torchax 0.0.10.dev20251117__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torchax/CONTRIBUTING.md +43 -0
- torchax/__init__.py +153 -0
- torchax/amp.py +346 -0
- torchax/checkpoint.py +79 -0
- torchax/config.py +44 -0
- torchax/decompositions.py +790 -0
- torchax/device_module.py +47 -0
- torchax/export.py +259 -0
- torchax/flax.py +53 -0
- torchax/interop.py +369 -0
- torchax/mesh_util.py +234 -0
- torchax/ops/__init__.py +24 -0
- torchax/ops/jaten.py +5937 -0
- torchax/ops/jax_reimplement.py +185 -0
- torchax/ops/jc10d.py +66 -0
- torchax/ops/jimage.py +127 -0
- torchax/ops/jlibrary.py +94 -0
- torchax/ops/jtorch.py +631 -0
- torchax/ops/jtorchvision_nms.py +248 -0
- torchax/ops/mappings.py +161 -0
- torchax/ops/op_base.py +145 -0
- torchax/ops/ops_registry.py +69 -0
- torchax/tensor.py +736 -0
- torchax/train.py +132 -0
- torchax/types.py +26 -0
- torchax/util.py +102 -0
- torchax/view.py +391 -0
- torchax-0.0.10.dev20251117.dist-info/METADATA +507 -0
- torchax-0.0.10.dev20251117.dist-info/RECORD +31 -0
- torchax-0.0.10.dev20251117.dist-info/WHEEL +4 -0
- torchax-0.0.10.dev20251117.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,790 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""This file contains some decompositons that are not available in torch stable.
|
|
16
|
+
|
|
17
|
+
Most likely from Content of
|
|
18
|
+
https://github.com/pytorch/pytorch/blob/main/torch/_decomp/decompositions.py
|
|
19
|
+
at main branch HEAD that we find useful here.
|
|
20
|
+
|
|
21
|
+
Can also contain decompositions of a torch op in terms of other torch ops.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
import functools
|
|
25
|
+
from typing import Any, Callable, List, Tuple
|
|
26
|
+
|
|
27
|
+
import torch
|
|
28
|
+
from torch import Tensor
|
|
29
|
+
import torch._decomp as decomp
|
|
30
|
+
from torch._decomp import decompositions_for_rng
|
|
31
|
+
from torch._decomp import register_decomposition
|
|
32
|
+
import torch._prims_common as utils
|
|
33
|
+
from torch._prims_common.wrappers import out_wrapper
|
|
34
|
+
|
|
35
|
+
DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined]
|
|
36
|
+
|
|
37
|
+
# None of these functions are publicly accessible; get at them
|
|
38
|
+
# from torch._decomps
|
|
39
|
+
__all__: List[str] = []
|
|
40
|
+
|
|
41
|
+
aten = torch._ops.ops.aten
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def _try_register(op, impl):
|
|
45
|
+
try:
|
|
46
|
+
register_decomposition(op)(impl)
|
|
47
|
+
except:
|
|
48
|
+
pass
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@out_wrapper()
|
|
52
|
+
def _reflection_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
|
|
53
|
+
|
|
54
|
+
def idx(left, middle, right):
|
|
55
|
+
dim_idx = torch.arange(-left, middle + right, device=a.device)
|
|
56
|
+
return middle - 1 - (middle - 1 - dim_idx.abs()).abs()
|
|
57
|
+
|
|
58
|
+
return _reflection_or_replication_pad(
|
|
59
|
+
a,
|
|
60
|
+
padding,
|
|
61
|
+
idx,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
_try_register(aten.reflection_pad1d, _reflection_pad)
|
|
66
|
+
_try_register(aten.reflection_pad2d, _reflection_pad)
|
|
67
|
+
_try_register(aten.reflection_pad3d, _reflection_pad)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
@out_wrapper()
|
|
71
|
+
def _replication_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
|
|
72
|
+
|
|
73
|
+
def idx(left, middle, right):
|
|
74
|
+
dim_idx = torch.arange(-left, middle + right, device=a.device)
|
|
75
|
+
return torch.clamp(dim_idx, 0, middle - 1)
|
|
76
|
+
|
|
77
|
+
return _reflection_or_replication_pad(
|
|
78
|
+
a,
|
|
79
|
+
padding,
|
|
80
|
+
idx,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
decomp.global_decomposition_table["post_autograd"][
|
|
85
|
+
aten.replication_pad2d.default] = _replication_pad
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def _reflection_or_replication_pad(
|
|
89
|
+
a: Tensor,
|
|
90
|
+
padding: Tuple[int, ...],
|
|
91
|
+
idx_fn: Callable[[int, int, int], Tensor],
|
|
92
|
+
) -> Tensor:
|
|
93
|
+
dim = len(padding) // 2
|
|
94
|
+
torch._check(
|
|
95
|
+
a.dim() in (dim + 1, dim + 2),
|
|
96
|
+
lambda: f"reflection_pad{dim}d requires {dim + 1}D or {dim + 2}D input",
|
|
97
|
+
)
|
|
98
|
+
inp_shape = a.shape[-dim:]
|
|
99
|
+
nc_dim = a.dim() - dim
|
|
100
|
+
|
|
101
|
+
padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)]
|
|
102
|
+
padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)]
|
|
103
|
+
|
|
104
|
+
result = a
|
|
105
|
+
for i in range(dim):
|
|
106
|
+
idx: List[Any] = [None] * result.dim()
|
|
107
|
+
idx[i + nc_dim] = idx_fn(padding_left[i], inp_shape[i], padding_right[i])
|
|
108
|
+
result = aten._unsafe_index(result, idx)
|
|
109
|
+
|
|
110
|
+
# convert output to correct memory format, if necessary
|
|
111
|
+
memory_format = utils.suggest_memory_format(result)
|
|
112
|
+
result = result.contiguous(memory_format=memory_format)
|
|
113
|
+
return result
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
_try_register(aten.replication_pad1d, _replication_pad)
|
|
117
|
+
_try_register(aten.replication_pad3d, _replication_pad)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def bernoulli(self, *, generator=None):
|
|
121
|
+
return (torch.rand_like(self, dtype=torch.float32) < self).to(self.dtype)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
_try_register(aten.bernoulli.default, bernoulli)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def rand_like(self, **kwargs):
|
|
128
|
+
dtype = kwargs.get("dtype", self.dtype)
|
|
129
|
+
return torch.rand(self.shape, dtype=dtype)
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def channel_shuffle(self, groups):
|
|
133
|
+
batchsize, channels, height, width = self.shape
|
|
134
|
+
channels_per_group = channels // groups
|
|
135
|
+
self = self.reshape(batchsize, groups, channels_per_group, height, width)
|
|
136
|
+
self = self.transpose(1, 2)
|
|
137
|
+
self = self.reshape(batchsize, channels, height, width)
|
|
138
|
+
return self
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
_try_register(aten.channel_shuffle, channel_shuffle)
|
|
142
|
+
|
|
143
|
+
_try_register(aten.bernoulli, bernoulli)
|
|
144
|
+
_try_register(aten.rand_like, rand_like)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def bernoulli_float(self, p=0.5):
|
|
148
|
+
return self.bernoulli_(p)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
_try_register(aten.bernoulli_.float, bernoulli_float)
|
|
152
|
+
_try_register(aten.bernoulli_.Tensor, decompositions_for_rng.bernoulli_)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def _sum_tensors(ts) -> Tensor:
|
|
156
|
+
return functools.reduce(torch.add, ts)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
@register_decomposition(aten.grid_sampler_3d)
|
|
160
|
+
def _grid_sampler_3d(
|
|
161
|
+
a: torch.Tensor,
|
|
162
|
+
grid: torch.Tensor,
|
|
163
|
+
interpolation_mode: int = 0,
|
|
164
|
+
padding_mode: int = 0,
|
|
165
|
+
align_corners: bool = False,
|
|
166
|
+
) -> Tensor:
|
|
167
|
+
"""References: https://github.com/pytorch/pytorch/blob/06a7dc21c1005750598c37f3adbc031183c74de6/torch/_decomp/decompositions.py#L4075
|
|
168
|
+
|
|
169
|
+
The above implement the 2d case.
|
|
170
|
+
"""
|
|
171
|
+
_expand_grid = False
|
|
172
|
+
torch._check(
|
|
173
|
+
interpolation_mode in (0, 1),
|
|
174
|
+
lambda: f"Invalid interpolation mode {interpolation_mode}",
|
|
175
|
+
)
|
|
176
|
+
torch._check(
|
|
177
|
+
padding_mode in (0, 1, 2), lambda: f"Invalid padding mode {padding_mode}")
|
|
178
|
+
|
|
179
|
+
# a is 5D: [B, C, D, H, W]
|
|
180
|
+
|
|
181
|
+
def unnormalize(coords: Tensor, size: int) -> Tensor:
|
|
182
|
+
# Rescale coordinates from [-1, 1] to:
|
|
183
|
+
# [0, size - 1] if align_corners is True
|
|
184
|
+
# [-.5, size -.5] if align_corners is False
|
|
185
|
+
mul = (size * 0.5 - 0.5) if align_corners else (size * 0.5)
|
|
186
|
+
ofs = size * 0.5 - 0.5
|
|
187
|
+
return coords * mul + ofs
|
|
188
|
+
|
|
189
|
+
# Reflects coordinates until they fall between low and high (inclusive).
|
|
190
|
+
# The bounds are passed as twice their value so that half-integer values
|
|
191
|
+
# can be represented as ints.
|
|
192
|
+
def reflect_coordinates(coords: Tensor, twice_low: int,
|
|
193
|
+
twice_high: int) -> Tensor:
|
|
194
|
+
if twice_low == twice_high:
|
|
195
|
+
return torch.zeros_like(coords)
|
|
196
|
+
coords_min = twice_low / 2
|
|
197
|
+
coords_span = (twice_high - twice_low) / 2
|
|
198
|
+
coords2 = (coords - coords_min).abs()
|
|
199
|
+
extra = torch.fmod(coords2, coords_span)
|
|
200
|
+
flips = (coords2 / coords_span).floor().to(dtype=torch.int8)
|
|
201
|
+
return torch.where(flips & 1 == 0, extra + coords_min,
|
|
202
|
+
coords_span + coords_min - extra)
|
|
203
|
+
|
|
204
|
+
def compute_coordinates(coords: Tensor, size: int) -> Tensor:
|
|
205
|
+
if padding_mode == 0: # Zero
|
|
206
|
+
return coords
|
|
207
|
+
elif padding_mode == 1: # Borders
|
|
208
|
+
return torch.clamp(coords, 0, size - 1)
|
|
209
|
+
else: # padding_mode == 2, Reflection
|
|
210
|
+
if align_corners:
|
|
211
|
+
coords_reflected = reflect_coordinates(coords, 0, 2 * (size - 1))
|
|
212
|
+
else:
|
|
213
|
+
coords_reflected = reflect_coordinates(coords, -1, 2 * size - 1)
|
|
214
|
+
return torch.clamp(coords_reflected, 0, size - 1)
|
|
215
|
+
|
|
216
|
+
def compute_source_index(coords: Tensor, size: int) -> Tensor:
|
|
217
|
+
coords_un = unnormalize(coords, size)
|
|
218
|
+
return compute_coordinates(coords_un, size)
|
|
219
|
+
|
|
220
|
+
N, C, iD, iH, iW = a.shape
|
|
221
|
+
_, oD, oH, oW, three = grid.shape
|
|
222
|
+
assert three == 3, "Last dim of grid must be 3. got {}".format(three)
|
|
223
|
+
|
|
224
|
+
def in_bounds_cond(xs: Tensor, ys: Tensor, zs) -> Tensor:
|
|
225
|
+
xcheck = torch.logical_and(0 <= xs, xs < iW)
|
|
226
|
+
ycheck = torch.logical_and(0 <= ys, ys < iH)
|
|
227
|
+
zcheck = torch.logical_and(0 <= zs, zs < iD)
|
|
228
|
+
return torch.logical_and(xcheck, torch.logical_and(ycheck, zcheck))
|
|
229
|
+
|
|
230
|
+
N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1, 1)
|
|
231
|
+
C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1, 1)
|
|
232
|
+
|
|
233
|
+
def clip(xs: torch.Tensor, ys: torch.Tensor, zs, ws: torch.Tensor):
|
|
234
|
+
cond = in_bounds_cond(xs, ys, zs)
|
|
235
|
+
# To clip to inside valid coordinates, we map the coordinates
|
|
236
|
+
# to (x, y) = (0, 0) and also set the weight to 0
|
|
237
|
+
# We also change the shape of the tensor to the appropriate one for
|
|
238
|
+
# broadcasting with N_idx, C_idx for the purposes of advanced indexing
|
|
239
|
+
c = C if _expand_grid else 1
|
|
240
|
+
return tuple(
|
|
241
|
+
torch.where(cond, t, 0).view(N, c, oD, oH, oW) for t in (
|
|
242
|
+
xs.to(dtype=torch.int64),
|
|
243
|
+
ys.to(dtype=torch.int64),
|
|
244
|
+
zs.to(dtype=torch.int64),
|
|
245
|
+
ws,
|
|
246
|
+
))
|
|
247
|
+
|
|
248
|
+
def get_summand(ix: torch.Tensor, iy: torch.Tensor, iz: torch.Tensor,
|
|
249
|
+
w) -> Tensor:
|
|
250
|
+
# Perform clipping, index into input tensor and multiply by weight
|
|
251
|
+
idx_x, idx_y, idx_z, w_ = clip(ix, iy, iz, w)
|
|
252
|
+
return a[N_idx, C_idx, idx_z, idx_y, idx_x] * w_
|
|
253
|
+
|
|
254
|
+
x = grid[..., 0]
|
|
255
|
+
y = grid[..., 1]
|
|
256
|
+
d = grid[..., 2]
|
|
257
|
+
|
|
258
|
+
if interpolation_mode == 0: # Bilinear
|
|
259
|
+
ix = compute_source_index(x, iW)
|
|
260
|
+
iy = compute_source_index(y, iH)
|
|
261
|
+
id_ = compute_source_index(d, iD)
|
|
262
|
+
|
|
263
|
+
ix_nwf, iy_nwf, id_nwf = ix.floor(), iy.floor(), id_.floor()
|
|
264
|
+
ix_nef, iy_nef, id_nef = ix_nwf + 1, iy_nwf, id_nwf
|
|
265
|
+
ix_swf, iy_swf, id_swf = ix_nwf, iy_nwf + 1, id_nwf
|
|
266
|
+
ix_sef, iy_sef, id_sef = ix_nef, iy_swf, id_nwf
|
|
267
|
+
ix_nwb, iy_nwb, id_nwb = ix_nwf, iy_nwf, id_nwf + 1
|
|
268
|
+
ix_neb, iy_neb, id_neb = ix_nef, iy_nef, id_nwf + 1
|
|
269
|
+
ix_swb, iy_swb, id_swb = ix_swf, iy_swf, id_nwf + 1
|
|
270
|
+
ix_seb, iy_seb, id_seb = ix_sef, iy_sef, id_nwf + 1
|
|
271
|
+
|
|
272
|
+
w_nwf = (ix_seb - ix) * (iy_seb - iy) * (id_seb - id_)
|
|
273
|
+
w_nef = (ix - ix_swb) * (iy_swb - iy) * (id_swb - id_)
|
|
274
|
+
w_swf = (ix_neb - ix) * (iy - iy_neb) * (id_neb - id_)
|
|
275
|
+
w_sef = (ix - ix_nwb) * (iy - iy_nwb) * (id_nwb - id_)
|
|
276
|
+
w_nwb = (ix_sef - ix) * (iy_sef - iy) * (id_ - id_sef)
|
|
277
|
+
w_neb = (ix - ix_swf) * (iy_swf - iy) * (id_ - id_swf)
|
|
278
|
+
w_swb = (ix_nef - ix) * (iy - iy_nef) * (id_ - id_nef)
|
|
279
|
+
w_seb = (ix - ix_nwf) * (iy - iy_nwf) * (id_ - id_nwf)
|
|
280
|
+
|
|
281
|
+
return _sum_tensors(
|
|
282
|
+
get_summand(ix, iy, id_, w) for (ix, iy, id_, w) in (
|
|
283
|
+
(ix_nwf, iy_nwf, id_nwf, w_nwf),
|
|
284
|
+
(ix_nef, iy_nef, id_nef, w_nef),
|
|
285
|
+
(ix_swf, iy_swf, id_swf, w_swf),
|
|
286
|
+
(ix_sef, iy_sef, id_sef, w_sef),
|
|
287
|
+
(ix_nwb, iy_nwb, id_nwb, w_nwb),
|
|
288
|
+
(ix_neb, iy_neb, id_neb, w_neb),
|
|
289
|
+
(ix_swb, iy_swb, id_swb, w_swb),
|
|
290
|
+
(ix_seb, iy_seb, id_seb, w_seb),
|
|
291
|
+
))
|
|
292
|
+
else: # interpolation_mode == 1: # Nearest
|
|
293
|
+
ix = compute_source_index(x, iW)
|
|
294
|
+
iy = compute_source_index(y, iH)
|
|
295
|
+
iz = compute_source_index(d, iD)
|
|
296
|
+
|
|
297
|
+
ix_nearest = ix.round()
|
|
298
|
+
iy_nearest = iy.round()
|
|
299
|
+
iz_nearest = iz.round()
|
|
300
|
+
|
|
301
|
+
return get_summand(ix_nearest, iy_nearest, iz_nearest, 1)
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
DECOMPOSITIONS = decomp.get_decompositions([
|
|
305
|
+
torch.ops.aten.upsample_bicubic2d,
|
|
306
|
+
torch.ops.aten.upsample_nearest1d,
|
|
307
|
+
torch.ops.aten.upsample_nearest2d,
|
|
308
|
+
torch.ops.aten.upsample_nearest3d,
|
|
309
|
+
torch.ops.aten._upsample_nearest_exact1d,
|
|
310
|
+
torch.ops.aten._upsample_nearest_exact2d,
|
|
311
|
+
torch.ops.aten._upsample_nearest_exact3d,
|
|
312
|
+
torch.ops.aten._native_batch_norm_legit.no_stats,
|
|
313
|
+
torch.ops.aten._native_batch_norm_legit_functional.default,
|
|
314
|
+
torch.ops.aten._adaptive_avg_pool2d,
|
|
315
|
+
torch.ops.aten._adaptive_avg_pool3d,
|
|
316
|
+
torch.ops.aten.grid_sampler_2d,
|
|
317
|
+
torch.ops.aten.grid_sampler_3d,
|
|
318
|
+
torch.ops.aten.native_dropout,
|
|
319
|
+
torch.ops.aten.reflection_pad1d,
|
|
320
|
+
torch.ops.aten.reflection_pad2d,
|
|
321
|
+
torch.ops.aten.reflection_pad3d,
|
|
322
|
+
torch.ops.aten.replication_pad1d,
|
|
323
|
+
torch.ops.aten.replication_pad2d,
|
|
324
|
+
torch.ops.aten.replication_pad3d,
|
|
325
|
+
torch.ops.aten.bernoulli,
|
|
326
|
+
torch.ops.aten.rand_like,
|
|
327
|
+
torch.ops.aten._batch_norm_with_update,
|
|
328
|
+
torch.ops.aten.channel_shuffle,
|
|
329
|
+
torch.ops.aten.nll_loss2d_forward,
|
|
330
|
+
torch.ops.aten.nll_loss2d_backward,
|
|
331
|
+
torch.ops.aten.bernoulli_.Tensor,
|
|
332
|
+
torch.ops.aten.bernoulli_.float,
|
|
333
|
+
torch.ops.aten.log_normal,
|
|
334
|
+
torch.ops.aten.addcdiv.default,
|
|
335
|
+
torch.ops.aten.addcdiv.out,
|
|
336
|
+
torch.ops.aten.addcdiv_.default,
|
|
337
|
+
torch.ops.aten.addcmul.default,
|
|
338
|
+
torch.ops.aten.addcmul.out,
|
|
339
|
+
torch.ops.aten.addcmul_.default,
|
|
340
|
+
torch.ops.aten.addr.default,
|
|
341
|
+
torch.ops.aten.addr.out,
|
|
342
|
+
torch.ops.aten.affine_grid_generator.default,
|
|
343
|
+
torch.ops.aten.affine_grid_generator.out,
|
|
344
|
+
torch.ops.aten.alias_copy.default,
|
|
345
|
+
torch.ops.aten.alias_copy.out,
|
|
346
|
+
torch.ops.aten.all.default,
|
|
347
|
+
torch.ops.aten.all.dim,
|
|
348
|
+
torch.ops.aten.all.dims,
|
|
349
|
+
torch.ops.aten.all.out,
|
|
350
|
+
torch.ops.aten.all.dims_out,
|
|
351
|
+
torch.ops.aten.all.all_out,
|
|
352
|
+
torch.ops.aten.all.dimname,
|
|
353
|
+
torch.ops.aten.all.dimname_out,
|
|
354
|
+
torch.ops.aten.aminmax.default,
|
|
355
|
+
torch.ops.aten.aminmax.out,
|
|
356
|
+
torch.ops.aten.arange.default,
|
|
357
|
+
torch.ops.aten.arange.start,
|
|
358
|
+
torch.ops.aten.baddbmm.default,
|
|
359
|
+
torch.ops.aten.baddbmm.out,
|
|
360
|
+
torch.ops.aten.binary_cross_entropy.default,
|
|
361
|
+
torch.ops.aten.binary_cross_entropy.out,
|
|
362
|
+
torch.ops.aten.binary_cross_entropy_backward.default,
|
|
363
|
+
torch.ops.aten.binary_cross_entropy_backward.grad_input,
|
|
364
|
+
torch.ops.aten.binary_cross_entropy_with_logits.default,
|
|
365
|
+
torch.ops.aten.binary_cross_entropy_with_logits.out,
|
|
366
|
+
torch.ops.aten.block_diag.default,
|
|
367
|
+
torch.ops.aten.block_diag.out,
|
|
368
|
+
torch.ops.aten.celu.default,
|
|
369
|
+
torch.ops.aten.celu.out,
|
|
370
|
+
torch.ops.aten.celu_.default,
|
|
371
|
+
torch.ops.aten.channel_shuffle.default,
|
|
372
|
+
torch.ops.aten.channel_shuffle.out,
|
|
373
|
+
torch.ops.aten.clamp_max.default,
|
|
374
|
+
torch.ops.aten.clamp_max.Tensor,
|
|
375
|
+
torch.ops.aten.clamp_max.out,
|
|
376
|
+
torch.ops.aten.clamp_max.Tensor_out,
|
|
377
|
+
torch.ops.aten.clamp_min.default,
|
|
378
|
+
torch.ops.aten.clamp_min.Tensor,
|
|
379
|
+
torch.ops.aten.clamp_min.out,
|
|
380
|
+
torch.ops.aten.clamp_min.Tensor_out,
|
|
381
|
+
torch.ops.aten.col2im.default,
|
|
382
|
+
torch.ops.aten.col2im.out,
|
|
383
|
+
torch.ops.aten.count_nonzero.dim_IntList,
|
|
384
|
+
torch.ops.aten.count_nonzero.dim_IntList_out,
|
|
385
|
+
torch.ops.aten.count_nonzero.default,
|
|
386
|
+
torch.ops.aten.count_nonzero.out,
|
|
387
|
+
torch.ops.aten.linalg_cross.default,
|
|
388
|
+
torch.ops.aten.linalg_cross.out,
|
|
389
|
+
torch.ops.aten.cudnn_batch_norm.default,
|
|
390
|
+
torch.ops.aten.cudnn_batch_norm.out,
|
|
391
|
+
torch.ops.aten.cudnn_batch_norm_backward.default,
|
|
392
|
+
torch.ops.aten.cudnn_batch_norm_backward.out,
|
|
393
|
+
torch.ops.aten.miopen_batch_norm_backward.default,
|
|
394
|
+
torch.ops.aten.miopen_batch_norm_backward.out,
|
|
395
|
+
torch.ops.aten.deg2rad.default,
|
|
396
|
+
torch.ops.aten.deg2rad.out,
|
|
397
|
+
torch.ops.aten.deg2rad_.default,
|
|
398
|
+
torch.ops.aten.detach.default,
|
|
399
|
+
torch.ops.aten.diag_embed.default,
|
|
400
|
+
torch.ops.aten.diag_embed.out,
|
|
401
|
+
torch.ops.aten.diagonal_backward.default,
|
|
402
|
+
torch.ops.aten.diagonal_backward.out,
|
|
403
|
+
torch.ops.aten.dot.default,
|
|
404
|
+
torch.ops.aten.dot.out,
|
|
405
|
+
torch.ops.aten.vdot.default,
|
|
406
|
+
torch.ops.aten.vdot.out,
|
|
407
|
+
torch.ops.aten.elu.default,
|
|
408
|
+
torch.ops.aten.elu.out,
|
|
409
|
+
torch.ops.aten.elu_.default,
|
|
410
|
+
torch.ops.aten.elu_backward.default,
|
|
411
|
+
torch.ops.aten.elu_backward.grad_input,
|
|
412
|
+
torch.ops.aten.embedding_dense_backward.default,
|
|
413
|
+
torch.ops.aten.embedding_dense_backward.out,
|
|
414
|
+
torch.ops.aten.empty_like.default,
|
|
415
|
+
torch.ops.aten.empty_like.out,
|
|
416
|
+
torch.ops.aten._euclidean_dist.default,
|
|
417
|
+
torch.ops.aten.expand_copy.default,
|
|
418
|
+
torch.ops.aten.expand_copy.out,
|
|
419
|
+
torch.ops.aten.eye.default,
|
|
420
|
+
torch.ops.aten.eye.m,
|
|
421
|
+
torch.ops.aten.eye.out,
|
|
422
|
+
torch.ops.aten.eye.m_out,
|
|
423
|
+
torch.ops.aten.fill.Scalar,
|
|
424
|
+
torch.ops.aten.fill.Tensor,
|
|
425
|
+
torch.ops.aten.fill_.Scalar,
|
|
426
|
+
torch.ops.aten.fill_.Tensor,
|
|
427
|
+
torch.ops.aten.floor_divide.default,
|
|
428
|
+
torch.ops.aten.floor_divide.Scalar,
|
|
429
|
+
torch.ops.aten.floor_divide.out,
|
|
430
|
+
torch.ops.aten.floor_divide.Scalar_out,
|
|
431
|
+
torch.ops.aten.frac.default,
|
|
432
|
+
torch.ops.aten.frac.out,
|
|
433
|
+
torch.ops.aten.frac_.default,
|
|
434
|
+
torch.ops.aten.gelu_.default,
|
|
435
|
+
torch.ops.aten.gelu_backward.default,
|
|
436
|
+
torch.ops.aten.gelu_backward.grad_input,
|
|
437
|
+
torch.ops.aten.glu.default,
|
|
438
|
+
torch.ops.aten.glu.out,
|
|
439
|
+
torch.ops.aten.glu_backward.default,
|
|
440
|
+
torch.ops.aten.glu_backward.grad_input,
|
|
441
|
+
torch.ops.aten.hardshrink.default,
|
|
442
|
+
torch.ops.aten.hardshrink.out,
|
|
443
|
+
torch.ops.aten.hardsigmoid.default,
|
|
444
|
+
torch.ops.aten.hardsigmoid.out,
|
|
445
|
+
torch.ops.aten.hardsigmoid_.default,
|
|
446
|
+
torch.ops.aten.hardsigmoid_backward.default,
|
|
447
|
+
torch.ops.aten.hardsigmoid_backward.grad_input,
|
|
448
|
+
torch.ops.aten.hardswish.default,
|
|
449
|
+
torch.ops.aten.hardswish.out,
|
|
450
|
+
torch.ops.aten.hardswish_.default,
|
|
451
|
+
torch.ops.aten.hardswish_backward.default,
|
|
452
|
+
torch.ops.aten.hardswish_backward.out,
|
|
453
|
+
torch.ops.aten.hardtanh_.default,
|
|
454
|
+
torch.ops.aten.hardtanh_backward.default,
|
|
455
|
+
torch.ops.aten.hardtanh_backward.grad_input,
|
|
456
|
+
torch.ops.aten.heaviside.default,
|
|
457
|
+
torch.ops.aten.heaviside.out,
|
|
458
|
+
torch.ops.aten.heaviside_.default,
|
|
459
|
+
torch.ops.aten.huber_loss.default,
|
|
460
|
+
torch.ops.aten.huber_loss.out,
|
|
461
|
+
torch.ops.aten.huber_loss_backward.default,
|
|
462
|
+
torch.ops.aten.huber_loss_backward.out,
|
|
463
|
+
torch.ops.aten.im2col.default,
|
|
464
|
+
torch.ops.aten.im2col.out,
|
|
465
|
+
torch.ops.aten.index_add.default,
|
|
466
|
+
torch.ops.aten.index_add.out,
|
|
467
|
+
torch.ops.aten.index_add.dimname,
|
|
468
|
+
torch.ops.aten.index_add_.default,
|
|
469
|
+
torch.ops.aten.index_copy.default,
|
|
470
|
+
torch.ops.aten.index_copy.dimname,
|
|
471
|
+
torch.ops.aten.index_copy.out,
|
|
472
|
+
torch.ops.aten.index_copy_.default,
|
|
473
|
+
torch.ops.aten.index_copy_.dimname,
|
|
474
|
+
torch.ops.aten.index_fill.int_Tensor,
|
|
475
|
+
torch.ops.aten.index_fill.int_Scalar,
|
|
476
|
+
torch.ops.aten.index_fill.Dimname_Scalar,
|
|
477
|
+
torch.ops.aten.index_fill.Dimname_Tensor,
|
|
478
|
+
torch.ops.aten.index_fill.int_Scalar_out,
|
|
479
|
+
torch.ops.aten.index_fill.int_Tensor_out,
|
|
480
|
+
torch.ops.aten.index_fill_.int_Tensor,
|
|
481
|
+
torch.ops.aten.index_fill_.int_Scalar,
|
|
482
|
+
torch.ops.aten.index_fill_.Dimname_Scalar,
|
|
483
|
+
torch.ops.aten.index_fill_.Dimname_Tensor,
|
|
484
|
+
torch.ops.aten.isin.Tensor_Tensor,
|
|
485
|
+
torch.ops.aten.isin.Tensor_Tensor_out,
|
|
486
|
+
torch.ops.aten.isin.Tensor_Scalar,
|
|
487
|
+
torch.ops.aten.isin.Tensor_Scalar_out,
|
|
488
|
+
torch.ops.aten.isin.Scalar_Tensor,
|
|
489
|
+
torch.ops.aten.isin.Scalar_Tensor_out,
|
|
490
|
+
torch.ops.aten.isneginf.default,
|
|
491
|
+
torch.ops.aten.isneginf.out,
|
|
492
|
+
torch.ops.aten.isposinf.default,
|
|
493
|
+
torch.ops.aten.isposinf.out,
|
|
494
|
+
torch.ops.aten.leaky_relu_.default,
|
|
495
|
+
torch.ops.aten.leaky_relu_backward.default,
|
|
496
|
+
torch.ops.aten.leaky_relu_backward.grad_input,
|
|
497
|
+
torch.ops.aten.lerp.Scalar,
|
|
498
|
+
torch.ops.aten.lerp.Tensor,
|
|
499
|
+
torch.ops.aten.lerp.Scalar_out,
|
|
500
|
+
torch.ops.aten.lerp.Tensor_out,
|
|
501
|
+
torch.ops.aten.lerp_.Scalar,
|
|
502
|
+
torch.ops.aten.lerp_.Tensor,
|
|
503
|
+
torch.ops.aten.linspace.Tensor_Tensor,
|
|
504
|
+
torch.ops.aten.linspace.Tensor_Scalar,
|
|
505
|
+
torch.ops.aten.linspace.Scalar_Tensor,
|
|
506
|
+
torch.ops.aten.linspace.default,
|
|
507
|
+
torch.ops.aten.linspace.out,
|
|
508
|
+
torch.ops.aten.linspace.Tensor_Tensor_out,
|
|
509
|
+
torch.ops.aten.linspace.Tensor_Scalar_out,
|
|
510
|
+
torch.ops.aten.linspace.Scalar_Tensor_out,
|
|
511
|
+
torch.ops.aten.logaddexp.default,
|
|
512
|
+
torch.ops.aten.logaddexp.out,
|
|
513
|
+
torch.ops.aten.logaddexp2.default,
|
|
514
|
+
torch.ops.aten.logaddexp2.out,
|
|
515
|
+
torch.ops.aten.logit.default,
|
|
516
|
+
torch.ops.aten.logit.out,
|
|
517
|
+
torch.ops.aten.logit_.default,
|
|
518
|
+
torch.ops.aten.logit_backward.default,
|
|
519
|
+
torch.ops.aten.log_sigmoid_backward.default,
|
|
520
|
+
torch.ops.aten.log_sigmoid_backward.grad_input,
|
|
521
|
+
torch.ops.aten.log_sigmoid_forward.default,
|
|
522
|
+
torch.ops.aten.log_sigmoid_forward.output,
|
|
523
|
+
torch.ops.aten._log_softmax_backward_data.default,
|
|
524
|
+
torch.ops.aten._log_softmax_backward_data.out,
|
|
525
|
+
torch.ops.aten.logspace.Tensor_Tensor,
|
|
526
|
+
torch.ops.aten.logspace.Tensor_Scalar,
|
|
527
|
+
torch.ops.aten.logspace.Scalar_Tensor,
|
|
528
|
+
torch.ops.aten.logspace.default,
|
|
529
|
+
torch.ops.aten.logspace.out,
|
|
530
|
+
torch.ops.aten.logspace.Tensor_Tensor_out,
|
|
531
|
+
torch.ops.aten.logspace.Tensor_Scalar_out,
|
|
532
|
+
torch.ops.aten.logspace.Scalar_Tensor_out,
|
|
533
|
+
torch.ops.aten.logsumexp.default,
|
|
534
|
+
torch.ops.aten.masked_fill.Scalar,
|
|
535
|
+
torch.ops.aten.masked_fill.Tensor,
|
|
536
|
+
torch.ops.aten.masked_fill.Scalar_out,
|
|
537
|
+
torch.ops.aten.masked_fill.Tensor_out,
|
|
538
|
+
torch.ops.aten.masked_fill_.Scalar,
|
|
539
|
+
torch.ops.aten.masked_fill_.Tensor,
|
|
540
|
+
torch.ops.aten.mish.default,
|
|
541
|
+
torch.ops.aten.mish.out,
|
|
542
|
+
torch.ops.aten.mish_.default,
|
|
543
|
+
torch.ops.aten.mse_loss.default,
|
|
544
|
+
torch.ops.aten.mse_loss.out,
|
|
545
|
+
torch.ops.aten.mse_loss_backward.default,
|
|
546
|
+
torch.ops.aten.mse_loss_backward.grad_input,
|
|
547
|
+
torch.ops.aten.multi_margin_loss.default,
|
|
548
|
+
torch.ops.aten.multi_margin_loss.out,
|
|
549
|
+
torch.ops.aten.multilabel_margin_loss_forward.default,
|
|
550
|
+
torch.ops.aten.multilabel_margin_loss_forward.output,
|
|
551
|
+
torch.ops.aten.mv.default,
|
|
552
|
+
torch.ops.aten.mv.out,
|
|
553
|
+
torch.ops.aten.mvlgamma.default,
|
|
554
|
+
torch.ops.aten.mvlgamma.out,
|
|
555
|
+
torch.ops.aten.mvlgamma_.default,
|
|
556
|
+
torch.ops.aten.nansum.default,
|
|
557
|
+
torch.ops.aten.nansum.out,
|
|
558
|
+
torch.ops.aten.nan_to_num.default,
|
|
559
|
+
torch.ops.aten.nan_to_num.out,
|
|
560
|
+
torch.ops.aten.nan_to_num_.default,
|
|
561
|
+
torch.ops.aten.native_batch_norm_backward.default,
|
|
562
|
+
torch.ops.aten.native_batch_norm_backward.out,
|
|
563
|
+
torch.ops.aten.native_dropout_backward.default,
|
|
564
|
+
torch.ops.aten.native_dropout_backward.out,
|
|
565
|
+
torch.ops.aten.native_group_norm_backward.default,
|
|
566
|
+
torch.ops.aten.native_group_norm_backward.out,
|
|
567
|
+
torch.ops.aten.native_layer_norm_backward.default,
|
|
568
|
+
torch.ops.aten.native_layer_norm_backward.out,
|
|
569
|
+
torch.ops.aten.new_empty.default,
|
|
570
|
+
torch.ops.aten.new_empty.out,
|
|
571
|
+
torch.ops.aten.new_full.default,
|
|
572
|
+
torch.ops.aten.new_full.out,
|
|
573
|
+
torch.ops.aten.new_ones.default,
|
|
574
|
+
torch.ops.aten.new_ones.out,
|
|
575
|
+
torch.ops.aten.new_zeros.default,
|
|
576
|
+
torch.ops.aten.new_zeros.out,
|
|
577
|
+
torch.ops.aten.nll_loss2d_forward.default,
|
|
578
|
+
torch.ops.aten.nll_loss2d_forward.output,
|
|
579
|
+
torch.ops.aten.nll_loss2d_backward.default,
|
|
580
|
+
torch.ops.aten.nll_loss2d_backward.grad_input,
|
|
581
|
+
torch.ops.aten.nll_loss_backward.default,
|
|
582
|
+
torch.ops.aten.nll_loss_backward.grad_input,
|
|
583
|
+
torch.ops.aten.nll_loss_forward.default,
|
|
584
|
+
torch.ops.aten.nll_loss_forward.output,
|
|
585
|
+
torch.ops.aten.norm.Scalar,
|
|
586
|
+
torch.ops.aten.norm.ScalarOpt_dim,
|
|
587
|
+
torch.ops.aten.norm.names_ScalarOpt_dim,
|
|
588
|
+
torch.ops.aten.norm.ScalarOpt_dim_dtype,
|
|
589
|
+
torch.ops.aten.norm.dtype_out,
|
|
590
|
+
torch.ops.aten.norm.out,
|
|
591
|
+
torch.ops.aten.norm.ScalarOpt_dtype,
|
|
592
|
+
torch.ops.aten.norm.ScalarOpt_dtype_out,
|
|
593
|
+
torch.ops.aten.norm.Scalar_out,
|
|
594
|
+
torch.ops.aten.norm.names_ScalarOpt_dim_dtype,
|
|
595
|
+
torch.ops.aten.norm.names_dtype_out,
|
|
596
|
+
torch.ops.aten.norm.names_out,
|
|
597
|
+
torch.ops.aten.ones.default,
|
|
598
|
+
torch.ops.aten.ones_like.default,
|
|
599
|
+
torch.ops.aten.ones_like.out,
|
|
600
|
+
torch.ops.aten.pixel_shuffle.default,
|
|
601
|
+
torch.ops.aten.pixel_shuffle.out,
|
|
602
|
+
torch.ops.aten.pixel_unshuffle.default,
|
|
603
|
+
torch.ops.aten.pixel_unshuffle.out,
|
|
604
|
+
torch.ops.aten._prelu_kernel.default,
|
|
605
|
+
torch.ops.aten._prelu_kernel_backward.default,
|
|
606
|
+
torch.ops.aten._reshape_alias.default,
|
|
607
|
+
torch.ops.aten.rad2deg.default,
|
|
608
|
+
torch.ops.aten.rad2deg.out,
|
|
609
|
+
torch.ops.aten.rad2deg_.default,
|
|
610
|
+
torch.ops.aten.reflection_pad1d.default,
|
|
611
|
+
torch.ops.aten.reflection_pad1d.out,
|
|
612
|
+
torch.ops.aten.reflection_pad1d_backward.default,
|
|
613
|
+
torch.ops.aten.reflection_pad1d_backward.grad_input,
|
|
614
|
+
torch.ops.aten.reflection_pad2d.default,
|
|
615
|
+
torch.ops.aten.reflection_pad2d.out,
|
|
616
|
+
torch.ops.aten.reflection_pad2d_backward.default,
|
|
617
|
+
torch.ops.aten.reflection_pad2d_backward.grad_input,
|
|
618
|
+
torch.ops.aten.reflection_pad3d.default,
|
|
619
|
+
torch.ops.aten.reflection_pad3d.out,
|
|
620
|
+
torch.ops.aten.reflection_pad3d_backward.default,
|
|
621
|
+
torch.ops.aten.reflection_pad3d_backward.grad_input,
|
|
622
|
+
torch.ops.aten.replication_pad1d.default,
|
|
623
|
+
torch.ops.aten.replication_pad1d.out,
|
|
624
|
+
torch.ops.aten.replication_pad2d.default,
|
|
625
|
+
torch.ops.aten.replication_pad2d.out,
|
|
626
|
+
torch.ops.aten.replication_pad3d.default,
|
|
627
|
+
torch.ops.aten.replication_pad3d.out,
|
|
628
|
+
torch.ops.aten.renorm.default,
|
|
629
|
+
torch.ops.aten.renorm.out,
|
|
630
|
+
torch.ops.aten.renorm_.default,
|
|
631
|
+
torch.ops.aten.resize_as.default,
|
|
632
|
+
torch.ops.aten.resize_as.out,
|
|
633
|
+
torch.ops.aten.roll.default,
|
|
634
|
+
torch.ops.aten.roll.out,
|
|
635
|
+
torch.ops.aten.rot90.default,
|
|
636
|
+
torch.ops.aten.rot90.out,
|
|
637
|
+
torch.ops.aten.rrelu_with_noise.default,
|
|
638
|
+
torch.ops.aten.rrelu_with_noise.out,
|
|
639
|
+
torch.ops.aten.rrelu_with_noise_.default,
|
|
640
|
+
torch.ops.aten.rsub.Tensor,
|
|
641
|
+
torch.ops.aten.rsub.Scalar,
|
|
642
|
+
torch.ops.aten.rsub.Tensor_out,
|
|
643
|
+
torch.ops.aten.rsub.Scalar_out,
|
|
644
|
+
torch.ops.aten._safe_softmax.default,
|
|
645
|
+
torch.ops.aten._scaled_dot_product_flash_attention_for_cpu.default,
|
|
646
|
+
torch.ops.aten.select_backward.default,
|
|
647
|
+
torch.ops.aten.select_backward.out,
|
|
648
|
+
torch.ops.aten.select_scatter.default,
|
|
649
|
+
torch.ops.aten.select_scatter.out,
|
|
650
|
+
torch.ops.aten.sgn.default,
|
|
651
|
+
torch.ops.aten.sgn.out,
|
|
652
|
+
torch.ops.aten.sgn_.default,
|
|
653
|
+
torch.ops.aten.sigmoid_backward.default,
|
|
654
|
+
torch.ops.aten.sigmoid_backward.grad_input,
|
|
655
|
+
torch.ops.aten.silu.default,
|
|
656
|
+
torch.ops.aten.silu.out,
|
|
657
|
+
torch.ops.aten.silu_.default,
|
|
658
|
+
torch.ops.aten.silu_backward.default,
|
|
659
|
+
torch.ops.aten.silu_backward.grad_input,
|
|
660
|
+
torch.ops.aten.sinc.default,
|
|
661
|
+
torch.ops.aten.sinc.out,
|
|
662
|
+
torch.ops.aten.sinc_.default,
|
|
663
|
+
torch.ops.aten.slice_backward.default,
|
|
664
|
+
torch.ops.aten.slice_backward.out,
|
|
665
|
+
torch.ops.aten.smooth_l1_loss.default,
|
|
666
|
+
torch.ops.aten.smooth_l1_loss.out,
|
|
667
|
+
torch.ops.aten.smooth_l1_loss_backward.default,
|
|
668
|
+
torch.ops.aten.smooth_l1_loss_backward.grad_input,
|
|
669
|
+
torch.ops.aten.soft_margin_loss.default,
|
|
670
|
+
torch.ops.aten.soft_margin_loss.out,
|
|
671
|
+
torch.ops.aten.soft_margin_loss_backward.default,
|
|
672
|
+
torch.ops.aten.soft_margin_loss_backward.grad_input,
|
|
673
|
+
torch.ops.aten._softmax_backward_data.default,
|
|
674
|
+
torch.ops.aten._softmax_backward_data.out,
|
|
675
|
+
torch.ops.aten.softplus.default,
|
|
676
|
+
torch.ops.aten.softplus.out,
|
|
677
|
+
torch.ops.aten.softplus_backward.default,
|
|
678
|
+
torch.ops.aten.softplus_backward.grad_input,
|
|
679
|
+
torch.ops.aten.softshrink.default,
|
|
680
|
+
torch.ops.aten.softshrink.out,
|
|
681
|
+
torch.ops.aten.special_entr.default,
|
|
682
|
+
torch.ops.aten.special_entr.out,
|
|
683
|
+
torch.ops.aten.special_log_ndtr.default,
|
|
684
|
+
torch.ops.aten.special_log_ndtr.out,
|
|
685
|
+
torch.ops.aten.special_xlog1py.default,
|
|
686
|
+
torch.ops.aten.special_xlog1py.other_scalar,
|
|
687
|
+
torch.ops.aten.special_xlog1py.self_scalar,
|
|
688
|
+
torch.ops.aten.special_xlog1py.out,
|
|
689
|
+
torch.ops.aten.special_xlog1py.self_scalar_out,
|
|
690
|
+
torch.ops.aten.special_xlog1py.other_scalar_out,
|
|
691
|
+
torch.ops.aten.split.Tensor,
|
|
692
|
+
torch.ops.aten.split_with_sizes_copy.default,
|
|
693
|
+
torch.ops.aten.split_with_sizes_copy.out,
|
|
694
|
+
torch.ops.aten.squeeze.default,
|
|
695
|
+
torch.ops.aten.squeeze.dim,
|
|
696
|
+
torch.ops.aten.std.default,
|
|
697
|
+
torch.ops.aten.std.dim,
|
|
698
|
+
torch.ops.aten.std.correction,
|
|
699
|
+
torch.ops.aten.std.names_dim,
|
|
700
|
+
torch.ops.aten.std.names_out,
|
|
701
|
+
torch.ops.aten.std.out,
|
|
702
|
+
torch.ops.aten.std.correction_out,
|
|
703
|
+
torch.ops.aten.std.correction_names,
|
|
704
|
+
torch.ops.aten.std.correction_names_out,
|
|
705
|
+
torch.ops.aten.std_mean.default,
|
|
706
|
+
torch.ops.aten.std_mean.dim,
|
|
707
|
+
torch.ops.aten.std_mean.correction,
|
|
708
|
+
torch.ops.aten.std_mean.names_dim,
|
|
709
|
+
torch.ops.aten.std_mean.correction_names,
|
|
710
|
+
torch.ops.aten.std_mean.correction_out,
|
|
711
|
+
torch.ops.aten.stack.default,
|
|
712
|
+
torch.ops.aten.stack.out,
|
|
713
|
+
torch.ops.aten.sum.default,
|
|
714
|
+
torch.ops.aten.sum.out,
|
|
715
|
+
torch.ops.aten.t.default,
|
|
716
|
+
torch.ops.aten.t_copy.out,
|
|
717
|
+
torch.ops.aten.t_copy.default,
|
|
718
|
+
torch.ops.aten.take.default,
|
|
719
|
+
torch.ops.aten.take.out,
|
|
720
|
+
torch.ops.aten.tanh_backward.default,
|
|
721
|
+
torch.ops.aten.tanh_backward.grad_input,
|
|
722
|
+
torch.ops.aten.threshold.default,
|
|
723
|
+
torch.ops.aten.threshold.out,
|
|
724
|
+
torch.ops.aten.threshold_.default,
|
|
725
|
+
torch.ops.aten.threshold_backward.default,
|
|
726
|
+
torch.ops.aten.threshold_backward.grad_input,
|
|
727
|
+
torch.ops.aten.trace.default,
|
|
728
|
+
torch.ops.aten.trace.out,
|
|
729
|
+
torch.ops.aten.transpose.int,
|
|
730
|
+
torch.ops.aten.tril.default,
|
|
731
|
+
torch.ops.aten.tril.out,
|
|
732
|
+
torch.ops.aten.tril_.default,
|
|
733
|
+
torch.ops.aten.triu.default,
|
|
734
|
+
torch.ops.aten.triu.out,
|
|
735
|
+
torch.ops.aten.triu_.default,
|
|
736
|
+
torch.ops.aten.unbind.int,
|
|
737
|
+
torch.ops.aten.unbind.Dimname,
|
|
738
|
+
torch.ops.aten.unfold_backward.default,
|
|
739
|
+
torch.ops.aten.unfold_backward.out,
|
|
740
|
+
torch.ops.aten.unfold_copy.default,
|
|
741
|
+
torch.ops.aten.unfold_copy.out,
|
|
742
|
+
torch.ops.aten._unsafe_index.Tensor,
|
|
743
|
+
torch.ops.aten._unsafe_index_put.default,
|
|
744
|
+
torch.ops.aten._unsafe_masked_index.default,
|
|
745
|
+
torch.ops.aten._unsafe_masked_index_put_accumulate.default,
|
|
746
|
+
torch.ops.aten.unsafe_split.Tensor,
|
|
747
|
+
torch.ops.aten.unsafe_split_with_sizes.default,
|
|
748
|
+
torch.ops.aten.unsqueeze_copy.out,
|
|
749
|
+
torch.ops.aten.unsqueeze_copy.default,
|
|
750
|
+
torch.ops.aten._unsafe_view.default,
|
|
751
|
+
torch.ops.aten._unsafe_view.out,
|
|
752
|
+
torch.ops.aten.upsample_linear1d.default,
|
|
753
|
+
torch.ops.aten.upsample_linear1d.out,
|
|
754
|
+
torch.ops.aten.upsample_bilinear2d.vec,
|
|
755
|
+
torch.ops.aten.upsample_bilinear2d.default,
|
|
756
|
+
torch.ops.aten.upsample_bilinear2d.out,
|
|
757
|
+
torch.ops.aten.upsample_trilinear3d.vec,
|
|
758
|
+
torch.ops.aten.upsample_trilinear3d.default,
|
|
759
|
+
torch.ops.aten.upsample_trilinear3d.out,
|
|
760
|
+
torch.ops.aten.xlogy.Tensor,
|
|
761
|
+
torch.ops.aten.xlogy.Scalar_Other,
|
|
762
|
+
torch.ops.aten.xlogy.Scalar_Self,
|
|
763
|
+
torch.ops.aten.xlogy.OutTensor,
|
|
764
|
+
torch.ops.aten.xlogy.OutScalar_Self,
|
|
765
|
+
torch.ops.aten.xlogy.OutScalar_Other,
|
|
766
|
+
torch.ops.aten.xlogy_.Tensor,
|
|
767
|
+
torch.ops.aten.xlogy_.Scalar_Other,
|
|
768
|
+
torch.ops.aten.zero.default,
|
|
769
|
+
torch.ops.aten.zero.out,
|
|
770
|
+
torch.ops.aten.zero_.default,
|
|
771
|
+
torch.ops.aten.zeros.default,
|
|
772
|
+
torch.ops.aten.zeros_like.default,
|
|
773
|
+
torch.ops.aten.zeros_like.out,
|
|
774
|
+
torch.ops.aten._chunk_cat.default,
|
|
775
|
+
torch.ops.aten._chunk_cat.out,
|
|
776
|
+
torch.ops.aten._weight_norm_interface.default,
|
|
777
|
+
torch.ops.aten._weight_norm_interface.out,
|
|
778
|
+
torch.ops.aten.__iand__.Tensor,
|
|
779
|
+
torch.ops.aten.__ixor__.Tensor,
|
|
780
|
+
torch.ops.aten.__ilshift__.Tensor,
|
|
781
|
+
torch.ops.aten.__ilshift__.Scalar,
|
|
782
|
+
torch.ops.aten.__irshift__.Tensor,
|
|
783
|
+
torch.ops.aten.__irshift__.Scalar,
|
|
784
|
+
torch.ops.aten.__ior__.Tensor,
|
|
785
|
+
])
|
|
786
|
+
|
|
787
|
+
MUTABLE_DECOMPOSITION = [
|
|
788
|
+
torch.ops.aten.bernoulli_.Tensor,
|
|
789
|
+
torch.ops.aten.bernoulli_.float,
|
|
790
|
+
]
|