torchcodec 0.3.0__cp311-cp311-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of torchcodec might be problematic. Click here for more details.
- torchcodec/__init__.py +16 -0
- torchcodec/_core/AVIOBytesContext.cpp +70 -0
- torchcodec/_core/AVIOBytesContext.h +32 -0
- torchcodec/_core/AVIOContextHolder.cpp +50 -0
- torchcodec/_core/AVIOContextHolder.h +65 -0
- torchcodec/_core/AVIOFileLikeContext.cpp +80 -0
- torchcodec/_core/AVIOFileLikeContext.h +54 -0
- torchcodec/_core/CMakeLists.txt +237 -0
- torchcodec/_core/CudaDeviceInterface.cpp +289 -0
- torchcodec/_core/CudaDeviceInterface.h +34 -0
- torchcodec/_core/DeviceInterface.cpp +88 -0
- torchcodec/_core/DeviceInterface.h +66 -0
- torchcodec/_core/Encoder.cpp +319 -0
- torchcodec/_core/Encoder.h +39 -0
- torchcodec/_core/FFMPEGCommon.cpp +264 -0
- torchcodec/_core/FFMPEGCommon.h +180 -0
- torchcodec/_core/Frame.h +47 -0
- torchcodec/_core/Metadata.h +70 -0
- torchcodec/_core/SingleStreamDecoder.cpp +1947 -0
- torchcodec/_core/SingleStreamDecoder.h +462 -0
- torchcodec/_core/StreamOptions.h +49 -0
- torchcodec/_core/__init__.py +39 -0
- torchcodec/_core/_metadata.py +277 -0
- torchcodec/_core/custom_ops.cpp +681 -0
- torchcodec/_core/fetch_and_expose_non_gpl_ffmpeg_libs.cmake +226 -0
- torchcodec/_core/ops.py +381 -0
- torchcodec/_core/pybind_ops.cpp +45 -0
- torchcodec/_frame.py +145 -0
- torchcodec/_internally_replaced_utils.py +53 -0
- torchcodec/_samplers/__init__.py +7 -0
- torchcodec/_samplers/video_clip_sampler.py +430 -0
- torchcodec/decoders/__init__.py +11 -0
- torchcodec/decoders/_audio_decoder.py +168 -0
- torchcodec/decoders/_decoder_utils.py +52 -0
- torchcodec/decoders/_video_decoder.py +399 -0
- torchcodec/libtorchcodec_custom_ops4.so +0 -0
- torchcodec/libtorchcodec_custom_ops5.so +0 -0
- torchcodec/libtorchcodec_custom_ops6.so +0 -0
- torchcodec/libtorchcodec_custom_ops7.so +0 -0
- torchcodec/libtorchcodec_decoder4.so +0 -0
- torchcodec/libtorchcodec_decoder5.so +0 -0
- torchcodec/libtorchcodec_decoder6.so +0 -0
- torchcodec/libtorchcodec_decoder7.so +0 -0
- torchcodec/libtorchcodec_pybind_ops4.so +0 -0
- torchcodec/libtorchcodec_pybind_ops5.so +0 -0
- torchcodec/libtorchcodec_pybind_ops6.so +0 -0
- torchcodec/libtorchcodec_pybind_ops7.so +0 -0
- torchcodec/samplers/__init__.py +2 -0
- torchcodec/samplers/_common.py +84 -0
- torchcodec/samplers/_index_based.py +285 -0
- torchcodec/samplers/_time_based.py +348 -0
- torchcodec/version.py +2 -0
- torchcodec-0.3.0.dist-info/LICENSE +28 -0
- torchcodec-0.3.0.dist-info/METADATA +280 -0
- torchcodec-0.3.0.dist-info/RECORD +57 -0
- torchcodec-0.3.0.dist-info/WHEEL +5 -0
- torchcodec-0.3.0.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
import io
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from typing import Optional, Union
|
|
10
|
+
|
|
11
|
+
from torch import Tensor
|
|
12
|
+
|
|
13
|
+
from torchcodec import _core as core, AudioSamples
|
|
14
|
+
from torchcodec.decoders._decoder_utils import (
|
|
15
|
+
create_decoder,
|
|
16
|
+
ERROR_REPORTING_INSTRUCTIONS,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class AudioDecoder:
|
|
21
|
+
"""A single-stream audio decoder.
|
|
22
|
+
|
|
23
|
+
This can be used to decode audio from pure audio files (e.g. mp3, wav,
|
|
24
|
+
etc.), or from videos that contain audio streams (e.g. mp4 videos).
|
|
25
|
+
|
|
26
|
+
Returned samples are float samples normalized in [-1, 1]
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
source (str, ``Pathlib.path``, bytes, ``torch.Tensor`` or file-like object): The source of the video:
|
|
30
|
+
|
|
31
|
+
- If ``str``: a local path or a URL to a video or audio file.
|
|
32
|
+
- If ``Pathlib.path``: a path to a local video or audio file.
|
|
33
|
+
- If ``bytes`` object or ``torch.Tensor``: the raw encoded audio data.
|
|
34
|
+
- If file-like object: we read video data from the object on demand. The object must
|
|
35
|
+
expose the methods `read(self, size: int) -> bytes` and
|
|
36
|
+
`seek(self, offset: int, whence: int) -> bytes`. Read more in:
|
|
37
|
+
:ref:`sphx_glr_generated_examples_file_like.py`.
|
|
38
|
+
stream_index (int, optional): Specifies which stream in the file to decode samples from.
|
|
39
|
+
Note that this index is absolute across all media types. If left unspecified, then
|
|
40
|
+
the :term:`best stream` is used.
|
|
41
|
+
sample_rate (int, optional): The desired output sample rate of the decoded samples.
|
|
42
|
+
By default, the samples are returned in their original sample rate.
|
|
43
|
+
|
|
44
|
+
Attributes:
|
|
45
|
+
metadata (AudioStreamMetadata): Metadata of the audio stream.
|
|
46
|
+
stream_index (int): The stream index that this decoder is retrieving samples from. If a
|
|
47
|
+
stream index was provided at initialization, this is the same value. If it was left
|
|
48
|
+
unspecified, this is the :term:`best stream`.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
def __init__(
|
|
52
|
+
self,
|
|
53
|
+
source: Union[str, Path, io.RawIOBase, io.BufferedReader, bytes, Tensor],
|
|
54
|
+
*,
|
|
55
|
+
stream_index: Optional[int] = None,
|
|
56
|
+
sample_rate: Optional[int] = None,
|
|
57
|
+
):
|
|
58
|
+
self._decoder = create_decoder(source=source, seek_mode="approximate")
|
|
59
|
+
|
|
60
|
+
core.add_audio_stream(
|
|
61
|
+
self._decoder, stream_index=stream_index, sample_rate=sample_rate
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
container_metadata = core.get_container_metadata(self._decoder)
|
|
65
|
+
self.stream_index = (
|
|
66
|
+
container_metadata.best_audio_stream_index
|
|
67
|
+
if stream_index is None
|
|
68
|
+
else stream_index
|
|
69
|
+
)
|
|
70
|
+
if self.stream_index is None:
|
|
71
|
+
raise ValueError(
|
|
72
|
+
"The best audio stream is unknown and there is no specified stream. "
|
|
73
|
+
+ ERROR_REPORTING_INSTRUCTIONS
|
|
74
|
+
)
|
|
75
|
+
self.metadata = container_metadata.streams[self.stream_index]
|
|
76
|
+
assert isinstance(self.metadata, core.AudioStreamMetadata) # mypy
|
|
77
|
+
|
|
78
|
+
self._desired_sample_rate = (
|
|
79
|
+
sample_rate if sample_rate is not None else self.metadata.sample_rate
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
def get_all_samples(self) -> AudioSamples:
|
|
83
|
+
"""Returns all the audio samples from the source.
|
|
84
|
+
|
|
85
|
+
To decode samples in a specific range, use
|
|
86
|
+
:meth:`~torchcodec.decoders.AudioDecoder.get_samples_played_in_range`.
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
AudioSamples: The samples within the file.
|
|
90
|
+
"""
|
|
91
|
+
return self.get_samples_played_in_range()
|
|
92
|
+
|
|
93
|
+
def get_samples_played_in_range(
|
|
94
|
+
self, start_seconds: float = 0.0, stop_seconds: Optional[float] = None
|
|
95
|
+
) -> AudioSamples:
|
|
96
|
+
"""Returns audio samples in the given range.
|
|
97
|
+
|
|
98
|
+
Samples are in the half open range [start_seconds, stop_seconds).
|
|
99
|
+
|
|
100
|
+
To decode all the samples from beginning to end, you can call this
|
|
101
|
+
method while leaving ``start_seconds`` and ``stop_seconds`` to their
|
|
102
|
+
default values, or use
|
|
103
|
+
:meth:`~torchcodec.decoders.AudioDecoder.get_all_samples` as a more
|
|
104
|
+
convenient alias.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
start_seconds (float): Time, in seconds, of the start of the
|
|
108
|
+
range. Default: 0.
|
|
109
|
+
stop_seconds (float or None): Time, in seconds, of the end of the
|
|
110
|
+
range. As a half open range, the end is excluded. Default: None,
|
|
111
|
+
which decodes samples until the end.
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
AudioSamples: The samples within the specified range.
|
|
115
|
+
"""
|
|
116
|
+
if stop_seconds is not None and not start_seconds <= stop_seconds:
|
|
117
|
+
raise ValueError(
|
|
118
|
+
f"Invalid start seconds: {start_seconds}. It must be less than or equal to stop seconds ({stop_seconds})."
|
|
119
|
+
)
|
|
120
|
+
frames, first_pts = core.get_frames_by_pts_in_range_audio(
|
|
121
|
+
self._decoder,
|
|
122
|
+
start_seconds=start_seconds,
|
|
123
|
+
stop_seconds=stop_seconds,
|
|
124
|
+
)
|
|
125
|
+
first_pts = first_pts.item()
|
|
126
|
+
|
|
127
|
+
# x = frame boundaries
|
|
128
|
+
#
|
|
129
|
+
# first_pts last_pts
|
|
130
|
+
# v v
|
|
131
|
+
# ....x..........x..........x...........x..........x..........x.....
|
|
132
|
+
# ^ ^
|
|
133
|
+
# start_seconds stop_seconds
|
|
134
|
+
#
|
|
135
|
+
# We want to return the samples in [start_seconds, stop_seconds). But
|
|
136
|
+
# because the core API is based on frames, the `frames` tensor contains
|
|
137
|
+
# the samples in [first_pts, last_pts)
|
|
138
|
+
# So we do some basic math to figure out the position of the view that
|
|
139
|
+
# we'll return.
|
|
140
|
+
|
|
141
|
+
sample_rate = self._desired_sample_rate
|
|
142
|
+
# TODO: metadata's sample_rate should probably not be Optional
|
|
143
|
+
assert sample_rate is not None # mypy.
|
|
144
|
+
|
|
145
|
+
if first_pts < start_seconds:
|
|
146
|
+
offset_beginning = round((start_seconds - first_pts) * sample_rate)
|
|
147
|
+
output_pts_seconds = start_seconds
|
|
148
|
+
else:
|
|
149
|
+
# In normal cases we'll have first_pts <= start_pts, but in some
|
|
150
|
+
# edge cases it's possible to have first_pts > start_seconds,
|
|
151
|
+
# typically if the stream's first frame's pts isn't exactly 0.
|
|
152
|
+
offset_beginning = 0
|
|
153
|
+
output_pts_seconds = first_pts
|
|
154
|
+
|
|
155
|
+
num_samples = frames.shape[1]
|
|
156
|
+
last_pts = first_pts + num_samples / sample_rate
|
|
157
|
+
if stop_seconds is not None and stop_seconds < last_pts:
|
|
158
|
+
offset_end = num_samples - round((last_pts - stop_seconds) * sample_rate)
|
|
159
|
+
else:
|
|
160
|
+
offset_end = num_samples
|
|
161
|
+
|
|
162
|
+
data = frames[:, offset_beginning:offset_end]
|
|
163
|
+
return AudioSamples(
|
|
164
|
+
data=data,
|
|
165
|
+
pts_seconds=output_pts_seconds,
|
|
166
|
+
duration_seconds=data.shape[1] / sample_rate,
|
|
167
|
+
sample_rate=sample_rate,
|
|
168
|
+
)
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
import io
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
|
|
10
|
+
from typing import Union
|
|
11
|
+
|
|
12
|
+
from torch import Tensor
|
|
13
|
+
from torchcodec import _core as core
|
|
14
|
+
|
|
15
|
+
ERROR_REPORTING_INSTRUCTIONS = """
|
|
16
|
+
This should never happen. Please report an issue following the steps in
|
|
17
|
+
https://github.com/pytorch/torchcodec/issues/new?assignees=&labels=&projects=&template=bug-report.yml.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def create_decoder(
|
|
22
|
+
*,
|
|
23
|
+
source: Union[str, Path, io.RawIOBase, io.BufferedReader, bytes, Tensor],
|
|
24
|
+
seek_mode: str,
|
|
25
|
+
) -> Tensor:
|
|
26
|
+
if isinstance(source, str):
|
|
27
|
+
return core.create_from_file(source, seek_mode)
|
|
28
|
+
elif isinstance(source, Path):
|
|
29
|
+
return core.create_from_file(str(source), seek_mode)
|
|
30
|
+
elif isinstance(source, io.RawIOBase) or isinstance(source, io.BufferedReader):
|
|
31
|
+
return core.create_from_file_like(source, seek_mode)
|
|
32
|
+
elif isinstance(source, bytes):
|
|
33
|
+
return core.create_from_bytes(source, seek_mode)
|
|
34
|
+
elif isinstance(source, Tensor):
|
|
35
|
+
return core.create_from_tensor(source, seek_mode)
|
|
36
|
+
elif isinstance(source, io.TextIOBase):
|
|
37
|
+
raise TypeError(
|
|
38
|
+
"source is for reading text, likely from open(..., 'r'). Try with 'rb' for binary reading?"
|
|
39
|
+
)
|
|
40
|
+
elif hasattr(source, "read") and hasattr(source, "seek"):
|
|
41
|
+
# This check must be after checking for text-based reading. Also placing
|
|
42
|
+
# it last in general to be defensive: hasattr is a blunt instrument. We
|
|
43
|
+
# could use the inspect module to check for methods with the right
|
|
44
|
+
# signature.
|
|
45
|
+
return core.create_from_file_like(source, seek_mode)
|
|
46
|
+
|
|
47
|
+
raise TypeError(
|
|
48
|
+
f"Unknown source type: {type(source)}. "
|
|
49
|
+
"Supported types are str, Path, bytes, Tensor and file-like objects with "
|
|
50
|
+
"read(self, size: int) -> bytes and "
|
|
51
|
+
"seek(self, offset: int, whence: int) -> bytes methods."
|
|
52
|
+
)
|
|
@@ -0,0 +1,399 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
import io
|
|
8
|
+
import numbers
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import Literal, Optional, Tuple, Union
|
|
11
|
+
|
|
12
|
+
from torch import device as torch_device, Tensor
|
|
13
|
+
|
|
14
|
+
from torchcodec import _core as core, Frame, FrameBatch
|
|
15
|
+
from torchcodec.decoders._decoder_utils import (
|
|
16
|
+
create_decoder,
|
|
17
|
+
ERROR_REPORTING_INSTRUCTIONS,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class VideoDecoder:
|
|
22
|
+
"""A single-stream video decoder.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
source (str, ``Pathlib.path``, bytes, ``torch.Tensor`` or file-like object): The source of the video:
|
|
26
|
+
|
|
27
|
+
- If ``str``: a local path or a URL to a video file.
|
|
28
|
+
- If ``Pathlib.path``: a path to a local video file.
|
|
29
|
+
- If ``bytes`` object or ``torch.Tensor``: the raw encoded video data.
|
|
30
|
+
- If file-like object: we read video data from the object on demand. The object must
|
|
31
|
+
expose the methods `read(self, size: int) -> bytes` and
|
|
32
|
+
`seek(self, offset: int, whence: int) -> bytes`. Read more in:
|
|
33
|
+
:ref:`sphx_glr_generated_examples_file_like.py`.
|
|
34
|
+
stream_index (int, optional): Specifies which stream in the video to decode frames from.
|
|
35
|
+
Note that this index is absolute across all media types. If left unspecified, then
|
|
36
|
+
the :term:`best stream` is used.
|
|
37
|
+
dimension_order(str, optional): The dimension order of the decoded frames.
|
|
38
|
+
This can be either "NCHW" (default) or "NHWC", where N is the batch
|
|
39
|
+
size, C is the number of channels, H is the height, and W is the
|
|
40
|
+
width of the frames.
|
|
41
|
+
.. note::
|
|
42
|
+
|
|
43
|
+
Frames are natively decoded in NHWC format by the underlying
|
|
44
|
+
FFmpeg implementation. Converting those into NCHW format is a
|
|
45
|
+
cheap no-copy operation that allows these frames to be
|
|
46
|
+
transformed using the `torchvision transforms
|
|
47
|
+
<https://pytorch.org/vision/stable/transforms.html>`_.
|
|
48
|
+
num_ffmpeg_threads (int, optional): The number of threads to use for decoding.
|
|
49
|
+
Use 1 for single-threaded decoding which may be best if you are running multiple
|
|
50
|
+
instances of ``VideoDecoder`` in parallel. Use a higher number for multi-threaded
|
|
51
|
+
decoding which is best if you are running a single instance of ``VideoDecoder``.
|
|
52
|
+
Passing 0 lets FFmpeg decide on the number of threads.
|
|
53
|
+
Default: 1.
|
|
54
|
+
device (str or torch.device, optional): The device to use for decoding. Default: "cpu".
|
|
55
|
+
seek_mode (str, optional): Determines if frame access will be "exact" or
|
|
56
|
+
"approximate". Exact guarantees that requesting frame i will always
|
|
57
|
+
return frame i, but doing so requires an initial :term:`scan` of the
|
|
58
|
+
file. Approximate is faster as it avoids scanning the file, but less
|
|
59
|
+
accurate as it uses the file's metadata to calculate where i
|
|
60
|
+
probably is. Default: "exact".
|
|
61
|
+
Read more about this parameter in:
|
|
62
|
+
:ref:`sphx_glr_generated_examples_approximate_mode.py`
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
Attributes:
|
|
66
|
+
metadata (VideoStreamMetadata): Metadata of the video stream.
|
|
67
|
+
stream_index (int): The stream index that this decoder is retrieving frames from. If a
|
|
68
|
+
stream index was provided at initialization, this is the same value. If it was left
|
|
69
|
+
unspecified, this is the :term:`best stream`.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def __init__(
|
|
73
|
+
self,
|
|
74
|
+
source: Union[str, Path, io.RawIOBase, io.BufferedReader, bytes, Tensor],
|
|
75
|
+
*,
|
|
76
|
+
stream_index: Optional[int] = None,
|
|
77
|
+
dimension_order: Literal["NCHW", "NHWC"] = "NCHW",
|
|
78
|
+
num_ffmpeg_threads: int = 1,
|
|
79
|
+
device: Optional[Union[str, torch_device]] = "cpu",
|
|
80
|
+
seek_mode: Literal["exact", "approximate"] = "exact",
|
|
81
|
+
):
|
|
82
|
+
allowed_seek_modes = ("exact", "approximate")
|
|
83
|
+
if seek_mode not in allowed_seek_modes:
|
|
84
|
+
raise ValueError(
|
|
85
|
+
f"Invalid seek mode ({seek_mode}). "
|
|
86
|
+
f"Supported values are {', '.join(allowed_seek_modes)}."
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
self._decoder = create_decoder(source=source, seek_mode=seek_mode)
|
|
90
|
+
|
|
91
|
+
allowed_dimension_orders = ("NCHW", "NHWC")
|
|
92
|
+
if dimension_order not in allowed_dimension_orders:
|
|
93
|
+
raise ValueError(
|
|
94
|
+
f"Invalid dimension order ({dimension_order}). "
|
|
95
|
+
f"Supported values are {', '.join(allowed_dimension_orders)}."
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
if num_ffmpeg_threads is None:
|
|
99
|
+
raise ValueError(f"{num_ffmpeg_threads = } should be an int.")
|
|
100
|
+
|
|
101
|
+
if isinstance(device, torch_device):
|
|
102
|
+
device = str(device)
|
|
103
|
+
|
|
104
|
+
core.add_video_stream(
|
|
105
|
+
self._decoder,
|
|
106
|
+
stream_index=stream_index,
|
|
107
|
+
dimension_order=dimension_order,
|
|
108
|
+
num_threads=num_ffmpeg_threads,
|
|
109
|
+
device=device,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
(
|
|
113
|
+
self.metadata,
|
|
114
|
+
self.stream_index,
|
|
115
|
+
self._begin_stream_seconds,
|
|
116
|
+
self._end_stream_seconds,
|
|
117
|
+
self._num_frames,
|
|
118
|
+
) = _get_and_validate_stream_metadata(
|
|
119
|
+
decoder=self._decoder, stream_index=stream_index
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
def __len__(self) -> int:
|
|
123
|
+
return self._num_frames
|
|
124
|
+
|
|
125
|
+
def _getitem_int(self, key: int) -> Tensor:
|
|
126
|
+
assert isinstance(key, int)
|
|
127
|
+
|
|
128
|
+
if key < 0:
|
|
129
|
+
key += self._num_frames
|
|
130
|
+
if key >= self._num_frames or key < 0:
|
|
131
|
+
raise IndexError(
|
|
132
|
+
f"Index {key} is out of bounds; length is {self._num_frames}"
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
frame_data, *_ = core.get_frame_at_index(self._decoder, frame_index=key)
|
|
136
|
+
return frame_data
|
|
137
|
+
|
|
138
|
+
def _getitem_slice(self, key: slice) -> Tensor:
|
|
139
|
+
assert isinstance(key, slice)
|
|
140
|
+
|
|
141
|
+
start, stop, step = key.indices(len(self))
|
|
142
|
+
frame_data, *_ = core.get_frames_in_range(
|
|
143
|
+
self._decoder,
|
|
144
|
+
start=start,
|
|
145
|
+
stop=stop,
|
|
146
|
+
step=step,
|
|
147
|
+
)
|
|
148
|
+
return frame_data
|
|
149
|
+
|
|
150
|
+
def __getitem__(self, key: Union[numbers.Integral, slice]) -> Tensor:
|
|
151
|
+
"""Return frame or frames as tensors, at the given index or range.
|
|
152
|
+
|
|
153
|
+
.. note::
|
|
154
|
+
|
|
155
|
+
If you need to decode multiple frames, we recommend using the batch
|
|
156
|
+
methods instead, since they are faster:
|
|
157
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_at`,
|
|
158
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_in_range`,
|
|
159
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_at`, and
|
|
160
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_in_range`.
|
|
161
|
+
|
|
162
|
+
Args:
|
|
163
|
+
key(int or slice): The index or range of frame(s) to retrieve.
|
|
164
|
+
|
|
165
|
+
Returns:
|
|
166
|
+
torch.Tensor: The frame or frames at the given index or range.
|
|
167
|
+
"""
|
|
168
|
+
if isinstance(key, numbers.Integral):
|
|
169
|
+
return self._getitem_int(int(key))
|
|
170
|
+
elif isinstance(key, slice):
|
|
171
|
+
return self._getitem_slice(key)
|
|
172
|
+
|
|
173
|
+
raise TypeError(
|
|
174
|
+
f"Unsupported key type: {type(key)}. Supported types are int and slice."
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
def _get_key_frame_indices(self) -> list[int]:
|
|
178
|
+
return core._get_key_frame_indices(self._decoder)
|
|
179
|
+
|
|
180
|
+
def get_frame_at(self, index: int) -> Frame:
|
|
181
|
+
"""Return a single frame at the given index.
|
|
182
|
+
|
|
183
|
+
.. note::
|
|
184
|
+
|
|
185
|
+
If you need to decode multiple frames, we recommend using the batch
|
|
186
|
+
methods instead, since they are faster:
|
|
187
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_at`,
|
|
188
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_in_range`,
|
|
189
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_at`,
|
|
190
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_in_range`.
|
|
191
|
+
|
|
192
|
+
Args:
|
|
193
|
+
index (int): The index of the frame to retrieve.
|
|
194
|
+
|
|
195
|
+
Returns:
|
|
196
|
+
Frame: The frame at the given index.
|
|
197
|
+
"""
|
|
198
|
+
|
|
199
|
+
if not 0 <= index < self._num_frames:
|
|
200
|
+
raise IndexError(
|
|
201
|
+
f"Index {index} is out of bounds; must be in the range [0, {self._num_frames})."
|
|
202
|
+
)
|
|
203
|
+
data, pts_seconds, duration_seconds = core.get_frame_at_index(
|
|
204
|
+
self._decoder, frame_index=index
|
|
205
|
+
)
|
|
206
|
+
return Frame(
|
|
207
|
+
data=data,
|
|
208
|
+
pts_seconds=pts_seconds.item(),
|
|
209
|
+
duration_seconds=duration_seconds.item(),
|
|
210
|
+
)
|
|
211
|
+
|
|
212
|
+
def get_frames_at(self, indices: list[int]) -> FrameBatch:
|
|
213
|
+
"""Return frames at the given indices.
|
|
214
|
+
|
|
215
|
+
Args:
|
|
216
|
+
indices (list of int): The indices of the frames to retrieve.
|
|
217
|
+
|
|
218
|
+
Returns:
|
|
219
|
+
FrameBatch: The frames at the given indices.
|
|
220
|
+
"""
|
|
221
|
+
|
|
222
|
+
data, pts_seconds, duration_seconds = core.get_frames_at_indices(
|
|
223
|
+
self._decoder, frame_indices=indices
|
|
224
|
+
)
|
|
225
|
+
return FrameBatch(
|
|
226
|
+
data=data,
|
|
227
|
+
pts_seconds=pts_seconds,
|
|
228
|
+
duration_seconds=duration_seconds,
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
def get_frames_in_range(self, start: int, stop: int, step: int = 1) -> FrameBatch:
|
|
232
|
+
"""Return multiple frames at the given index range.
|
|
233
|
+
|
|
234
|
+
Frames are in [start, stop).
|
|
235
|
+
|
|
236
|
+
Args:
|
|
237
|
+
start (int): Index of the first frame to retrieve.
|
|
238
|
+
stop (int): End of indexing range (exclusive, as per Python
|
|
239
|
+
conventions).
|
|
240
|
+
step (int, optional): Step size between frames. Default: 1.
|
|
241
|
+
|
|
242
|
+
Returns:
|
|
243
|
+
FrameBatch: The frames within the specified range.
|
|
244
|
+
"""
|
|
245
|
+
if not 0 <= start < self._num_frames:
|
|
246
|
+
raise IndexError(
|
|
247
|
+
f"Start index {start} is out of bounds; must be in the range [0, {self._num_frames})."
|
|
248
|
+
)
|
|
249
|
+
if stop < start:
|
|
250
|
+
raise IndexError(
|
|
251
|
+
f"Stop index ({stop}) must not be less than the start index ({start})."
|
|
252
|
+
)
|
|
253
|
+
if not step > 0:
|
|
254
|
+
raise IndexError(f"Step ({step}) must be greater than 0.")
|
|
255
|
+
frames = core.get_frames_in_range(
|
|
256
|
+
self._decoder,
|
|
257
|
+
start=start,
|
|
258
|
+
stop=stop,
|
|
259
|
+
step=step,
|
|
260
|
+
)
|
|
261
|
+
return FrameBatch(*frames)
|
|
262
|
+
|
|
263
|
+
def get_frame_played_at(self, seconds: float) -> Frame:
|
|
264
|
+
"""Return a single frame played at the given timestamp in seconds.
|
|
265
|
+
|
|
266
|
+
.. note::
|
|
267
|
+
|
|
268
|
+
If you need to decode multiple frames, we recommend using the batch
|
|
269
|
+
methods instead, since they are faster:
|
|
270
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_at`,
|
|
271
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_in_range`,
|
|
272
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_at`,
|
|
273
|
+
:meth:`~torchcodec.decoders.VideoDecoder.get_frames_played_in_range`.
|
|
274
|
+
|
|
275
|
+
Args:
|
|
276
|
+
seconds (float): The time stamp in seconds when the frame is played.
|
|
277
|
+
|
|
278
|
+
Returns:
|
|
279
|
+
Frame: The frame that is played at ``seconds``.
|
|
280
|
+
"""
|
|
281
|
+
if not self._begin_stream_seconds <= seconds < self._end_stream_seconds:
|
|
282
|
+
raise IndexError(
|
|
283
|
+
f"Invalid pts in seconds: {seconds}. "
|
|
284
|
+
f"It must be greater than or equal to {self._begin_stream_seconds} "
|
|
285
|
+
f"and less than {self._end_stream_seconds}."
|
|
286
|
+
)
|
|
287
|
+
data, pts_seconds, duration_seconds = core.get_frame_at_pts(
|
|
288
|
+
self._decoder, seconds
|
|
289
|
+
)
|
|
290
|
+
return Frame(
|
|
291
|
+
data=data,
|
|
292
|
+
pts_seconds=pts_seconds.item(),
|
|
293
|
+
duration_seconds=duration_seconds.item(),
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
def get_frames_played_at(self, seconds: list[float]) -> FrameBatch:
|
|
297
|
+
"""Return frames played at the given timestamps in seconds.
|
|
298
|
+
|
|
299
|
+
Args:
|
|
300
|
+
seconds (list of float): The timestamps in seconds when the frames are played.
|
|
301
|
+
|
|
302
|
+
Returns:
|
|
303
|
+
FrameBatch: The frames that are played at ``seconds``.
|
|
304
|
+
"""
|
|
305
|
+
data, pts_seconds, duration_seconds = core.get_frames_by_pts(
|
|
306
|
+
self._decoder, timestamps=seconds
|
|
307
|
+
)
|
|
308
|
+
return FrameBatch(
|
|
309
|
+
data=data,
|
|
310
|
+
pts_seconds=pts_seconds,
|
|
311
|
+
duration_seconds=duration_seconds,
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
def get_frames_played_in_range(
|
|
315
|
+
self, start_seconds: float, stop_seconds: float
|
|
316
|
+
) -> FrameBatch:
|
|
317
|
+
"""Returns multiple frames in the given range.
|
|
318
|
+
|
|
319
|
+
Frames are in the half open range [start_seconds, stop_seconds). Each
|
|
320
|
+
returned frame's :term:`pts`, in seconds, is inside of the half open
|
|
321
|
+
range.
|
|
322
|
+
|
|
323
|
+
Args:
|
|
324
|
+
start_seconds (float): Time, in seconds, of the start of the
|
|
325
|
+
range.
|
|
326
|
+
stop_seconds (float): Time, in seconds, of the end of the
|
|
327
|
+
range. As a half open range, the end is excluded.
|
|
328
|
+
|
|
329
|
+
Returns:
|
|
330
|
+
FrameBatch: The frames within the specified range.
|
|
331
|
+
"""
|
|
332
|
+
if not start_seconds <= stop_seconds:
|
|
333
|
+
raise ValueError(
|
|
334
|
+
f"Invalid start seconds: {start_seconds}. It must be less than or equal to stop seconds ({stop_seconds})."
|
|
335
|
+
)
|
|
336
|
+
if not self._begin_stream_seconds <= start_seconds < self._end_stream_seconds:
|
|
337
|
+
raise ValueError(
|
|
338
|
+
f"Invalid start seconds: {start_seconds}. "
|
|
339
|
+
f"It must be greater than or equal to {self._begin_stream_seconds} "
|
|
340
|
+
f"and less than or equal to {self._end_stream_seconds}."
|
|
341
|
+
)
|
|
342
|
+
if not stop_seconds <= self._end_stream_seconds:
|
|
343
|
+
raise ValueError(
|
|
344
|
+
f"Invalid stop seconds: {stop_seconds}. "
|
|
345
|
+
f"It must be less than or equal to {self._end_stream_seconds}."
|
|
346
|
+
)
|
|
347
|
+
frames = core.get_frames_by_pts_in_range(
|
|
348
|
+
self._decoder,
|
|
349
|
+
start_seconds=start_seconds,
|
|
350
|
+
stop_seconds=stop_seconds,
|
|
351
|
+
)
|
|
352
|
+
return FrameBatch(*frames)
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def _get_and_validate_stream_metadata(
|
|
356
|
+
*,
|
|
357
|
+
decoder: Tensor,
|
|
358
|
+
stream_index: Optional[int] = None,
|
|
359
|
+
) -> Tuple[core._metadata.VideoStreamMetadata, int, float, float, int]:
|
|
360
|
+
|
|
361
|
+
container_metadata = core.get_container_metadata(decoder)
|
|
362
|
+
|
|
363
|
+
if stream_index is None:
|
|
364
|
+
if (stream_index := container_metadata.best_video_stream_index) is None:
|
|
365
|
+
raise ValueError(
|
|
366
|
+
"The best video stream is unknown and there is no specified stream. "
|
|
367
|
+
+ ERROR_REPORTING_INSTRUCTIONS
|
|
368
|
+
)
|
|
369
|
+
|
|
370
|
+
metadata = container_metadata.streams[stream_index]
|
|
371
|
+
assert isinstance(metadata, core._metadata.VideoStreamMetadata) # mypy
|
|
372
|
+
|
|
373
|
+
if metadata.begin_stream_seconds is None:
|
|
374
|
+
raise ValueError(
|
|
375
|
+
"The minimum pts value in seconds is unknown. "
|
|
376
|
+
+ ERROR_REPORTING_INSTRUCTIONS
|
|
377
|
+
)
|
|
378
|
+
begin_stream_seconds = metadata.begin_stream_seconds
|
|
379
|
+
|
|
380
|
+
if metadata.end_stream_seconds is None:
|
|
381
|
+
raise ValueError(
|
|
382
|
+
"The maximum pts value in seconds is unknown. "
|
|
383
|
+
+ ERROR_REPORTING_INSTRUCTIONS
|
|
384
|
+
)
|
|
385
|
+
end_stream_seconds = metadata.end_stream_seconds
|
|
386
|
+
|
|
387
|
+
if metadata.num_frames is None:
|
|
388
|
+
raise ValueError(
|
|
389
|
+
"The number of frames is unknown. " + ERROR_REPORTING_INSTRUCTIONS
|
|
390
|
+
)
|
|
391
|
+
num_frames = metadata.num_frames
|
|
392
|
+
|
|
393
|
+
return (
|
|
394
|
+
metadata,
|
|
395
|
+
stream_index,
|
|
396
|
+
begin_stream_seconds,
|
|
397
|
+
end_stream_seconds,
|
|
398
|
+
num_frames,
|
|
399
|
+
)
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|