torchax 0.0.6__py3-none-any.whl → 0.0.10.dev20251114__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchax might be problematic. Click here for more details.

@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
torchax/configuration.py DELETED
@@ -1,30 +0,0 @@
1
- import dataclasses
2
-
3
-
4
- @dataclasses.dataclass
5
- class Configuration:
6
- debug_print_each_op: bool = False
7
- debug_accuracy_for_each_op: bool = False
8
- debug_mixed_tensor: bool = False
9
- debug_print_each_op_operands: bool = False
10
-
11
- use_int32_for_index: bool = False
12
-
13
- # normally, math between CPU torch.Tensor with torchax.Tensor is not
14
- # allowed. However, if that torch.Tensor happens to be scalar, then we
15
- # can use scalar * tensor math to handle it
16
- allow_mixed_math_with_scalar_tensor: bool = True
17
-
18
- # If true, we will convert Views into torchax.Tensors eagerly
19
- force_materialize_views: bool = False
20
-
21
- # Use DLPack for converting jax.Arrays <-> and torch.Tensor
22
- use_dlpack_for_data_conversion: bool = False
23
-
24
- # Flash attention
25
- use_tpu_flash_attention: bool = False
26
- shmap_flash_attention: bool = False
27
-
28
- # device
29
- treat_cuda_as_jax_device: bool = True
30
- internal_respect_torch_return_dtypes: bool = False
torchax/environment.py DELETED
@@ -1 +0,0 @@
1
-
torchax/tf_integration.py DELETED
@@ -1,119 +0,0 @@
1
- # pylint: disable
2
- import os
3
- from typing import Any, Tuple
4
-
5
- from jax.experimental import jax2tf
6
- import tensorflow as tf
7
- import torch
8
- from torchax import export
9
-
10
-
11
- def exported_program_to_tf_function(ep, enable_xla=True):
12
- weights, jax_program = export.exported_program_to_jax(ep)
13
- wrapped = lambda *args: jax_program(weights, (args,))
14
- avals = export.extract_avals(ep)
15
- input_signature = [
16
- tf.TensorSpec(shape=t.shape, dtype=t.dtype, name=f"args_{i}")
17
- for i, t in enumerate(avals)
18
- ]
19
- tf_f = tf.function(
20
- jax2tf.convert(
21
- wrapped,
22
- with_gradient=False,
23
- enable_xla=enable_xla,
24
- ),
25
- autograph=False,
26
- input_signature=input_signature,
27
- )
28
- return tf_f
29
-
30
-
31
- def exported_program_to_tf_module(ep: torch.export.ExportedProgram,
32
- enable_xla=True) -> tf.Module:
33
- tfm = tf.Module()
34
- tfm.f = exported_program_to_tf_function(ep, enable_xla)
35
- return tfm
36
-
37
-
38
- def save_exported_program_as_tf_saved_model(
39
- ep: torch.export.ExportedProgram,
40
- saved_model_dir: os.PathLike,
41
- serving_key: str = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
42
- function_alias: str = "",
43
- enable_xla=True,
44
- ):
45
- """This function will export and save a pytorch ExportedProgram to tf.saved_model format.
46
-
47
- The resulting tf.saved_model can be used inference using tf.serving model
48
- server
49
- or further convert to tflite flatbuffer for on-device serving.
50
-
51
- Args:
52
- torch_model: torch.nn.Module - model to export and save
53
- args: Tuple[Any] - a set of args to trace the model with, i.e.
54
- torch_model(*args) must run
55
- saved_model_dir: os.PathLike - location to an empty directory to store the
56
- saved_model
57
- serving_key: str - serving key tag, this is used by tf.serving to know
58
- which function to run.
59
- function_alias: str - passed through saved_model.save, used to tag a
60
- function for inference converter or other tools.
61
- """
62
- tfm = exported_program_to_tf_module(ep, enable_xla=enable_xla)
63
- signatures = {
64
- serving_key: tfm.f.get_concrete_function(*tfm.f.input_signature)
65
- }
66
- save_options = tf.saved_model.SaveOptions(function_aliases={
67
- function_alias: tfm.f,
68
- })
69
- tf.saved_model.save(
70
- tfm,
71
- saved_model_dir,
72
- signatures=signatures,
73
- options=save_options,
74
- )
75
-
76
-
77
- def save_torch_module_as_tf_saved_model(
78
- torch_model: torch.nn.Module,
79
- args: Tuple[Any],
80
- saved_model_dir: os.PathLike,
81
- serving_key: str = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
82
- function_alias: str = "",
83
- enable_xla=True,
84
- ):
85
- """This function will export and save a pytorch nn.Module to tf.saved_model format.
86
-
87
- The resulting tf.saved_model can be used inference using tf.serving model
88
- server
89
- or further convert to tflite flatbuffer for on-device serving.
90
-
91
- Args:
92
- torch_model: torch.nn.Module - model to export and save
93
- args: Tuple[Any] - a set of args to trace the model with, i.e.
94
- torch_model(*args) must run
95
- saved_model_dir: os.PathLike - location to an empty directory to store the
96
- saved_model
97
- serving_key: str - serving key tag, this is used by tf.serving to know
98
- which function to run.
99
- function_alias: str - passed through saved_model.save, used to tag a
100
- function for inference converter or other tools.
101
- """
102
- ep = torch.export.export(torch_model, args)
103
- save_exported_program_as_tf_saved_model(ep, saved_model_dir, serving_key,
104
- function_alias, enable_xla)
105
-
106
-
107
- def exported_program_to_tflite_flatbuffer(ep: torch.export.ExportedProgram):
108
- tfm = exported_program_to_tf_module(ep)
109
- tf_concrete_func = tfm.f.get_concrete_function(*tfm.f.input_signature)
110
- converter = tf.lite.TFLiteConverter.from_concrete_functions(
111
- [tf_concrete_func], tfm)
112
- tflite_model = converter.convert()
113
- return tflite_model
114
-
115
-
116
- def torch_module_to_tflite_flatbuffer(torch_model: torch.nn.Module,
117
- args: Tuple[Any]):
118
- ep = torch.export.export(torch_model, args)
119
- return exported_program_to_tflite_flatbuffer(ep)
@@ -1,307 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: torchax
3
- Version: 0.0.6
4
- Summary: torchax is a library for running Jax and PyTorch together
5
- Project-URL: Homepage, https://github.com/pytorch/xla/tree/master/torchax
6
- Author-email: Han Qi <qihan.dev@gmail.com>, Pytorch/XLA team <pytorchxla-dev@google.com>
7
- License: BSD 3-Clause License
8
-
9
- Copyright (c) 2023, pytorch-tpu
10
-
11
- Redistribution and use in source and binary forms, with or without
12
- modification, are permitted provided that the following conditions are met:
13
-
14
- 1. Redistributions of source code must retain the above copyright notice, this
15
- list of conditions and the following disclaimer.
16
-
17
- 2. Redistributions in binary form must reproduce the above copyright notice,
18
- this list of conditions and the following disclaimer in the documentation
19
- and/or other materials provided with the distribution.
20
-
21
- 3. Neither the name of the copyright holder nor the names of its
22
- contributors may be used to endorse or promote products derived from
23
- this software without specific prior written permission.
24
-
25
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
29
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35
- License-File: LICENSE
36
- Classifier: Development Status :: 3 - Alpha
37
- Classifier: Intended Audience :: Developers
38
- Classifier: Intended Audience :: Education
39
- Classifier: Intended Audience :: Science/Research
40
- Classifier: License :: OSI Approved :: BSD License
41
- Classifier: Programming Language :: Python :: 3.10
42
- Classifier: Programming Language :: Python :: 3.11
43
- Classifier: Programming Language :: Python :: 3.12
44
- Classifier: Programming Language :: Python :: 3.13
45
- Classifier: Topic :: Scientific/Engineering
46
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
47
- Classifier: Topic :: Scientific/Engineering :: Mathematics
48
- Classifier: Topic :: Software Development
49
- Classifier: Topic :: Software Development :: Libraries
50
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
51
- Requires-Python: >=3.10
52
- Provides-Extra: cpu
53
- Requires-Dist: jax[cpu]; extra == 'cpu'
54
- Requires-Dist: jax[cpu]>=0.6.2; extra == 'cpu'
55
- Provides-Extra: cuda
56
- Requires-Dist: jax[cpu]>=0.6.2; extra == 'cuda'
57
- Requires-Dist: jax[cuda12]; extra == 'cuda'
58
- Provides-Extra: odml
59
- Requires-Dist: jax[cpu]; extra == 'odml'
60
- Requires-Dist: jax[cpu]>=0.6.2; extra == 'odml'
61
- Provides-Extra: tpu
62
- Requires-Dist: jax[cpu]>=0.6.2; extra == 'tpu'
63
- Requires-Dist: jax[tpu]; extra == 'tpu'
64
- Description-Content-Type: text/markdown
65
-
66
- # torchax: Running PyTorch on TPU via JAX
67
-
68
- **torchax** is a backend for PyTorch, allowing users to run
69
- PyTorch on Google Cloud TPUs. **torchax** is also a library for providing
70
- graph-level interoperability between PyTorch and JAX.
71
-
72
- This means, with **torchax** you can:
73
- * Run PyTorch code on TPUs with as little as 2 lines of code change.
74
- * Call a JAX function from a PyTorch function, passing in `jax.Array`s.
75
- * Call a PyTorch function from a JAX function, passing in a `torch.Tensor`s.
76
- * Use JAX features such as `jax.grad`, `optax`, and `GSPMD` to train a PyTorch
77
- model.
78
- * Use a PyTorch model as feature extractor and use it with a JAX model.
79
- etc etc.
80
-
81
- ## Install
82
-
83
- First install torch CPU:
84
-
85
- ```bash
86
- # On Linux.
87
- pip install torch --index-url https://download.pytorch.org/whl/cpu
88
-
89
- # Or on Mac.
90
- pip install torch
91
- ```
92
-
93
- Then install JAX for the accelerator you want to use:
94
-
95
- ```bash
96
- # On Google Cloud TPU.
97
- pip install -U jax[tpu]
98
-
99
- # Or, on GPU machines.
100
- pip install -U jax[cuda12]
101
-
102
- # Or, on Linux CPU machines or Macs (see the note below).
103
- pip install -U jax
104
- ```
105
-
106
- NOTE: if you like metal support for Apple devices then install the
107
- metal version of JAX: https://developer.apple.com/metal/jax/
108
-
109
- Finally install torchax:
110
-
111
- ```bash
112
- # Install pre-built torchax.
113
- pip install torchax
114
-
115
- # Or, install torchax from source.
116
- pip install git+https://github.com/pytorch/xla.git#subdirectory=torchax
117
- ```
118
-
119
- ## Run a model
120
-
121
- Now let's execute a model under torchax. We'll start with a simple 2-layer model.
122
- In theory, we can use any instance of `torch.nn.Module`.
123
-
124
- ```python
125
- import torch
126
- import torch.nn as nn
127
- import torch.nn.functional as F
128
-
129
-
130
- class MyModel(nn.Module):
131
- def __init__(self):
132
- super().__init__()
133
- self.fc1 = nn.Linear(28 * 28, 120)
134
- self.fc2 = nn.Linear(120, 84)
135
- self.fc3 = nn.Linear(84, 10)
136
-
137
- def forward(self, x):
138
- x = x.view(-1, 28 * 28)
139
- x = F.relu(self.fc1(x))
140
- x = F.relu(self.fc2(x))
141
- x = self.fc3(x)
142
- return x
143
-
144
- m = MyModel()
145
-
146
- # Execute this model using torch.
147
- inputs = torch.randn(3, 3, 28, 28)
148
- print(m(inputs))
149
- ```
150
-
151
- To execute this model with `torchax`, we need to enable torchax to capture PyTorch ops:
152
-
153
- ```python
154
- import torchax
155
- torchax.enable_globally()
156
- ```
157
-
158
- Then, we can use a `jax` device:
159
-
160
- ```python
161
- inputs = torch.randn(3, 3, 28, 28, device='jax')
162
- m = MyModel().to('jax')
163
- res = m(inputs)
164
- print(type(res)) # outputs torchax.tensor.Tensor
165
- ```
166
-
167
- `torchax.tensor.Tensor` is a `torch.Tensor` subclass that holds
168
- a `jax.Array`. You can inspect that JAX array with `res.jax()`.
169
-
170
- ## What is happening behind the scene
171
-
172
- We took the approach detailed in the
173
- [new device](https://github.com/albanD/subclass_zoo/blob/main/new_device.py)
174
- recipe by Alban (@albanD), using `jax.Array` for `raw_data`.
175
-
176
- In other words, when a torch op is executed inside an `env` context manager,
177
- which is enabled by `torchax.enable_globally()`, we will swap out the
178
- implementation of that op with JAX.
179
-
180
- When a model's constructor runs, it will call some tensor constructor, such as
181
- `torch.rand`, `torch.ones`, or `torch.zeros` to create its weights. When torchax
182
- is enabled, these constructors will create a `torchax.tensor.Tensor`, which
183
- contains a `jax.Array`.
184
-
185
- Then, each subsequent op will extract the `jax.Array`, call the op's JAX
186
- implementation, and wrap the result back into a `torchax.tensor.Tensor`,
187
-
188
- See more at [how it works](docs/how_it_works.md) and\
189
- [ops registry](docs/ops_registry.md).
190
-
191
- ### Executing with jax.jit
192
-
193
- The above script will execute the model using eager mode JAX as the backend. This
194
- does allow executing torch models on TPUs, but is often slower than what we can
195
- achieve with `jax.jit`.
196
-
197
- `jax.jit` is a function that takes a JAX function (i.e. a function that takes JAX arrays
198
- and returns JAX arrays) into a compiled (thus faster) version of the same function.
199
-
200
- We have made a `jax_jit` decorator that would accomplish the same with functions
201
- that takes and returns `torch.Tensor`s. To use this, the first step is to create
202
- a functional version of this model: this means the parameters should be passed in
203
- as input instead of being attributes of the class:
204
-
205
- ```python
206
- def model_func(param, inputs):
207
- return torch.func.functional_call(m, param, inputs)
208
- ```
209
-
210
- Here we use [torch.func.functional_call](https://pytorch.org/docs/stable/generated/torch.func.functional_call.html)
211
- from PyTorch to replace the model weights with `param` and then call the
212
- model. This is roughly equivalent to:
213
-
214
- ```python
215
- def model_func(param, inputs):
216
- m.load_state_dict(param)
217
- return m(*inputs)
218
- ```
219
-
220
- Now, we can apply `jax_jit` on `module_func`:
221
-
222
- ```python
223
- from torchax.interop import jax_jit
224
-
225
- model_func_jitted = jax_jit(model_func)
226
- print(model_func_jitted(new_state_dict, inputs))
227
- ```
228
-
229
- See more examples at [eager_mode.py](examples/eager_mode.py) and the
230
- [examples folder](examples/).
231
-
232
- To ease the idiom of creating functional model and calling it with parameters,
233
- we also created the `JittableModule` helper class. It lets us rewrite the
234
- above as:
235
-
236
- ```python
237
- from torchax.interop import JittableModule
238
-
239
- m_jitted = JittableModule(m)
240
- res = m_jitted(...)
241
- ```
242
-
243
- The first time `m_jitted` is called, it will trigger `jax.jit` to compile the
244
- compile for the given input shapes. Subsequent calls with the same input shapes
245
- will be fast as the compilation is cached.
246
-
247
- ## Citation
248
-
249
- ```
250
- @software{torchax,
251
- author = {Han Qi, Chun-nien Chan, Will Cromar, Manfei Bai, Kevin Gleanson},
252
- title = {torchax: PyTorch on TPU and JAX interoperability},
253
- url = {https://github.com/pytorch/xla/tree/master/torchax}
254
- version = {0.0.4},
255
- date = {2025-02-24},
256
- }
257
- ```
258
-
259
- # Maintainers & Contributors:
260
-
261
- This library is created and maintained by the PyTorch/XLA team at Google Cloud.
262
-
263
- It benefitted from many direct and indirect
264
- contributions outside of the team. Many of them done by
265
- fellow Googlers using [Google's 20% project policy](https://ebsedu.org/blog/google-tapping-workplace-actualization-20-time-rule).
266
- Others by partner teams at Google and other companies.
267
-
268
- Here is the list of contributors by 2025-02-25.
269
-
270
- ```
271
- Han Qi (qihqi), PyTorch/XLA
272
- Manfei Bai (manfeibai), PyTorch/XLA
273
- Will Cromar (will-cromar), Meta
274
- Milad Mohammadi (miladm), PyTorch/XLA
275
- Siyuan Liu (lsy323), PyTorch/XLA
276
- Bhavya Bahl (bhavya01), PyTorch/XLA
277
- Pei Zhang (zpcore), PyTorch/XLA
278
- Yifei Teng (tengyifei), PyTorch/XLA
279
- Chunnien Chan (chunnienc), Google, ODML
280
- Alban Desmaison (albanD), Meta, PyTorch
281
- Simon Teo (simonteozw), Google (20%)
282
- David Huang (dvhg), Google (20%)
283
- Barni Seetharaman (barney-s), Google (20%)
284
- Anish Karthik (anishfish2), Google (20%)
285
- Yao Gu (guyao), Google (20%)
286
- Yenkai Wang (yenkwang), Google (20%)
287
- Greg Shikhman (commander), Google (20%)
288
- Matin Akhlaghinia (matinehAkhlaghinia), Google (20%)
289
- Tracy Chen (tracych477), Google (20%)
290
- Matthias Guenther (mrguenther), Google (20%)
291
- WenXin Dong (wenxindongwork), Google (20%)
292
- Kevin Gleason (GleasonK), Google, StableHLO
293
- Nupur Baghel (nupurbaghel), Google (20%)
294
- Gwen Mittertreiner (gmittert), Google (20%)
295
- Zeev Melumian (zmelumian), Lightricks
296
- Vyom Sharma (vyom1611), Google (20%)
297
- Shitong Wang (ShitongWang), Adobe
298
- Rémi Doreau (ayshiff), Google (20%)
299
- Lance Wang (wang2yn84), Google, CoreML
300
- Hossein Sarshar (hosseinsarshar), Google (20%)
301
- Daniel Vega-Myhre (danielvegamyhre), Google (20%)
302
- Tianqi Fan (tqfan28), Google (20%)
303
- Jim Lin (jimlinntu), Google (20%)
304
- Fanhai Lu (FanhaiLu1), Google Cloud
305
- DeWitt Clinton (dewitt), Google PyTorch
306
- Aman Gupta (aman2930), Google (20%)
307
- ```