0
  43. torchcodec/libtorchcodec_decoder7.so +0 -0
  44. torchcodec/libtorchcodec_pybind_ops4.so +0 -0
  45. torchcodec/libtorchcodec_pybind_ops5.so +0 -0
  46. torchcodec/libtorchcodec_pybind_ops6.so +0 -0
  47. torchcodec/libtorchcodec_pybind_ops7.so +0 -0
  48. torchcodec/samplers/__init__.py +2 -0
  49. torchcodec/samplers/_common.py +84 -0
  50. torchcodec/samplers/_index_based.py +285 -0
  51. torchcodec/samplers/_time_based.py +348 -0
  52. torchcodec/version.py +2 -0
  53. torchcodec-0.3.0.dist-info/LICENSE +28 -0
  54. torchcodec-0.3.0.dist-info/METADATA +280 -0
  55. torchcodec-0.3.0.dist-info/RECORD +57 -0
  56. torchcodec-0.3.0.dist-info/WHEEL +5 -0
  57. torchcodec-0.3.0.dist-info/top_level.txt +2 -0
@@ -0,0 +1,348 @@
1
+ from typing import Literal, Optional
2
+
3
+ import torch
4
+
5
+ from torchcodec import FrameBatch
6
+ from torchcodec.samplers._common import (
7
+ _FRAMEBATCH_RETURN_DOCS,
8
+ _POLICY_FUNCTION_TYPE,
9
+ _POLICY_FUNCTIONS,
10
+ _reshape_4d_framebatch_into_5d,
11
+ _validate_common_params,
12
+ )
13
+
14
+
15
+ def _validate_params_time_based(
16
+ *,
17
+ decoder,
18
+ num_clips,
19
+ seconds_between_clip_starts,
20
+ seconds_between_frames,
21
+ ):
22
+
23
+ if (num_clips is None and seconds_between_clip_starts is None) or (
24
+ num_clips is not None and seconds_between_clip_starts is not None
25
+ ):
26
+ raise ValueError("This is internal only and should never happen.")
27
+
28
+ if seconds_between_clip_starts is not None and seconds_between_clip_starts <= 0:
29
+ raise ValueError(
30
+ f"seconds_between_clip_starts ({seconds_between_clip_starts}) must be > 0"
31
+ )
32
+
33
+ if num_clips is not None and num_clips <= 0:
34
+ raise ValueError(f"num_clips ({num_clips}) must be > 0")
35
+
36
+ if decoder.metadata.average_fps is None:
37
+ raise ValueError(
38
+ "Could not infer average fps from video metadata. "
39
+ "Try using an index-based sampler instead."
40
+ )
41
+
42
+ # Note that metadata.begin_stream_seconds is a property that will always yield a valid
43
+ # value; if it is not present in the actual metadata, the metadata object will return 0.
44
+ # Hence, we do not test for it here and only test metadata.end_stream_seconds.
45
+ if decoder.metadata.end_stream_seconds is None:
46
+ raise ValueError(
47
+ "Could not infer stream end from video metadata. "
48
+ "Try using an index-based sampler instead."
49
+ )
50
+
51
+ average_frame_duration_seconds = 1 / decoder.metadata.average_fps
52
+ if seconds_between_frames is None:
53
+ seconds_between_frames = average_frame_duration_seconds
54
+ elif seconds_between_frames <= 0:
55
+ raise ValueError(
56
+ f"seconds_between_clip_starts ({seconds_between_clip_starts}) must be > 0, got"
57
+ )
58
+
59
+ return seconds_between_frames
60
+
61
+
62
+ def _validate_sampling_range_time_based(
63
+ *,
64
+ num_frames_per_clip,
65
+ seconds_between_frames,
66
+ sampling_range_start,
67
+ sampling_range_end,
68
+ begin_stream_seconds,
69
+ end_stream_seconds,
70
+ ):
71
+
72
+ if sampling_range_start is None:
73
+ sampling_range_start = begin_stream_seconds
74
+ else:
75
+ if sampling_range_start < begin_stream_seconds:
76
+ raise ValueError(
77
+ f"sampling_range_start ({sampling_range_start}) must be at least {begin_stream_seconds}"
78
+ )
79
+ if sampling_range_start >= end_stream_seconds:
80
+ raise ValueError(
81
+ f"sampling_range_start ({sampling_range_start}) must be smaller than {end_stream_seconds}"
82
+ )
83
+
84
+ if sampling_range_end is None:
85
+ # We allow a clip to start anywhere within
86
+ # [sampling_range_start, sampling_range_end)
87
+ # When sampling_range_end is None, we want to automatically set it to
88
+ # the largest possible value such that the sampled frames in any clip
89
+ # are within the bounds of the video duration (in other words, we don't
90
+ # want to have to resort to the `policy`).
91
+ # I.e. we want to guarantee that for all frames in any clip we have
92
+ # pts < end_stream_seconds.
93
+ #
94
+ # The frames of a clip will be sampled at the following pts:
95
+ # clip_timestamps = [
96
+ # clip_start + 0 * seconds_between_frames,
97
+ # clip_start + 1 * seconds_between_frames,
98
+ # clip_start + 2 * seconds_between_frames,
99
+ # ...
100
+ # clip_start + (num_frames_per_clip - 1) * seconds_between_frames,
101
+ # ]
102
+ # To guarantee that any such value is < end_stream_seconds, we only need
103
+ # to guarantee that
104
+ # clip_start < end_stream_seconds - (num_frames_per_clip - 1) * seconds_between_frames
105
+ #
106
+ # So that's the value of sampling_range_end we want to use.
107
+ sampling_range_end = (
108
+ end_stream_seconds - (num_frames_per_clip - 1) * seconds_between_frames
109
+ )
110
+ elif sampling_range_end <= begin_stream_seconds:
111
+ raise ValueError(
112
+ f"sampling_range_end ({sampling_range_end}) must be at least {begin_stream_seconds}"
113
+ )
114
+
115
+ if sampling_range_start >= sampling_range_end:
116
+ raise ValueError(
117
+ f"sampling_range_start ({sampling_range_start}) must be smaller than sampling_range_end ({sampling_range_end})"
118
+ )
119
+
120
+ sampling_range_end = min(sampling_range_end, end_stream_seconds)
121
+
122
+ return sampling_range_start, sampling_range_end
123
+
124
+
125
+ def _build_all_clips_timestamps(
126
+ *,
127
+ clip_start_seconds: torch.Tensor, # 1D float tensor
128
+ num_frames_per_clip: int,
129
+ seconds_between_frames: float,
130
+ end_stream_seconds: float,
131
+ policy_fun: _POLICY_FUNCTION_TYPE,
132
+ ) -> list[float]:
133
+
134
+ all_clips_timestamps: list[float] = []
135
+ for start_seconds in clip_start_seconds:
136
+ clip_timestamps = [
137
+ timestamp
138
+ for i in range(num_frames_per_clip)
139
+ if (timestamp := start_seconds + i * seconds_between_frames)
140
+ < end_stream_seconds
141
+ ]
142
+
143
+ if len(clip_timestamps) < num_frames_per_clip:
144
+ clip_timestamps = policy_fun(clip_timestamps, num_frames_per_clip)
145
+ all_clips_timestamps += clip_timestamps
146
+
147
+ return all_clips_timestamps
148
+
149
+
150
+ def _generic_time_based_sampler(
151
+ kind: Literal["random", "regular"],
152
+ decoder,
153
+ *,
154
+ num_clips: Optional[int], # mutually exclusive with seconds_between_clip_starts
155
+ seconds_between_clip_starts: Optional[float],
156
+ num_frames_per_clip: int,
157
+ seconds_between_frames: Optional[float],
158
+ # None means "begining", which may not always be 0
159
+ sampling_range_start: Optional[float],
160
+ sampling_range_end: Optional[float], # interval is [start, end).
161
+ policy: Literal["repeat_last", "wrap", "error"] = "repeat_last",
162
+ ) -> FrameBatch:
163
+ # Note: *everywhere*, sampling_range_end denotes the upper bound of where a
164
+ # clip can start. This is an *open* upper bound, i.e. we will make sure no
165
+ # clip starts exactly at (or above) sampling_range_end.
166
+
167
+ _validate_common_params(
168
+ decoder=decoder,
169
+ num_frames_per_clip=num_frames_per_clip,
170
+ policy=policy,
171
+ )
172
+
173
+ seconds_between_frames = _validate_params_time_based(
174
+ decoder=decoder,
175
+ num_clips=num_clips,
176
+ seconds_between_clip_starts=seconds_between_clip_starts,
177
+ seconds_between_frames=seconds_between_frames,
178
+ )
179
+
180
+ sampling_range_start, sampling_range_end = _validate_sampling_range_time_based(
181
+ num_frames_per_clip=num_frames_per_clip,
182
+ seconds_between_frames=seconds_between_frames,
183
+ sampling_range_start=sampling_range_start,
184
+ sampling_range_end=sampling_range_end,
185
+ begin_stream_seconds=decoder.metadata.begin_stream_seconds,
186
+ end_stream_seconds=decoder.metadata.end_stream_seconds,
187
+ )
188
+
189
+ if kind == "random":
190
+ assert num_clips is not None # appease type-checker
191
+ sampling_range_width = sampling_range_end - sampling_range_start
192
+ # torch.rand() returns in [0, 1)
193
+ # which ensures all clip starts are < sampling_range_end
194
+ clip_start_seconds = (
195
+ torch.rand(num_clips) * sampling_range_width + sampling_range_start
196
+ )
197
+ else:
198
+ assert seconds_between_clip_starts is not None # appease type-checker
199
+ clip_start_seconds = torch.arange(
200
+ sampling_range_start,
201
+ sampling_range_end, # excluded
202
+ seconds_between_clip_starts,
203
+ )
204
+ num_clips = len(clip_start_seconds)
205
+
206
+ all_clips_timestamps = _build_all_clips_timestamps(
207
+ clip_start_seconds=clip_start_seconds,
208
+ num_frames_per_clip=num_frames_per_clip,
209
+ seconds_between_frames=seconds_between_frames,
210
+ end_stream_seconds=decoder.metadata.end_stream_seconds,
211
+ policy_fun=_POLICY_FUNCTIONS[policy],
212
+ )
213
+
214
+ frames = decoder.get_frames_played_at(seconds=all_clips_timestamps)
215
+ return _reshape_4d_framebatch_into_5d(
216
+ frames=frames,
217
+ num_clips=num_clips,
218
+ num_frames_per_clip=num_frames_per_clip,
219
+ )
220
+
221
+
222
+ def clips_at_random_timestamps(
223
+ decoder,
224
+ *,
225
+ num_clips: int = 1,
226
+ num_frames_per_clip: int = 1,
227
+ seconds_between_frames: Optional[float] = None,
228
+ # None means "begining", which may not always be 0
229
+ sampling_range_start: Optional[float] = None,
230
+ sampling_range_end: Optional[float] = None, # interval is [start, end).
231
+ policy: Literal["repeat_last", "wrap", "error"] = "repeat_last",
232
+ ) -> FrameBatch:
233
+ # See docstring below
234
+ return _generic_time_based_sampler(
235
+ kind="random",
236
+ decoder=decoder,
237
+ num_clips=num_clips,
238
+ seconds_between_clip_starts=None,
239
+ num_frames_per_clip=num_frames_per_clip,
240
+ seconds_between_frames=seconds_between_frames,
241
+ sampling_range_start=sampling_range_start,
242
+ sampling_range_end=sampling_range_end,
243
+ policy=policy,
244
+ )
245
+
246
+
247
+ def clips_at_regular_timestamps(
248
+ decoder,
249
+ *,
250
+ seconds_between_clip_starts: float,
251
+ num_frames_per_clip: int = 1,
252
+ seconds_between_frames: Optional[float] = None,
253
+ # None means "begining", which may not always be 0
254
+ sampling_range_start: Optional[float] = None,
255
+ sampling_range_end: Optional[float] = None, # interval is [start, end).
256
+ policy: Literal["repeat_last", "wrap", "error"] = "repeat_last",
257
+ ) -> FrameBatch:
258
+ # See docstring below
259
+ return _generic_time_based_sampler(
260
+ kind="regular",
261
+ decoder=decoder,
262
+ num_clips=None,
263
+ seconds_between_clip_starts=seconds_between_clip_starts,
264
+ num_frames_per_clip=num_frames_per_clip,
265
+ seconds_between_frames=seconds_between_frames,
266
+ sampling_range_start=sampling_range_start,
267
+ sampling_range_end=sampling_range_end,
268
+ policy=policy,
269
+ )
270
+
271
+
272
+ _COMMON_DOCS = """
273
+ {maybe_note}
274
+
275
+ Args:
276
+ decoder (VideoDecoder): The :class:`~torchcodec.decoders.VideoDecoder`
277
+ instance to sample clips from.
278
+ {num_clips_or_seconds_between_clip_starts}
279
+ num_frames_per_clip (int, optional): The number of frames per clips. Default: 1.
280
+ seconds_between_frames (float or None, optional): The time (in seconds)
281
+ between each frame within a clip. More accurately, this defines the
282
+ time between the *frame sampling point*, i.e. the timestamps at
283
+ which we sample the frames. Because frames span intervals in time ,
284
+ the resulting start of frames within a clip may not be exactly
285
+ spaced by ``seconds_between_frames`` - but on average, they will be.
286
+ Default is None, which is set to the average frame duration
287
+ (``1/average_fps``).
288
+ sampling_range_start (float or None, optional): The start of the
289
+ sampling range, which defines the first timestamp (in seconds) that
290
+ a clip may *start* at. Default: None, which corresponds to the start
291
+ of the video. (Note: some videos start at negative values, which is
292
+ why the default is not 0).
293
+ sampling_range_end (float or None, optional): The end of the sampling
294
+ range, which defines the last timestamp (in seconds) that a clip may
295
+ *start* at. This value is exclusive, i.e. a clip may only start within
296
+ [``sampling_range_start``, ``sampling_range_end``). If None
297
+ (default), the value is set automatically such that the clips never
298
+ span beyond the end of the video, i.e. it is set to
299
+ ``end_video_seconds - (num_frames_per_clip - 1) *
300
+ seconds_between_frames``. When a clip spans beyond the end of the
301
+ video, the ``policy`` parameter defines how to construct such clip.
302
+ policy (str, optional): Defines how to construct clips that span beyond
303
+ the end of the video. This is best described with an example:
304
+ assuming the last valid (seekable) timestamp in a video is 10.9, and
305
+ a clip was sampled to start at timestamp 10.5, with
306
+ ``num_frames_per_clip=5`` and ``seconds_between_frames=0.2``, the
307
+ sampling timestamps of the frames in the clip are supposed to be
308
+ [10.5, 10.7, 10.9, 11.1, 11.2]. But 11.1 and 11.2 are invalid
309
+ timestamps, so the ``policy`` parameter defines how to replace those
310
+ frames, with valid sampling timestamps:
311
+
312
+ - "repeat_last": repeats the last valid frame of the clip. We would
313
+ get frames sampled at timestamps [10.5, 10.7, 10.9, 10.9, 10.9].
314
+ - "wrap": wraps around to the beginning of the clip. We would get
315
+ frames sampled at timestamps [10.5, 10.7, 10.9, 10.5, 10.7].
316
+ - "error": raises an error.
317
+
318
+ Default is "repeat_last". Note that when ``sampling_range_end=None``
319
+ (default), this policy parameter is unlikely to be relevant.
320
+
321
+ {return_docs}
322
+ """
323
+
324
+
325
+ _NUM_CLIPS_DOCS = """
326
+ num_clips (int, optional): The number of clips to return. Default: 1.
327
+ """
328
+ clips_at_random_timestamps.__doc__ = f"""Sample :term:`clips` at random timestamps.
329
+ {_COMMON_DOCS.format(maybe_note="", num_clips_or_seconds_between_clip_starts=_NUM_CLIPS_DOCS, return_docs=_FRAMEBATCH_RETURN_DOCS)}
330
+ """
331
+
332
+
333
+ _SECONDS_BETWEEN_CLIP_STARTS = """
334
+ seconds_between_clip_starts (float): The space (in seconds) between each
335
+ clip start.
336
+ """
337
+
338
+ _NOTE_DOCS = """
339
+ .. note::
340
+ For consistency with existing sampling APIs (such as torchvision), this
341
+ sampler takes a ``seconds_between_clip_starts`` parameter instead of
342
+ ``num_clips``. If you find that supporting ``num_clips`` would be
343
+ useful, please let us know by `opening a feature request
344
+ <https://github.com/pytorch/torchcodec/issues?q=is:open+is:issue>`_.
345
+ """
346
+ clips_at_regular_timestamps.__doc__ = f"""Sample :term:`clips` at regular (equally-spaced) timestamps.
347
+ {_COMMON_DOCS.format(maybe_note=_NOTE_DOCS, num_clips_or_seconds_between_clip_starts=_SECONDS_BETWEEN_CLIP_STARTS, return_docs=_FRAMEBATCH_RETURN_DOCS)}
348
+ """
torchcodec/version.py ADDED
@@ -0,0 +1,2 @@
1
+ # Note that this file is generated during install.
2
+ __version__ = '0.3.0'
@@ -0,0 +1,28 @@
1
+ BSD 3-Clause License
2
+
3
+ Copyright 2024 Meta
4
+
5
+ Redistribution and use in source and binary forms, with or without modification,
6
+ are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice,this list
9
+ of conditions and the following disclaimer.
10
+
11
+ 2. Redistributions in binary form must reproduce the above copyright notice, this
12
+ list of conditions and the following disclaimer in the documentation
13
+ and/or other materials provided with the distribution.
14
+
15
+ 3. Neither the name of the copyright holder nor the names of its contributors may
16
+ be used to endorse or promote products derived from this software without specific
17
+ prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
20
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
22
+ SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23
+ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
24
+ TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25
+ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
27
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28
+ DAMAGE.
@@ -0,0 +1,280 @@
1
+ Metadata-Version: 2.1
2
+ Name: torchcodec
3
+ Version: 0.3.0
4
+ Summary: A video decoder for PyTorch
5
+ Author-email: PyTorch Team <packages@pytorch.org>
6
+ License: BSD 3-Clause License
7
+
8
+ Copyright 2024 Meta
9
+
10
+ Redistribution and use in source and binary forms, with or without modification,
11
+ are permitted provided that the following conditions are met:
12
+
13
+ 1. Redistributions of source code must retain the above copyright notice,this list
14
+ of conditions and the following disclaimer.
15
+
16
+ 2. Redistributions in binary form must reproduce the above copyright notice, this
17
+ list of conditions and the following disclaimer in the documentation
18
+ and/or other materials provided with the distribution.
19
+
20
+ 3. Neither the name of the copyright holder nor the names of its contributors may
21
+ be used to endorse or promote products derived from this software without specific
22
+ prior written permission.
23
+
24
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
25
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
27
+ SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28
+ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29
+ TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30
+ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33
+ DAMAGE.
34
+
35
+ Project-URL: GitHub, https://github.com/pytorch/torchcodec
36
+ Project-URL: Documentation, https://pytorch.org/torchcodec/stable/index.html
37
+ Requires-Python: >=3.8
38
+ Description-Content-Type: text/markdown
39
+ License-File: LICENSE
40
+ Provides-Extra: dev
41
+ Requires-Dist: numpy ; extra == 'dev'
42
+ Requires-Dist: pytest ; extra == 'dev'
43
+ Requires-Dist: pillow ; extra == 'dev'
44
+
45
+ [**Installation**](#installing-torchcodec) | [**Simple Example**](#using-torchcodec) | [**Detailed Example**](https://pytorch.org/torchcodec/stable/generated_examples/) | [**Documentation**](https://pytorch.org/torchcodec) | [**Contributing**](CONTRIBUTING.md) | [**License**](#license)
46
+
47
+ # TorchCodec
48
+
49
+ TorchCodec is a Python library for decoding video and audio data into PyTorch
50
+ tensors, on CPU and CUDA GPU. It aims to be fast, easy to use, and well
51
+ integrated into the PyTorch ecosystem. If you want to use PyTorch to train ML
52
+ models on videos and audio, TorchCodec is how you turn these into data.
53
+
54
+ We achieve these capabilities through:
55
+
56
+ * Pythonic APIs that mirror Python and PyTorch conventions.
57
+ * Relying on [FFmpeg](https://www.ffmpeg.org/) to do the decoding. TorchCodec
58
+ uses the version of FFmpeg you already have installed. FFmpeg is a mature
59
+ library with broad coverage available on most systems. It is, however, not
60
+ easy to use. TorchCodec abstracts FFmpeg's complexity to ensure it is used
61
+ correctly and efficiently.
62
+ * Returning data as PyTorch tensors, ready to be fed into PyTorch transforms
63
+ or used directly to train models.
64
+
65
+ > [!NOTE]
66
+ > ⚠️ TorchCodec is still in development stage and some APIs may be updated
67
+ > in future versions, depending on user feedback.
68
+ > If you have any suggestions or issues, please let us know by
69
+ > [opening an issue](https://github.com/pytorch/torchcodec/issues/new/choose)!
70
+
71
+ ## Using TorchCodec
72
+
73
+ Here's a condensed summary of what you can do with TorchCodec. For more detailed
74
+ examples, [check out our
75
+ documentation](https://pytorch.org/torchcodec/stable/generated_examples/)!
76
+
77
+ #### Decoding
78
+
79
+ ```python
80
+ from torchcodec.decoders import VideoDecoder
81
+
82
+ device = "cpu" # or e.g. "cuda" !
83
+ decoder = VideoDecoder("path/to/video.mp4", device=device)
84
+
85
+ decoder.metadata
86
+ # VideoStreamMetadata:
87
+ # num_frames: 250
88
+ # duration_seconds: 10.0
89
+ # bit_rate: 31315.0
90
+ # codec: h264
91
+ # average_fps: 25.0
92
+ # ... (truncated output)
93
+
94
+ # Simple Indexing API
95
+ decoder[0] # uint8 tensor of shape [C, H, W]
96
+ decoder[0 : -1 : 20] # uint8 stacked tensor of shape [N, C, H, W]
97
+
98
+ # Indexing, with PTS and duration info:
99
+ decoder.get_frames_at(indices=[2, 100])
100
+ # FrameBatch:
101
+ # data (shape): torch.Size([2, 3, 270, 480])
102
+ # pts_seconds: tensor([0.0667, 3.3367], dtype=torch.float64)
103
+ # duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
104
+
105
+ # Time-based indexing with PTS and duration info
106
+ decoder.get_frames_played_at(seconds=[0.5, 10.4])
107
+ # FrameBatch:
108
+ # data (shape): torch.Size([2, 3, 270, 480])
109
+ # pts_seconds: tensor([ 0.4671, 10.3770], dtype=torch.float64)
110
+ # duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
111
+ ```
112
+
113
+ #### Clip sampling
114
+
115
+ ```python
116
+
117
+ from torchcodec.samplers import clips_at_regular_timestamps
118
+
119
+ clips_at_regular_timestamps(
120
+ decoder,
121
+ seconds_between_clip_starts=1.5,
122
+ num_frames_per_clip=4,
123
+ seconds_between_frames=0.1
124
+ )
125
+ # FrameBatch:
126
+ # data (shape): torch.Size([9, 4, 3, 270, 480])
127
+ # pts_seconds: tensor([[ 0.0000, 0.0667, 0.1668, 0.2669],
128
+ # [ 1.4681, 1.5682, 1.6683, 1.7684],
129
+ # [ 2.9696, 3.0697, 3.1698, 3.2699],
130
+ # ... (truncated), dtype=torch.float64)
131
+ # duration_seconds: tensor([[0.0334, 0.0334, 0.0334, 0.0334],
132
+ # [0.0334, 0.0334, 0.0334, 0.0334],
133
+ # [0.0334, 0.0334, 0.0334, 0.0334],
134
+ # ... (truncated), dtype=torch.float64)
135
+ ```
136
+
137
+ You can use the following snippet to generate a video with FFmpeg and tryout
138
+ TorchCodec:
139
+
140
+ ```bash
141
+ fontfile=/usr/share/fonts/dejavu-sans-mono-fonts/DejaVuSansMono-Bold.ttf
142
+ output_video_file=/tmp/output_video.mp4
143
+
144
+ ffmpeg -f lavfi -i \
145
+ color=size=640x400:duration=10:rate=25:color=blue \
146
+ -vf "drawtext=fontfile=${fontfile}:fontsize=30:fontcolor=white:x=(w-text_w)/2:y=(h-text_h)/2:text='Frame %{frame_num}'" \
147
+ ${output_video_file}
148
+ ```
149
+
150
+ ## Installing TorchCodec
151
+ ### Installing CPU-only TorchCodec
152
+
153
+ 1. Install the latest stable version of PyTorch following the
154
+ [official instructions](https://pytorch.org/get-started/locally/). For other
155
+ versions, refer to the table below for compatibility between versions of
156
+ `torch` and `torchcodec`.
157
+
158
+ 2. Install FFmpeg, if it's not already installed. Linux distributions usually
159
+ come with FFmpeg pre-installed. TorchCodec supports all major FFmpeg versions
160
+ in [4, 7].
161
+
162
+ If FFmpeg is not already installed, or you need a more recent version, an
163
+ easy way to install it is to use `conda`:
164
+
165
+ ```bash
166
+ conda install ffmpeg
167
+ # or
168
+ conda install ffmpeg -c conda-forge
169
+ ```
170
+
171
+ 3. Install TorchCodec:
172
+
173
+ ```bash
174
+ pip install torchcodec
175
+ ```
176
+
177
+ The following table indicates the compatibility between versions of
178
+ `torchcodec`, `torch` and Python.
179
+
180
+ | `torchcodec` | `torch` | Python |
181
+ | ------------------ | ------------------ | ------------------- |
182
+ | `main` / `nightly` | `main` / `nightly` | `>=3.9`, `<=3.13` |
183
+ | `0.2` | `2.6` | `>=3.9`, `<=3.13` |
184
+ | `0.1` | `2.5` | `>=3.9`, `<=3.12` |
185
+ | `0.0.3` | `2.4` | `>=3.8`, `<=3.12` |
186
+
187
+ ### Installing CUDA-enabled TorchCodec
188
+
189
+ First, make sure you have a GPU that has NVDEC hardware that can decode the
190
+ format you want. Refer to Nvidia's GPU support matrix for more details
191
+ [here](https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new).
192
+
193
+ 1. Install Pytorch corresponding to your CUDA Toolkit using the
194
+ [official instructions](https://pytorch.org/get-started/locally/). You'll
195
+ need the `libnpp` and `libnvrtc` CUDA libraries, which are usually part of
196
+ the CUDA Toolkit.
197
+
198
+ 2. Install or compile FFmpeg with NVDEC support.
199
+ TorchCodec with CUDA should work with FFmpeg versions in [4, 7].
200
+
201
+ If FFmpeg is not already installed, or you need a more recent version, an
202
+ easy way to install it is to use `conda`:
203
+
204
+ ```bash
205
+ conda install ffmpeg
206
+ # or
207
+ conda install ffmpeg -c conda-forge
208
+ ```
209
+
210
+ If you are building FFmpeg from source you can follow Nvidia's guide to
211
+ configuring and installing FFmpeg with NVDEC support
212
+ [here](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.0/ffmpeg-with-nvidia-gpu/index.html).
213
+
214
+ After installing FFmpeg make sure it has NVDEC support when you list the supported
215
+ decoders:
216
+
217
+ ```bash
218
+ ffmpeg -decoders | grep -i nvidia
219
+ # This should show a line like this:
220
+ # V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
221
+ ```
222
+
223
+ To check that FFmpeg libraries work with NVDEC correctly you can decode a sample video:
224
+
225
+ ```bash
226
+ ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i test/resources/nasa_13013.mp4 -f null -
227
+ ```
228
+
229
+ 3. Install TorchCodec by passing in an `--index-url` parameter that corresponds
230
+ to your CUDA Toolkit version, example:
231
+
232
+ ```bash
233
+ # This corresponds to CUDA Toolkit version 12.6. It should be the same one
234
+ # you used when you installed PyTorch (If you installed PyTorch with pip).
235
+ pip install torchcodec --index-url=https://download.pytorch.org/whl/cu126
236
+ ```
237
+
238
+ Note that without passing in the `--index-url` parameter, `pip` installs
239
+ the CPU-only version of TorchCodec.
240
+
241
+ ## Benchmark Results
242
+
243
+ The following was generated by running [our benchmark script](./benchmarks/decoders/generate_readme_data.py) on a lightly loaded 22-core machine with an Nvidia A100 with
244
+ 5 [NVDEC decoders](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvdec-application-note/index.html#).
245
+
246
+ ![benchmark_results](./benchmarks/decoders/benchmark_readme_chart.png)
247
+
248
+ The top row is a [Mandelbrot](https://ffmpeg.org/ffmpeg-filters.html#mandelbrot) video
249
+ generated from FFmpeg that has a resolution of 1280x720 at 60 fps and is 120 seconds long.
250
+ The bottom row is [promotional video from NASA](https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4)
251
+ that has a resolution of 960x540 at 29.7 fps and is 206 seconds long. Both videos were
252
+ encoded with libx264 and yuv420p pixel format. All decoders, except for TorchVision, used FFmpeg 6.1.2. TorchVision used FFmpeg 4.2.2.
253
+
254
+ For TorchCodec, the "approx" label means that it was using [approximate mode](https://pytorch.org/torchcodec/stable/generated_examples/approximate_mode.html)
255
+ for seeking.
256
+
257
+ ## Planned future work
258
+
259
+ We are actively working on the following features:
260
+
261
+ - [Audio decoding](https://github.com/pytorch/torchcodec/issues/85)
262
+
263
+ Let us know if you have any feature requests by [opening an
264
+ issue](https://github.com/pytorch/torchcodec/issues/new?assignees=&labels=&projects=&template=feature-request.yml)!
265
+
266
+ ## Contributing
267
+
268
+ We welcome contributions to TorchCodec! Please see our [contributing
269
+ guide](CONTRIBUTING.md) for more details.
270
+
271
+ ## License
272
+
273
+ TorchCodec is released under the [BSD 3 license](./LICENSE).
274
+
275
+ However, TorchCodec may be used with code not written by Meta which may be
276
+ distributed under different licenses.
277
+
278
+ For example, if you build TorchCodec with ENABLE_CUDA=1 or use the CUDA-enabled
279
+ release of torchcodec, please review CUDA's license here:
280
+ [Nvidia licenses](https://docs.nvidia.com/cuda/eula/index.html).