torchax 0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of torchax might be problematic. Click here for more details.
- torchax/CONTRIBUTING.md +38 -0
- torchax/__init__.py +124 -0
- torchax/config.py +19 -0
- torchax/decompositions.py +308 -0
- torchax/device_module.py +20 -0
- torchax/distributed.py +246 -0
- torchax/environment.py +2 -0
- torchax/export.py +236 -0
- torchax/interop.py +209 -0
- torchax/ops/__init__.py +10 -0
- torchax/ops/jaten.py +5212 -0
- torchax/ops/jax_reimplement.py +169 -0
- torchax/ops/jc10d.py +51 -0
- torchax/ops/jlibrary.py +73 -0
- torchax/ops/jtorch.py +427 -0
- torchax/ops/jtorchvision_nms.py +245 -0
- torchax/ops/mappings.py +97 -0
- torchax/ops/op_base.py +104 -0
- torchax/ops/ops_registry.py +50 -0
- torchax/tensor.py +557 -0
- torchax/tf_integration.py +119 -0
- torchax/train.py +120 -0
- torchax/types.py +12 -0
- torchax-0.0.4.dist-info/METADATA +341 -0
- torchax-0.0.4.dist-info/RECORD +27 -0
- torchax-0.0.4.dist-info/WHEEL +4 -0
- torchax-0.0.4.dist-info/licenses/LICENSE +28 -0
torchax/ops/jtorch.py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
1
|
+
"""Tensor constructor overrides"""
|
|
2
|
+
import math
|
|
3
|
+
import collections.abc
|
|
4
|
+
import functools
|
|
5
|
+
from typing import Optional, Sequence
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
import jax
|
|
9
|
+
import jax.numpy as jnp
|
|
10
|
+
from jax.experimental.pallas.ops.tpu import flash_attention
|
|
11
|
+
from jax.experimental.shard_map import shard_map
|
|
12
|
+
|
|
13
|
+
import torch
|
|
14
|
+
from torchax.ops.ops_registry import register_torch_function_op
|
|
15
|
+
from torchax.ops import op_base, mappings, jaten
|
|
16
|
+
import torchax.tensor
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def register_function(torch_func, **kwargs):
|
|
20
|
+
return functools.partial(register_torch_function_op, torch_func, **kwargs)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@register_function(torch.as_tensor, is_jax_function=False, needs_env=True)
|
|
24
|
+
@op_base.convert_dtype(use_default_dtype=False) # Attempt to infer type from elements
|
|
25
|
+
def _as_tensor(data, dtype=None, device=None, env=None):
|
|
26
|
+
if isinstance(data, torch.Tensor):
|
|
27
|
+
return env._to_copy(data, dtype, device)
|
|
28
|
+
if isinstance(data, np.ndarray):
|
|
29
|
+
jax_res = jnp.asarray(data)
|
|
30
|
+
else:
|
|
31
|
+
jax_res = _tensor(data, dtype=dtype)
|
|
32
|
+
return torchax.tensor.Tensor(jax_res, env)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@register_function(torch.tensor)
|
|
36
|
+
@op_base.convert_dtype(use_default_dtype=False) # Attempt to infer type from elements
|
|
37
|
+
def _tensor(data, *, dtype=None, **kwargs):
|
|
38
|
+
python_types_to_torch_types = {
|
|
39
|
+
bool: jnp.bool,
|
|
40
|
+
int: jnp.int64,
|
|
41
|
+
float: jnp.float32,
|
|
42
|
+
complex: jnp.complex64,
|
|
43
|
+
}
|
|
44
|
+
if not dtype:
|
|
45
|
+
leaves = jax.tree_util.tree_leaves(data)
|
|
46
|
+
if len(leaves) > 0:
|
|
47
|
+
dtype = python_types_to_torch_types.get(type(leaves[0]))
|
|
48
|
+
|
|
49
|
+
return jnp.array(
|
|
50
|
+
data, dtype=dtype or mappings.t2j_dtype(torch.get_default_dtype()))
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
@register_function(torch.allclose)
|
|
54
|
+
def _aten_allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False):
|
|
55
|
+
return jnp.allclose(input, other, rtol, atol, equal_nan)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
@register_function(torch.angle)
|
|
59
|
+
def _torch_angle(input):
|
|
60
|
+
if input.dtype.name == 'int64':
|
|
61
|
+
input = input.astype(jnp.dtype('float32'))
|
|
62
|
+
return jnp.angle(input)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
@register_function(torch.argsort)
|
|
66
|
+
def _torch_argsort(input, dim=-1, descending=False, stable=False):
|
|
67
|
+
expanded = False
|
|
68
|
+
if input.ndim == 0:
|
|
69
|
+
# for self of rank 0:
|
|
70
|
+
# torch.any(x, 0), torch.any(x, -1) works;
|
|
71
|
+
# torch.any(x, 1) throws out of bounds, so it's
|
|
72
|
+
# behavior is the same as a jnp array of rank 1
|
|
73
|
+
expanded = True
|
|
74
|
+
input = jnp.expand_dims(input, 0)
|
|
75
|
+
res = jnp.argsort(input, axis=dim, descending=descending,
|
|
76
|
+
stable=stable)
|
|
77
|
+
if expanded:
|
|
78
|
+
res = res.squeeze()
|
|
79
|
+
return res
|
|
80
|
+
|
|
81
|
+
@register_function(torch.diag)
|
|
82
|
+
def _diag(input, diagonal=0):
|
|
83
|
+
return jnp.diag(input, k=diagonal)
|
|
84
|
+
|
|
85
|
+
@register_function(torch.einsum)
|
|
86
|
+
@register_function(torch.ops.aten.einsum)
|
|
87
|
+
def _einsum(equation, *operands):
|
|
88
|
+
def get_params(*a):
|
|
89
|
+
inner_list = a[0]
|
|
90
|
+
if not isinstance(inner_list, jax.Array):
|
|
91
|
+
if len(inner_list) == 1:
|
|
92
|
+
A = inner_list
|
|
93
|
+
return A
|
|
94
|
+
elif len(inner_list) == 2:
|
|
95
|
+
A, B = inner_list
|
|
96
|
+
return A, B
|
|
97
|
+
return operands
|
|
98
|
+
assert isinstance(equation, str), 'Only accept str equation'
|
|
99
|
+
filtered_operands = get_params(*operands)
|
|
100
|
+
return jnp.einsum(equation, *filtered_operands)
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def _sdpa_reference(query, key, value, attn_mask=None, dropout_p=0.0,
|
|
104
|
+
is_causal=False, scale=None, enable_gqa=False) -> torch.Tensor:
|
|
105
|
+
L, S = query.size(-2), key.size(-2)
|
|
106
|
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
|
107
|
+
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
|
|
108
|
+
if is_causal:
|
|
109
|
+
assert attn_mask is None
|
|
110
|
+
temp_mask = torch.ones(L, S, dtype=torch.bool, device=query.device).tril(diagonal=0)
|
|
111
|
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
112
|
+
attn_bias.to(query.dtype)
|
|
113
|
+
if attn_mask is not None:
|
|
114
|
+
if attn_mask.dtype == torch.bool:
|
|
115
|
+
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
116
|
+
else:
|
|
117
|
+
attn_bias += attn_mask
|
|
118
|
+
if enable_gqa:
|
|
119
|
+
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
|
|
120
|
+
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
|
|
121
|
+
|
|
122
|
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
123
|
+
attn_weight += attn_bias
|
|
124
|
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
125
|
+
if dropout_p > 0:
|
|
126
|
+
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
127
|
+
return attn_weight @ value
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
from jax.sharding import PartitionSpec
|
|
131
|
+
|
|
132
|
+
def _tpu_flash_attention(query, key, value, env):
|
|
133
|
+
fsdp_partition = PartitionSpec('fsdp')
|
|
134
|
+
def wrap_flash_attention(query, key, value):
|
|
135
|
+
block_sizes = flash_attention.BlockSizes(
|
|
136
|
+
block_b=min(2, query.shape[0]),
|
|
137
|
+
block_q=min(512, query.shape[2]),
|
|
138
|
+
block_k_major=min(512, key.shape[2]),
|
|
139
|
+
block_k=min(512, key.shape[2]),
|
|
140
|
+
block_q_major_dkv=min(512, query.shape[2]),
|
|
141
|
+
block_k_major_dkv=min(512, key.shape[2]),
|
|
142
|
+
block_k_dkv=min(512, key.shape[2]),
|
|
143
|
+
block_q_dkv=min(512, query.shape[2]),
|
|
144
|
+
block_k_major_dq=min(512, key.shape[2]),
|
|
145
|
+
block_k_dq=min(256, key.shape[2]),
|
|
146
|
+
block_q_dq=min(1024, query.shape[2]),
|
|
147
|
+
)
|
|
148
|
+
return flash_attention.flash_attention(
|
|
149
|
+
query, key, value, causal=True, block_sizes=block_sizes)
|
|
150
|
+
|
|
151
|
+
if env.config.shmap_flash_attention:
|
|
152
|
+
wrap_flash_attention = shard_map(
|
|
153
|
+
wrap_flash_attention,
|
|
154
|
+
mesh=env._mesh,
|
|
155
|
+
in_specs=(fsdp_partition, fsdp_partition, fsdp_partition),
|
|
156
|
+
out_specs=fsdp_partition ,
|
|
157
|
+
check_rep=False,
|
|
158
|
+
)
|
|
159
|
+
#return flash_attn_mapped(query, key, value)
|
|
160
|
+
return wrap_flash_attention(query, key, value)
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
@register_function(torch.nn.functional.pad)
|
|
164
|
+
def pad(tensor, pad, mode="constant", value=None):
|
|
165
|
+
# For padding modes that have different names between Torch and NumPy, this
|
|
166
|
+
# dict provides a Torch-to-NumPy translation. Any string not in this dict will
|
|
167
|
+
# be passed through as-is.
|
|
168
|
+
MODE_NAME_TRANSLATION = {
|
|
169
|
+
"circular": "wrap",
|
|
170
|
+
"replicate": "edge",
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
numpy_mode = MODE_NAME_TRANSLATION.get(mode, mode)
|
|
174
|
+
|
|
175
|
+
num_prefix_dims = tensor.ndim - len(pad) // 2
|
|
176
|
+
|
|
177
|
+
numpy_pad_width = [(0, 0)] * num_prefix_dims
|
|
178
|
+
nd_slice = [slice(None)] * num_prefix_dims
|
|
179
|
+
|
|
180
|
+
for i in range(len(pad) - 2, -1, -2):
|
|
181
|
+
pad_start, pad_end = pad[i:i + 2]
|
|
182
|
+
slice_start, slice_end = None, None
|
|
183
|
+
|
|
184
|
+
if pad_start < 0:
|
|
185
|
+
slice_start = -pad_start
|
|
186
|
+
pad_start = 0
|
|
187
|
+
|
|
188
|
+
if pad_end < 0:
|
|
189
|
+
slice_end = pad_end
|
|
190
|
+
pad_end = 0
|
|
191
|
+
|
|
192
|
+
numpy_pad_width.append((pad_start, pad_end))
|
|
193
|
+
nd_slice.append(slice(slice_start, slice_end))
|
|
194
|
+
|
|
195
|
+
nd_slice = tuple(nd_slice)
|
|
196
|
+
|
|
197
|
+
# `jax.numpy.pad` complains if we provide an irrelevant `constant_values` arg,
|
|
198
|
+
# even if the value we pass in is `None`. (It treats `None` as `nan`.)
|
|
199
|
+
kwargs = dict()
|
|
200
|
+
if mode == "constant" and value is not None:
|
|
201
|
+
kwargs["constant_values"] = value
|
|
202
|
+
|
|
203
|
+
# The "replicate" mode pads first and then slices, whereas the "circular" mode
|
|
204
|
+
# slices first and then pads. The latter approach deals with smaller tensors,
|
|
205
|
+
# so we default to that option in modes where the order of operations doesn't
|
|
206
|
+
# affect the result.
|
|
207
|
+
if mode == "replicate":
|
|
208
|
+
return jnp.pad(tensor, numpy_pad_width, mode=numpy_mode, **kwargs)[nd_slice]
|
|
209
|
+
else:
|
|
210
|
+
return jnp.pad(tensor[nd_slice], numpy_pad_width, mode=numpy_mode, **kwargs)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
@register_function(torch.nn.functional.scaled_dot_product_attention, is_jax_function=False, needs_env=True)
|
|
214
|
+
@register_function(torch.ops.aten.scaled_dot_product_attention, is_jax_function=False, needs_env=True)
|
|
215
|
+
def scaled_dot_product_attention(
|
|
216
|
+
query, key, value, attn_mask=None,
|
|
217
|
+
dropout_p=0.0, is_causal=False, scale=None, enable_gqa=False, env=None) -> torch.Tensor:
|
|
218
|
+
|
|
219
|
+
if env.config.use_tpu_flash_attention:
|
|
220
|
+
jquery, jkey, jvalue = env.t2j_iso((query, key, value))
|
|
221
|
+
res = _tpu_flash_attention(jquery, jkey, jvalue, env)
|
|
222
|
+
return env.j2t_iso(res)
|
|
223
|
+
|
|
224
|
+
return _sdpa_reference(query, key, value, attn_mask, dropout_p, is_causal, scale, enable_gqa)
|
|
225
|
+
|
|
226
|
+
@register_function(torch.Tensor.__getitem__)
|
|
227
|
+
def getitem(self, indexes):
|
|
228
|
+
if isinstance(indexes, list) and isinstance(indexes[0], int):
|
|
229
|
+
# list of int, i.e. x[[1, 2]] NOT x[1, 2] (the second would be tuple of int)
|
|
230
|
+
indexes = (indexes, )
|
|
231
|
+
elif isinstance(indexes, list):
|
|
232
|
+
indexes = tuple(indexes)
|
|
233
|
+
return self[indexes]
|
|
234
|
+
|
|
235
|
+
@register_function(torch.corrcoef)
|
|
236
|
+
def _corrcoef(x):
|
|
237
|
+
if x.dtype.name == "int64":
|
|
238
|
+
return jnp.corrcoef(x).astype(jnp.float32)
|
|
239
|
+
return jnp.corrcoef(x)
|
|
240
|
+
|
|
241
|
+
@register_function(torch.sparse.mm, is_jax_function=False)
|
|
242
|
+
def _sparse_mm(mat1, mat2, reduce='sum'):
|
|
243
|
+
return torch.mm(mat1, mat2)
|
|
244
|
+
|
|
245
|
+
@register_function(torch.isclose)
|
|
246
|
+
def _aten_isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False):
|
|
247
|
+
return jnp.isclose(input, other, rtol, atol, equal_nan)
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
@register_function(torch.ones)
|
|
251
|
+
def _ones(*size: int, dtype=None, **kwargs):
|
|
252
|
+
if len(size) == 1 and isinstance(size[0], collections.abc.Iterable):
|
|
253
|
+
size = size[0]
|
|
254
|
+
return jaten._ones(size, dtype=dtype)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
@register_function(torch.zeros, is_jax_function=True)
|
|
258
|
+
def _zeros(*size: int, dtype=None, **kwargs):
|
|
259
|
+
if len(size) == 1 and isinstance(size[0], collections.abc.Iterable):
|
|
260
|
+
size = size[0]
|
|
261
|
+
return jaten._zeros(size, dtype=dtype)
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
@register_function(torch.eye)
|
|
265
|
+
@op_base.convert_dtype()
|
|
266
|
+
def _eye(n: int, m: Optional[int] = None, *, dtype=None, **kwargs):
|
|
267
|
+
return jnp.eye(n, m, dtype=dtype)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
@register_function(torch.full)
|
|
271
|
+
@op_base.convert_dtype()
|
|
272
|
+
def _full(size: Sequence[int], fill_value, *, dtype=None, **kwargs):
|
|
273
|
+
# TODO: handle torch.Size
|
|
274
|
+
return jnp.full(size, fill_value, dtype=dtype)
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
@register_function(torch.empty)
|
|
278
|
+
@op_base.convert_dtype()
|
|
279
|
+
def empty(*size: Sequence[int], dtype=None, **kwargs):
|
|
280
|
+
if len(size) == 1 and isinstance(size[0], collections.abc.Iterable):
|
|
281
|
+
size = size[0]
|
|
282
|
+
return jnp.empty(size, dtype=dtype)
|
|
283
|
+
|
|
284
|
+
@register_function(torch.arange, is_jax_function=False)
|
|
285
|
+
def arange(
|
|
286
|
+
start, end=None, step=None,
|
|
287
|
+
out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False,
|
|
288
|
+
pin_memory=None,
|
|
289
|
+
):
|
|
290
|
+
if end is None:
|
|
291
|
+
end = start
|
|
292
|
+
start = 0
|
|
293
|
+
if step is None:
|
|
294
|
+
step = 1
|
|
295
|
+
return torch.ops.aten.arange(start, end, step, dtype=dtype)
|
|
296
|
+
|
|
297
|
+
@register_function(torch.empty_strided, is_jax_function=False)
|
|
298
|
+
def empty_strided(
|
|
299
|
+
size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False):
|
|
300
|
+
return empty(size, dtype=dtype)
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
@register_function(torch.unravel_index)
|
|
304
|
+
def unravel_index(indices, shape):
|
|
305
|
+
return jnp.unravel_index(indices, shape)
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
@register_function(torch.rand, is_jax_function=False)
|
|
309
|
+
def rand(
|
|
310
|
+
*size, **kwargs
|
|
311
|
+
):
|
|
312
|
+
if len(size) == 1 and isinstance(size[0], collections.abc.Iterable):
|
|
313
|
+
size = size[0]
|
|
314
|
+
return torch.ops.aten.rand(size, **kwargs)
|
|
315
|
+
|
|
316
|
+
@register_function(torch.randn, is_jax_function=False)
|
|
317
|
+
def randn(
|
|
318
|
+
*size, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False
|
|
319
|
+
):
|
|
320
|
+
if len(size) == 1 and isinstance(size[0], collections.abc.Iterable):
|
|
321
|
+
size = size[0]
|
|
322
|
+
return torch.ops.aten.randn(size, generator=generator, dtype=dtype)
|
|
323
|
+
|
|
324
|
+
@register_function(torch.randint, is_jax_function=False)
|
|
325
|
+
def randint(
|
|
326
|
+
*args, **kwargs
|
|
327
|
+
):
|
|
328
|
+
return torch.ops.aten.randint(*args, **kwargs)
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
@register_function(torch.logdet)
|
|
332
|
+
def logdet(input):
|
|
333
|
+
_, logabsdet = jaten._aten__linalg_slogdet(input)
|
|
334
|
+
return logabsdet
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
@register_function(torch.linalg.slogdet)
|
|
338
|
+
def linalg_slogdet(input):
|
|
339
|
+
sign, logabsdet = jaten._aten__linalg_slogdet(input)
|
|
340
|
+
return torch.return_types.slogdet((sign, logabsdet))
|
|
341
|
+
|
|
342
|
+
|
|
343
|
+
@register_function(torch.tensor_split)
|
|
344
|
+
def tensor_split(input, indices_or_sections, dim=0):
|
|
345
|
+
return jnp.array_split(input, indices_or_sections, axis=dim)
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
@register_function(torch.linalg.solve)
|
|
349
|
+
def linalg_solve(a, b):
|
|
350
|
+
res, _ = jaten._aten__linalg_solve_ex(a, b)
|
|
351
|
+
return res
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
@register_function(torch.linalg.solve_ex)
|
|
355
|
+
def linalg_solve_ex(a, b):
|
|
356
|
+
res, info = jaten._aten__linalg_solve_ex(a, b)
|
|
357
|
+
return res, info
|
|
358
|
+
|
|
359
|
+
@register_function(torch.linalg.svd)
|
|
360
|
+
def linalg_svd(a, full_matrices=True):
|
|
361
|
+
return jaten._aten__linalg_svd(a, full_matrices=full_matrices)
|
|
362
|
+
|
|
363
|
+
@register_function(torch.linalg.matrix_power)
|
|
364
|
+
def matrix_power(A, n, *, out=None):
|
|
365
|
+
return jnp.linalg.matrix_power(A, n)
|
|
366
|
+
|
|
367
|
+
@register_function(torch.svd)
|
|
368
|
+
def svd(a, some=True, compute_uv=True):
|
|
369
|
+
if not compute_uv:
|
|
370
|
+
S = jaten._aten__linalg_svd(a, full_matrices=False)[1]
|
|
371
|
+
U = jnp.zeros((a.shape[-2], a.shape[-2]), dtype=a.dtype)
|
|
372
|
+
V = jnp.zeros((a.shape[-1], a.shape[-1]), dtype=a.dtype)
|
|
373
|
+
return U, S, V
|
|
374
|
+
U, S, V = jaten._aten__linalg_svd(a, full_matrices=not some)
|
|
375
|
+
return U, S, jnp.matrix_transpose(V)
|
|
376
|
+
|
|
377
|
+
@register_function(torch.cdist)
|
|
378
|
+
def _cdist(x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary'):
|
|
379
|
+
return jaten._aten_cdist(x1, x2, p, compute_mode)
|
|
380
|
+
|
|
381
|
+
@register_function(torch.lu)
|
|
382
|
+
def lu(A, **kwargs):
|
|
383
|
+
lu,pivots,_ = jax.lax.linalg.lu(A)
|
|
384
|
+
# JAX pivots are offset by 1 compared to torch
|
|
385
|
+
_pivots = pivots + 1
|
|
386
|
+
info_shape = pivots.shape[:-1]
|
|
387
|
+
info = jnp.zeros(info_shape, dtype=mappings.t2j_dtype(torch.int32))
|
|
388
|
+
if kwargs['get_infos'] == True:
|
|
389
|
+
return lu, _pivots, info
|
|
390
|
+
return lu, _pivots
|
|
391
|
+
|
|
392
|
+
@register_function(torch.lu_solve)
|
|
393
|
+
def lu_solve(b, LU_data, LU_pivots, **kwargs):
|
|
394
|
+
# JAX pivots are offset by 1 compared to torch
|
|
395
|
+
_pivots = LU_pivots - 1
|
|
396
|
+
x = jax.scipy.linalg.lu_solve((LU_data, _pivots), b)
|
|
397
|
+
return x
|
|
398
|
+
|
|
399
|
+
@register_function(torch.linalg.tensorsolve)
|
|
400
|
+
def linalg_tensorsolve(A, b, dims=None):
|
|
401
|
+
# examples:
|
|
402
|
+
# A = torch.randn(2, 3, 6), b = torch.randn(3, 2)
|
|
403
|
+
# A = torch.randn(2, 3, 6), b = torch.randn(2, 3) -> torch.Size([3, 6])
|
|
404
|
+
# A = torch.randn(9, 2, 6, 3) b = torch.randn(6, 3) -> torch.Size([6, 3])
|
|
405
|
+
# A = torch.randn(9, 2, 3, 6) b = torch.randn(6, 3) -> torch.Size([3, 6])
|
|
406
|
+
# A = torch.randn(18, 6, 3) b = torch.randn(18) -> torch.Size([6, 3])
|
|
407
|
+
# A = torch.randn(3, 8, 4, 6) b = torch.randn(4, 6) -> torch.Size([4,6])
|
|
408
|
+
# A = torch.randn(3, 8, 1, 2, 2, 6) b = torch.randn(3, 4, 2) -> torch.Size([2, 2, 6])
|
|
409
|
+
|
|
410
|
+
# torch allows b to be shaped differently.
|
|
411
|
+
# especially when axes are moved using dims.
|
|
412
|
+
# ValueError: After moving axes to end, leading shape of a must match shape of b. got a.shape=(3, 2, 6), b.shape=(2, 3)
|
|
413
|
+
# So we are handling the moveaxis and forcing b's shape to match what jax expects
|
|
414
|
+
if dims is not None:
|
|
415
|
+
A = jnp.moveaxis(A, dims, len(dims) * (A.ndim - 1,))
|
|
416
|
+
dims = None
|
|
417
|
+
if A.shape[:b.ndim] != b.shape:
|
|
418
|
+
b = jnp.reshape(b, A.shape[:b.ndim])
|
|
419
|
+
return jnp.linalg.tensorsolve(A, b, axes=dims)
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
@register_function(torch.nn.functional.linear)
|
|
423
|
+
def functional_linear(self, weights, bias=None):
|
|
424
|
+
res = jnp.einsum("...a,ba->...b", self, weights)
|
|
425
|
+
if bias is not None:
|
|
426
|
+
res += bias
|
|
427
|
+
return res
|
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Forked at: https://raw.githubusercontent.com/mlperf/training_results_v0.7/refs/heads/master/Google/benchmarks/ssd/implementations/ssd-research-JAX-tpu-v3-4096/nms.py
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import functools
|
|
6
|
+
from typing import List, Union, Optional, Tuple
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
from jax import lax
|
|
10
|
+
import jax.numpy as jnp
|
|
11
|
+
from . import ops_registry
|
|
12
|
+
|
|
13
|
+
_NMS_TILE_SIZE = 256
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def _bbox_overlap(boxes, gt_boxes):
|
|
17
|
+
"""Find Bounding box overlap.
|
|
18
|
+
|
|
19
|
+
Args:
|
|
20
|
+
boxes: first set of bounding boxes
|
|
21
|
+
gt_boxes: second set of boxes to compute IOU
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
iou: Intersection over union matrix of all input bounding boxes
|
|
25
|
+
"""
|
|
26
|
+
bb_y_min, bb_x_min, bb_y_max, bb_x_max = jnp.split(
|
|
27
|
+
ary=boxes, indices_or_sections=4, axis=2)
|
|
28
|
+
gt_y_min, gt_x_min, gt_y_max, gt_x_max = jnp.split(
|
|
29
|
+
ary=gt_boxes, indices_or_sections=4, axis=2)
|
|
30
|
+
|
|
31
|
+
# Calculates the intersection area.
|
|
32
|
+
i_xmin = jnp.maximum(bb_x_min, jnp.transpose(gt_x_min, [0, 2, 1]))
|
|
33
|
+
i_xmax = jnp.minimum(bb_x_max, jnp.transpose(gt_x_max, [0, 2, 1]))
|
|
34
|
+
i_ymin = jnp.maximum(bb_y_min, jnp.transpose(gt_y_min, [0, 2, 1]))
|
|
35
|
+
i_ymax = jnp.minimum(bb_y_max, jnp.transpose(gt_y_max, [0, 2, 1]))
|
|
36
|
+
i_area = jnp.maximum((i_xmax - i_xmin), 0) * jnp.maximum((i_ymax - i_ymin), 0)
|
|
37
|
+
|
|
38
|
+
# Calculates the union area.
|
|
39
|
+
bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
|
|
40
|
+
gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)
|
|
41
|
+
# Adds a small epsilon to avoid divide-by-zero.
|
|
42
|
+
u_area = bb_area + jnp.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8
|
|
43
|
+
|
|
44
|
+
# Calculates IoU.
|
|
45
|
+
iou = i_area / u_area
|
|
46
|
+
|
|
47
|
+
return iou
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _self_suppression(in_args):
|
|
51
|
+
iou, _, iou_sum = in_args
|
|
52
|
+
batch_size = iou.shape[0]
|
|
53
|
+
can_suppress_others = jnp.reshape(
|
|
54
|
+
jnp.max(iou, 1) <= 0.5, [batch_size, -1, 1]).astype(iou.dtype)
|
|
55
|
+
iou_suppressed = jnp.reshape(
|
|
56
|
+
(jnp.max(can_suppress_others * iou, 1) <= 0.5).astype(iou.dtype),
|
|
57
|
+
[batch_size, -1, 1]) * iou
|
|
58
|
+
iou_sum_new = jnp.sum(iou_suppressed, [1, 2])
|
|
59
|
+
return iou_suppressed, jnp.any(iou_sum - iou_sum_new > 0.5), iou_sum_new
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _cross_suppression(in_args):
|
|
63
|
+
boxes, box_slice, iou_threshold, inner_idx = in_args
|
|
64
|
+
batch_size = boxes.shape[0]
|
|
65
|
+
new_slice = lax.dynamic_slice(boxes, [0, inner_idx * _NMS_TILE_SIZE, 0],
|
|
66
|
+
[batch_size, _NMS_TILE_SIZE, 4])
|
|
67
|
+
iou = _bbox_overlap(new_slice, box_slice)
|
|
68
|
+
ret_slice = jnp.expand_dims(
|
|
69
|
+
(jnp.all(iou < iou_threshold, [1])).astype(box_slice.dtype),
|
|
70
|
+
2) * box_slice
|
|
71
|
+
return boxes, ret_slice, iou_threshold, inner_idx + 1
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _suppression_loop_body(in_args):
|
|
75
|
+
"""Process boxes in the range [idx*_NMS_TILE_SIZE, (idx+1)*_NMS_TILE_SIZE).
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
in_args: A tuple of arguments: boxes, iou_threshold, output_size, idx
|
|
79
|
+
|
|
80
|
+
Returns:
|
|
81
|
+
boxes: updated boxes.
|
|
82
|
+
iou_threshold: pass down iou_threshold to the next iteration.
|
|
83
|
+
output_size: the updated output_size.
|
|
84
|
+
idx: the updated induction variable.
|
|
85
|
+
"""
|
|
86
|
+
boxes, iou_threshold, output_size, idx = in_args
|
|
87
|
+
num_tiles = boxes.shape[1] // _NMS_TILE_SIZE
|
|
88
|
+
batch_size = boxes.shape[0]
|
|
89
|
+
|
|
90
|
+
# Iterates over tiles that can possibly suppress the current tile.
|
|
91
|
+
box_slice = lax.dynamic_slice(boxes, [0, idx * _NMS_TILE_SIZE, 0],
|
|
92
|
+
[batch_size, _NMS_TILE_SIZE, 4])
|
|
93
|
+
def _loop_cond(in_args):
|
|
94
|
+
_, _, _, inner_idx = in_args
|
|
95
|
+
return inner_idx < idx
|
|
96
|
+
|
|
97
|
+
_, box_slice, _, _ = lax.while_loop(
|
|
98
|
+
_loop_cond,
|
|
99
|
+
_cross_suppression, (boxes, box_slice, iou_threshold,
|
|
100
|
+
0))
|
|
101
|
+
|
|
102
|
+
# Iterates over the current tile to compute self-suppression.
|
|
103
|
+
iou = _bbox_overlap(box_slice, box_slice)
|
|
104
|
+
mask = jnp.expand_dims(
|
|
105
|
+
jnp.reshape(jnp.arange(_NMS_TILE_SIZE), [1, -1]) > jnp.reshape(
|
|
106
|
+
jnp.arange(_NMS_TILE_SIZE), [-1, 1]), 0)
|
|
107
|
+
iou *= (jnp.logical_and(mask, iou >= iou_threshold)).astype(iou.dtype)
|
|
108
|
+
|
|
109
|
+
def _loop_cond2(in_args):
|
|
110
|
+
_, loop_condition, _ = in_args
|
|
111
|
+
return loop_condition
|
|
112
|
+
|
|
113
|
+
suppressed_iou, _, _ = lax.while_loop(
|
|
114
|
+
_loop_cond2, _self_suppression,
|
|
115
|
+
(iou, True,
|
|
116
|
+
jnp.sum(iou, [1, 2])))
|
|
117
|
+
suppressed_box = jnp.sum(suppressed_iou, 1) > 0
|
|
118
|
+
box_slice *= jnp.expand_dims(1.0 - suppressed_box.astype(box_slice.dtype), 2)
|
|
119
|
+
|
|
120
|
+
# Uses box_slice to update the input boxes.
|
|
121
|
+
mask = jnp.reshape(
|
|
122
|
+
(jnp.equal(jnp.arange(num_tiles), idx)).astype(boxes.dtype),
|
|
123
|
+
[1, -1, 1, 1])
|
|
124
|
+
boxes = jnp.tile(jnp.expand_dims(
|
|
125
|
+
box_slice, 1), [1, num_tiles, 1, 1]) * mask + jnp.reshape(
|
|
126
|
+
boxes, [batch_size, num_tiles, _NMS_TILE_SIZE, 4]) * (1 - mask)
|
|
127
|
+
boxes = jnp.reshape(boxes, [batch_size, -1, 4])
|
|
128
|
+
|
|
129
|
+
# Updates output_size.
|
|
130
|
+
output_size += jnp.sum(
|
|
131
|
+
jnp.any(box_slice > 0, [2]).astype(jnp.int32), [1])
|
|
132
|
+
return boxes, iou_threshold, output_size, idx + 1
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def non_max_suppression_padded(scores, boxes, max_output_size, iou_threshold):
|
|
136
|
+
"""A wrapper that handles non-maximum suppression.
|
|
137
|
+
|
|
138
|
+
Assumption:
|
|
139
|
+
* The boxes are sorted by scores unless the box is a dot (all coordinates
|
|
140
|
+
are zero).
|
|
141
|
+
* Boxes with higher scores can be used to suppress boxes with lower scores.
|
|
142
|
+
|
|
143
|
+
The overal design of the algorithm is to handle boxes tile-by-tile:
|
|
144
|
+
|
|
145
|
+
boxes = boxes.pad_to_multiply_of(tile_size)
|
|
146
|
+
num_tiles = len(boxes) // tile_size
|
|
147
|
+
output_boxes = []
|
|
148
|
+
for i in range(num_tiles):
|
|
149
|
+
box_tile = boxes[i*tile_size : (i+1)*tile_size]
|
|
150
|
+
for j in range(i - 1):
|
|
151
|
+
suppressing_tile = boxes[j*tile_size : (j+1)*tile_size]
|
|
152
|
+
iou = _bbox_overlap(box_tile, suppressing_tile)
|
|
153
|
+
# if the box is suppressed in iou, clear it to a dot
|
|
154
|
+
box_tile *= _update_boxes(iou)
|
|
155
|
+
# Iteratively handle the diagnal tile.
|
|
156
|
+
iou = _box_overlap(box_tile, box_tile)
|
|
157
|
+
iou_changed = True
|
|
158
|
+
while iou_changed:
|
|
159
|
+
# boxes that are not suppressed by anything else
|
|
160
|
+
suppressing_boxes = _get_suppressing_boxes(iou)
|
|
161
|
+
# boxes that are suppressed by suppressing_boxes
|
|
162
|
+
suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes)
|
|
163
|
+
# clear iou to 0 for boxes that are suppressed, as they cannot be used
|
|
164
|
+
# to suppress other boxes any more
|
|
165
|
+
new_iou = _clear_iou(iou, suppressed_boxes)
|
|
166
|
+
iou_changed = (new_iou != iou)
|
|
167
|
+
iou = new_iou
|
|
168
|
+
# remaining boxes that can still suppress others, are selected boxes.
|
|
169
|
+
output_boxes.append(_get_suppressing_boxes(iou))
|
|
170
|
+
if len(output_boxes) >= max_output_size:
|
|
171
|
+
break
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
scores: a tensor with a shape of [batch_size, anchors].
|
|
175
|
+
boxes: a tensor with a shape of [batch_size, anchors, 4].
|
|
176
|
+
max_output_size: a scalar integer `Tensor` representing the maximum number
|
|
177
|
+
of boxes to be selected by non max suppression.
|
|
178
|
+
iou_threshold: a float representing the threshold for deciding whether boxes
|
|
179
|
+
overlap too much with respect to IOU.
|
|
180
|
+
Returns:
|
|
181
|
+
nms_scores: a tensor with a shape of [batch_size, anchors]. It has same
|
|
182
|
+
dtype as input scores.
|
|
183
|
+
nms_proposals: a tensor with a shape of [batch_size, anchors, 4]. It has
|
|
184
|
+
same dtype as input boxes.
|
|
185
|
+
"""
|
|
186
|
+
batch_size = boxes.shape[0]
|
|
187
|
+
num_boxes = boxes.shape[1]
|
|
188
|
+
pad = int(jnp.ceil(float(num_boxes) / _NMS_TILE_SIZE)
|
|
189
|
+
) * _NMS_TILE_SIZE - num_boxes
|
|
190
|
+
boxes = jnp.pad(boxes.astype(jnp.float32), [[0, 0], [0, pad], [0, 0]])
|
|
191
|
+
scores = jnp.pad(scores.astype(jnp.float32), [[0, 0], [0, pad]])
|
|
192
|
+
num_boxes += pad
|
|
193
|
+
|
|
194
|
+
def _loop_cond(in_args):
|
|
195
|
+
unused_boxes, unused_threshold, output_size, idx = in_args
|
|
196
|
+
return jnp.logical_and(
|
|
197
|
+
jnp.min(output_size) < max_output_size,
|
|
198
|
+
idx < num_boxes // _NMS_TILE_SIZE)
|
|
199
|
+
|
|
200
|
+
selected_boxes, _, output_size, _ = lax.while_loop(
|
|
201
|
+
_loop_cond, _suppression_loop_body, (
|
|
202
|
+
boxes, iou_threshold,
|
|
203
|
+
jnp.zeros([batch_size], jnp.int32),
|
|
204
|
+
0
|
|
205
|
+
))
|
|
206
|
+
idx = num_boxes - lax.top_k(
|
|
207
|
+
jnp.any(selected_boxes > 0, [2]).astype(jnp.int32) *
|
|
208
|
+
jnp.expand_dims(jnp.arange(num_boxes, 0, -1), 0),
|
|
209
|
+
max_output_size)[0].astype(jnp.int32)
|
|
210
|
+
idx = jnp.minimum(idx, num_boxes - 1)
|
|
211
|
+
idx = jnp.reshape(
|
|
212
|
+
idx + jnp.reshape(jnp.arange(batch_size) * num_boxes, [-1, 1]), [-1])
|
|
213
|
+
|
|
214
|
+
return idx
|
|
215
|
+
boxes = jnp.reshape(
|
|
216
|
+
(jnp.reshape(boxes, [-1, 4]))[idx],
|
|
217
|
+
[batch_size, max_output_size, 4])
|
|
218
|
+
boxes = boxes * (
|
|
219
|
+
jnp.reshape(jnp.arange(max_output_size), [1, -1, 1]) < jnp.reshape(
|
|
220
|
+
output_size, [-1, 1, 1])).astype(boxes.dtype)
|
|
221
|
+
scores = jnp.reshape(
|
|
222
|
+
jnp.reshape(scores, [-1, 1])[idx],
|
|
223
|
+
[batch_size, max_output_size])
|
|
224
|
+
scores = scores * (
|
|
225
|
+
jnp.reshape(jnp.arange(max_output_size), [1, -1]) < jnp.reshape(
|
|
226
|
+
output_size, [-1, 1])).astype(scores.dtype)
|
|
227
|
+
return scores, boxes
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
# registry:
|
|
231
|
+
|
|
232
|
+
def nms(boxes, scores, iou_threshold):
|
|
233
|
+
max_output_size = boxes.shape[0]
|
|
234
|
+
boxes = boxes.reshape((1, *boxes.shape))
|
|
235
|
+
scores = scores.reshape((1, *scores.shape))
|
|
236
|
+
res = non_max_suppression_padded(scores, boxes, max_output_size, iou_threshold)
|
|
237
|
+
return res
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
try:
|
|
241
|
+
import torch
|
|
242
|
+
import torchvision
|
|
243
|
+
ops_registry.register_torch_dispatch_op(torch.ops.torchvision.nms, nms)
|
|
244
|
+
except Exception:
|
|
245
|
+
pass
|