torchaudio 2.8.0__cp311-cp311-win_amd64.whl → 2.9.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchaudio might be problematic. Click here for more details.

Files changed (92) hide show
  1. torchaudio/__init__.py +179 -39
  2. torchaudio/_extension/__init__.py +1 -14
  3. torchaudio/_extension/utils.py +0 -47
  4. torchaudio/_internal/module_utils.py +12 -3
  5. torchaudio/_torchcodec.py +73 -85
  6. torchaudio/datasets/cmuarctic.py +1 -1
  7. torchaudio/datasets/utils.py +1 -1
  8. torchaudio/functional/__init__.py +0 -2
  9. torchaudio/functional/_alignment.py +1 -1
  10. torchaudio/functional/filtering.py +70 -55
  11. torchaudio/functional/functional.py +26 -60
  12. torchaudio/lib/_torchaudio.pyd +0 -0
  13. torchaudio/lib/libtorchaudio.pyd +0 -0
  14. torchaudio/models/decoder/__init__.py +14 -2
  15. torchaudio/models/decoder/_ctc_decoder.py +6 -6
  16. torchaudio/models/decoder/_cuda_ctc_decoder.py +1 -1
  17. torchaudio/models/squim/objective.py +2 -2
  18. torchaudio/pipelines/_source_separation_pipeline.py +1 -1
  19. torchaudio/pipelines/_squim_pipeline.py +2 -2
  20. torchaudio/pipelines/_tts/utils.py +1 -1
  21. torchaudio/pipelines/rnnt_pipeline.py +4 -4
  22. torchaudio/transforms/__init__.py +1 -0
  23. torchaudio/transforms/_transforms.py +2 -2
  24. torchaudio/utils/__init__.py +2 -9
  25. torchaudio/utils/download.py +1 -3
  26. torchaudio/version.py +2 -2
  27. {torchaudio-2.8.0.dist-info → torchaudio-2.9.0.dist-info}/METADATA +8 -11
  28. torchaudio-2.9.0.dist-info/RECORD +85 -0
  29. {torchaudio-2.8.0.dist-info → torchaudio-2.9.0.dist-info}/top_level.txt +0 -1
  30. torchaudio/_backend/__init__.py +0 -61
  31. torchaudio/_backend/backend.py +0 -53
  32. torchaudio/_backend/common.py +0 -52
  33. torchaudio/_backend/ffmpeg.py +0 -334
  34. torchaudio/_backend/soundfile.py +0 -54
  35. torchaudio/_backend/soundfile_backend.py +0 -457
  36. torchaudio/_backend/sox.py +0 -91
  37. torchaudio/_backend/utils.py +0 -350
  38. torchaudio/backend/__init__.py +0 -8
  39. torchaudio/backend/_no_backend.py +0 -25
  40. torchaudio/backend/_sox_io_backend.py +0 -294
  41. torchaudio/backend/common.py +0 -13
  42. torchaudio/backend/no_backend.py +0 -14
  43. torchaudio/backend/soundfile_backend.py +0 -14
  44. torchaudio/backend/sox_io_backend.py +0 -14
  45. torchaudio/io/__init__.py +0 -20
  46. torchaudio/io/_effector.py +0 -347
  47. torchaudio/io/_playback.py +0 -72
  48. torchaudio/kaldi_io.py +0 -150
  49. torchaudio/prototype/__init__.py +0 -0
  50. torchaudio/prototype/datasets/__init__.py +0 -4
  51. torchaudio/prototype/datasets/musan.py +0 -68
  52. torchaudio/prototype/functional/__init__.py +0 -26
  53. torchaudio/prototype/functional/_dsp.py +0 -441
  54. torchaudio/prototype/functional/_rir.py +0 -382
  55. torchaudio/prototype/functional/functional.py +0 -193
  56. torchaudio/prototype/models/__init__.py +0 -39
  57. torchaudio/prototype/models/_conformer_wav2vec2.py +0 -801
  58. torchaudio/prototype/models/_emformer_hubert.py +0 -337
  59. torchaudio/prototype/models/conv_emformer.py +0 -529
  60. torchaudio/prototype/models/hifi_gan.py +0 -342
  61. torchaudio/prototype/models/rnnt.py +0 -717
  62. torchaudio/prototype/models/rnnt_decoder.py +0 -402
  63. torchaudio/prototype/pipelines/__init__.py +0 -21
  64. torchaudio/prototype/pipelines/_vggish/__init__.py +0 -7
  65. torchaudio/prototype/pipelines/_vggish/_vggish_impl.py +0 -236
  66. torchaudio/prototype/pipelines/_vggish/_vggish_pipeline.py +0 -83
  67. torchaudio/prototype/pipelines/hifigan_pipeline.py +0 -233
  68. torchaudio/prototype/pipelines/rnnt_pipeline.py +0 -58
  69. torchaudio/prototype/transforms/__init__.py +0 -9
  70. torchaudio/prototype/transforms/_transforms.py +0 -461
  71. torchaudio/sox_effects/__init__.py +0 -10
  72. torchaudio/sox_effects/sox_effects.py +0 -275
  73. torchaudio/utils/ffmpeg_utils.py +0 -11
  74. torchaudio/utils/sox_utils.py +0 -118
  75. torchaudio-2.8.0.dist-info/RECORD +0 -145
  76. torio/__init__.py +0 -8
  77. torio/_extension/__init__.py +0 -13
  78. torio/_extension/utils.py +0 -147
  79. torio/io/__init__.py +0 -9
  80. torio/io/_streaming_media_decoder.py +0 -977
  81. torio/io/_streaming_media_encoder.py +0 -502
  82. torio/lib/__init__.py +0 -0
  83. torio/lib/_torio_ffmpeg4.pyd +0 -0
  84. torio/lib/_torio_ffmpeg5.pyd +0 -0
  85. torio/lib/_torio_ffmpeg6.pyd +0 -0
  86. torio/lib/libtorio_ffmpeg4.pyd +0 -0
  87. torio/lib/libtorio_ffmpeg5.pyd +0 -0
  88. torio/lib/libtorio_ffmpeg6.pyd +0 -0
  89. torio/utils/__init__.py +0 -4
  90. torio/utils/ffmpeg_utils.py +0 -275
  91. {torchaudio-2.8.0.dist-info → torchaudio-2.9.0.dist-info}/WHEEL +0 -0
  92. {torchaudio-2.8.0.dist-info → torchaudio-2.9.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,275 +0,0 @@
1
- import os
2
- from typing import List, Optional, Tuple
3
-
4
- import torch
5
- import torchaudio
6
- from torchaudio._internal.module_utils import deprecated, dropping_support
7
- from torchaudio.utils.sox_utils import list_effects
8
-
9
-
10
- sox_ext = torchaudio._extension.lazy_import_sox_ext()
11
-
12
-
13
- @deprecated("Please remove the call. This function is called automatically.")
14
- def init_sox_effects():
15
- """Initialize resources required to use sox effects.
16
-
17
- Note:
18
- You do not need to call this function manually. It is called automatically.
19
-
20
- Once initialized, you do not need to call this function again across the multiple uses of
21
- sox effects though it is safe to do so as long as :func:`shutdown_sox_effects` is not called yet.
22
- Once :func:`shutdown_sox_effects` is called, you can no longer use SoX effects and initializing
23
- again will result in error.
24
- """
25
- pass
26
-
27
-
28
- @deprecated("Please remove the call. This function is called automatically.")
29
- def shutdown_sox_effects():
30
- """Clean up resources required to use sox effects.
31
-
32
- Note:
33
- You do not need to call this function manually. It is called automatically.
34
-
35
- It is safe to call this function multiple times.
36
- Once :py:func:`shutdown_sox_effects` is called, you can no longer use SoX effects and
37
- initializing again will result in error.
38
- """
39
- pass
40
-
41
-
42
- @dropping_support
43
- def effect_names() -> List[str]:
44
- """Gets list of valid sox effect names
45
-
46
- Returns:
47
- List[str]: list of available effect names.
48
-
49
- Example
50
- >>> torchaudio.sox_effects.effect_names()
51
- ['allpass', 'band', 'bandpass', ... ]
52
- """
53
- return list(list_effects().keys())
54
-
55
-
56
- @dropping_support
57
- def apply_effects_tensor(
58
- tensor: torch.Tensor,
59
- sample_rate: int,
60
- effects: List[List[str]],
61
- channels_first: bool = True,
62
- ) -> Tuple[torch.Tensor, int]:
63
- """Apply sox effects to given Tensor
64
-
65
- .. devices:: CPU
66
-
67
- .. properties:: TorchScript
68
-
69
- Note:
70
- This function only works on CPU Tensors.
71
- This function works in the way very similar to ``sox`` command, however there are slight
72
- differences. For example, ``sox`` command adds certain effects automatically (such as
73
- ``rate`` effect after ``speed`` and ``pitch`` and other effects), but this function does
74
- only applies the given effects. (Therefore, to actually apply ``speed`` effect, you also
75
- need to give ``rate`` effect with desired sampling rate.).
76
-
77
- Args:
78
- tensor (torch.Tensor): Input 2D CPU Tensor.
79
- sample_rate (int): Sample rate
80
- effects (List[List[str]]): List of effects.
81
- channels_first (bool, optional): Indicates if the input Tensor's dimension is
82
- `[channels, time]` or `[time, channels]`
83
-
84
- Returns:
85
- (Tensor, int): Resulting Tensor and sample rate.
86
- The resulting Tensor has the same ``dtype`` as the input Tensor, and
87
- the same channels order. The shape of the Tensor can be different based on the
88
- effects applied. Sample rate can also be different based on the effects applied.
89
-
90
- Example - Basic usage
91
- >>>
92
- >>> # Defines the effects to apply
93
- >>> effects = [
94
- ... ['gain', '-n'], # normalises to 0dB
95
- ... ['pitch', '5'], # 5 cent pitch shift
96
- ... ['rate', '8000'], # resample to 8000 Hz
97
- ... ]
98
- >>>
99
- >>> # Generate pseudo wave:
100
- >>> # normalized, channels first, 2ch, sampling rate 16000, 1 second
101
- >>> sample_rate = 16000
102
- >>> waveform = 2 * torch.rand([2, sample_rate * 1]) - 1
103
- >>> waveform.shape
104
- torch.Size([2, 16000])
105
- >>> waveform
106
- tensor([[ 0.3138, 0.7620, -0.9019, ..., -0.7495, -0.4935, 0.5442],
107
- [-0.0832, 0.0061, 0.8233, ..., -0.5176, -0.9140, -0.2434]])
108
- >>>
109
- >>> # Apply effects
110
- >>> waveform, sample_rate = apply_effects_tensor(
111
- ... wave_form, sample_rate, effects, channels_first=True)
112
- >>>
113
- >>> # Check the result
114
- >>> # The new waveform is sampling rate 8000, 1 second.
115
- >>> # normalization and channel order are preserved
116
- >>> waveform.shape
117
- torch.Size([2, 8000])
118
- >>> waveform
119
- tensor([[ 0.5054, -0.5518, -0.4800, ..., -0.0076, 0.0096, -0.0110],
120
- [ 0.1331, 0.0436, -0.3783, ..., -0.0035, 0.0012, 0.0008]])
121
- >>> sample_rate
122
- 8000
123
-
124
- Example - Torchscript-able transform
125
- >>>
126
- >>> # Use `apply_effects_tensor` in `torch.nn.Module` and dump it to file,
127
- >>> # then run sox effect via Torchscript runtime.
128
- >>>
129
- >>> class SoxEffectTransform(torch.nn.Module):
130
- ... effects: List[List[str]]
131
- ...
132
- ... def __init__(self, effects: List[List[str]]):
133
- ... super().__init__()
134
- ... self.effects = effects
135
- ...
136
- ... def forward(self, tensor: torch.Tensor, sample_rate: int):
137
- ... return sox_effects.apply_effects_tensor(
138
- ... tensor, sample_rate, self.effects)
139
- ...
140
- ...
141
- >>> # Create transform object
142
- >>> effects = [
143
- ... ["lowpass", "-1", "300"], # apply single-pole lowpass filter
144
- ... ["rate", "8000"], # change sample rate to 8000
145
- ... ]
146
- >>> transform = SoxEffectTensorTransform(effects, input_sample_rate)
147
- >>>
148
- >>> # Dump it to file and load
149
- >>> path = 'sox_effect.zip'
150
- >>> torch.jit.script(trans).save(path)
151
- >>> transform = torch.jit.load(path)
152
- >>>
153
- >>>> # Run transform
154
- >>> waveform, input_sample_rate = torchaudio.load("input.wav")
155
- >>> waveform, sample_rate = transform(waveform, input_sample_rate)
156
- >>> assert sample_rate == 8000
157
- """
158
- return sox_ext.apply_effects_tensor(tensor, sample_rate, effects, channels_first)
159
-
160
-
161
- @dropping_support
162
- def apply_effects_file(
163
- path: str,
164
- effects: List[List[str]],
165
- normalize: bool = True,
166
- channels_first: bool = True,
167
- format: Optional[str] = None,
168
- ) -> Tuple[torch.Tensor, int]:
169
- """Apply sox effects to the audio file and load the resulting data as Tensor
170
-
171
- .. devices:: CPU
172
-
173
- .. properties:: TorchScript
174
-
175
- Note:
176
- This function works in the way very similar to ``sox`` command, however there are slight
177
- differences. For example, ``sox`` commnad adds certain effects automatically (such as
178
- ``rate`` effect after ``speed``, ``pitch`` etc), but this function only applies the given
179
- effects. Therefore, to actually apply ``speed`` effect, you also need to give ``rate``
180
- effect with desired sampling rate, because internally, ``speed`` effects only alter sampling
181
- rate and leave samples untouched.
182
-
183
- Args:
184
- path (path-like object):
185
- Source of audio data.
186
- effects (List[List[str]]): List of effects.
187
- normalize (bool, optional):
188
- When ``True``, this function converts the native sample type to ``float32``.
189
- Default: ``True``.
190
-
191
- If input file is integer WAV, giving ``False`` will change the resulting Tensor type to
192
- integer type.
193
- This argument has no effect for formats other than integer WAV type.
194
-
195
- channels_first (bool, optional): When True, the returned Tensor has dimension `[channel, time]`.
196
- Otherwise, the returned Tensor's dimension is `[time, channel]`.
197
- format (str or None, optional):
198
- Override the format detection with the given format.
199
- Providing the argument might help when libsox can not infer the format
200
- from header or extension,
201
-
202
- Returns:
203
- (Tensor, int): Resulting Tensor and sample rate.
204
- If ``normalize=True``, the resulting Tensor is always ``float32`` type.
205
- If ``normalize=False`` and the input audio file is of integer WAV file, then the
206
- resulting Tensor has corresponding integer type. (Note 24 bit integer type is not supported)
207
- If ``channels_first=True``, the resulting Tensor has dimension `[channel, time]`,
208
- otherwise `[time, channel]`.
209
-
210
- Example - Basic usage
211
- >>>
212
- >>> # Defines the effects to apply
213
- >>> effects = [
214
- ... ['gain', '-n'], # normalises to 0dB
215
- ... ['pitch', '5'], # 5 cent pitch shift
216
- ... ['rate', '8000'], # resample to 8000 Hz
217
- ... ]
218
- >>>
219
- >>> # Apply effects and load data with channels_first=True
220
- >>> waveform, sample_rate = apply_effects_file("data.wav", effects, channels_first=True)
221
- >>>
222
- >>> # Check the result
223
- >>> waveform.shape
224
- torch.Size([2, 8000])
225
- >>> waveform
226
- tensor([[ 5.1151e-03, 1.8073e-02, 2.2188e-02, ..., 1.0431e-07,
227
- -1.4761e-07, 1.8114e-07],
228
- [-2.6924e-03, 2.1860e-03, 1.0650e-02, ..., 6.4122e-07,
229
- -5.6159e-07, 4.8103e-07]])
230
- >>> sample_rate
231
- 8000
232
-
233
- Example - Apply random speed perturbation to dataset
234
- >>>
235
- >>> # Load data from file, apply random speed perturbation
236
- >>> class RandomPerturbationFile(torch.utils.data.Dataset):
237
- ... \"\"\"Given flist, apply random speed perturbation
238
- ...
239
- ... Suppose all the input files are at least one second long.
240
- ... \"\"\"
241
- ... def __init__(self, flist: List[str], sample_rate: int):
242
- ... super().__init__()
243
- ... self.flist = flist
244
- ... self.sample_rate = sample_rate
245
- ...
246
- ... def __getitem__(self, index):
247
- ... speed = 0.5 + 1.5 * random.randn()
248
- ... effects = [
249
- ... ['gain', '-n', '-10'], # apply 10 db attenuation
250
- ... ['remix', '-'], # merge all the channels
251
- ... ['speed', f'{speed:.5f}'], # duration is now 0.5 ~ 2.0 seconds.
252
- ... ['rate', f'{self.sample_rate}'],
253
- ... ['pad', '0', '1.5'], # add 1.5 seconds silence at the end
254
- ... ['trim', '0', '2'], # get the first 2 seconds
255
- ... ]
256
- ... waveform, _ = torchaudio.sox_effects.apply_effects_file(
257
- ... self.flist[index], effects)
258
- ... return waveform
259
- ...
260
- ... def __len__(self):
261
- ... return len(self.flist)
262
- ...
263
- >>> dataset = RandomPerturbationFile(file_list, sample_rate=8000)
264
- >>> loader = torch.utils.data.DataLoader(dataset, batch_size=32)
265
- >>> for batch in loader:
266
- >>> pass
267
- """
268
- if not torch.jit.is_scripting():
269
- if hasattr(path, "read"):
270
- raise RuntimeError(
271
- "apply_effects_file function does not support file-like object. "
272
- "Please use torchaudio.io.AudioEffector."
273
- )
274
- path = os.fspath(path)
275
- return sox_ext.apply_effects_file(path, effects, normalize, channels_first, format)
@@ -1,11 +0,0 @@
1
- """Module to change the configuration of FFmpeg libraries (such as libavformat).
2
-
3
- It affects functionalities in :py:mod:`torchaudio.io` (and indirectly :py:func:`torchaudio.load`).
4
- """
5
-
6
-
7
- # This file is just for BC.
8
- def __getattr__(item):
9
- from torio.utils import ffmpeg_utils
10
-
11
- return getattr(ffmpeg_utils, item)
@@ -1,118 +0,0 @@
1
- """Module to change the configuration of libsox, which is used by I/O functions like
2
- :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`.
3
-
4
- .. warning::
5
- Starting with version 2.8, we are refactoring TorchAudio to transition it
6
- into a maintenance phase. As a result:
7
-
8
- - Some APIs are deprecated in 2.8 and will be removed in 2.9.
9
- - The decoding and encoding capabilities of PyTorch for both audio and video
10
- are being consolidated into TorchCodec.
11
-
12
- Please see https://github.com/pytorch/audio/issues/3902 for more information.
13
- """
14
-
15
- from typing import Dict, List
16
-
17
- import torchaudio
18
-
19
- sox_ext = torchaudio._extension.lazy_import_sox_ext()
20
-
21
- from torchaudio._internal.module_utils import dropping_support
22
-
23
- @dropping_support
24
- def set_seed(seed: int):
25
- """Set libsox's PRNG
26
-
27
- Args:
28
- seed (int): seed value. valid range is int32.
29
-
30
- See Also:
31
- http://sox.sourceforge.net/sox.html
32
- """
33
- sox_ext.set_seed(seed)
34
-
35
-
36
- @dropping_support
37
- def set_verbosity(verbosity: int):
38
- """Set libsox's verbosity
39
-
40
- Args:
41
- verbosity (int): Set verbosity level of libsox.
42
-
43
- * ``1`` failure messages
44
- * ``2`` warnings
45
- * ``3`` details of processing
46
- * ``4``-``6`` increasing levels of debug messages
47
-
48
- See Also:
49
- http://sox.sourceforge.net/sox.html
50
- """
51
- sox_ext.set_verbosity(verbosity)
52
-
53
-
54
- @dropping_support
55
- def set_buffer_size(buffer_size: int):
56
- """Set buffer size for sox effect chain
57
-
58
- Args:
59
- buffer_size (int): Set the size in bytes of the buffers used for processing audio.
60
-
61
- See Also:
62
- http://sox.sourceforge.net/sox.html
63
- """
64
- sox_ext.set_buffer_size(buffer_size)
65
-
66
-
67
- @dropping_support
68
- def set_use_threads(use_threads: bool):
69
- """Set multithread option for sox effect chain
70
-
71
- Args:
72
- use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing.
73
- To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support.
74
-
75
- See Also:
76
- http://sox.sourceforge.net/sox.html
77
- """
78
- sox_ext.set_use_threads(use_threads)
79
-
80
-
81
- @dropping_support
82
- def list_effects() -> Dict[str, str]:
83
- """List the available sox effect names
84
-
85
- Returns:
86
- Dict[str, str]: Mapping from ``effect name`` to ``usage``
87
- """
88
- return dict(sox_ext.list_effects())
89
-
90
-
91
- @dropping_support
92
- def list_read_formats() -> List[str]:
93
- """List the supported audio formats for read
94
-
95
- Returns:
96
- List[str]: List of supported audio formats
97
- """
98
- return sox_ext.list_read_formats()
99
-
100
-
101
- @dropping_support
102
- def list_write_formats() -> List[str]:
103
- """List the supported audio formats for write
104
-
105
- Returns:
106
- List[str]: List of supported audio formats
107
- """
108
- return sox_ext.list_write_formats()
109
-
110
-
111
- @dropping_support
112
- def get_buffer_size() -> int:
113
- """Get buffer size for sox effect chain
114
-
115
- Returns:
116
- int: size in bytes of buffers used for processing audio.
117
- """
118
- return sox_ext.get_buffer_size()
@@ -1,145 +0,0 @@
1
- torchaudio/__init__.py,sha256=sz2lTxSrqXNOpX4qUS6sxITrLYRiDeQ7CIPfVgITUJs,1546
2
- torchaudio/_torchcodec.py,sha256=eWb6j8glcLKTFqLwS0OuTYp3qbysrYteorPSZSONdwI,14138
3
- torchaudio/kaldi_io.py,sha256=9CcQfQFaU5ZtkQ-5XC1FWM0z0na_6N6sbAtAcWgTimg,5376
4
- torchaudio/version.py,sha256=uE4xtVTIwbuenIWZnPoV_RyXxkE17WGuMG5mXchO64U,85
5
- torchaudio/_backend/__init__.py,sha256=2bMTZ3tG2_5nvnqAAmvEnGBInO5a9DdUPNoyXEnX1M0,1692
6
- torchaudio/_backend/backend.py,sha256=CakqB9z_4ZtLsQTyMZbEbB0kTqpUe_gidHgObv9acyQ,1618
7
- torchaudio/_backend/common.py,sha256=h9R29RTTW2lqOiKYByETXfXWsrTH65uHxGDKw3bWj-s,1835
8
- torchaudio/_backend/ffmpeg.py,sha256=b6dr67sWg47uFJxIyWLXCtrdPMlgjYdWmj7n919Ph1M,11628
9
- torchaudio/_backend/soundfile.py,sha256=Dd-K6Tg_G3ze08hImvnAsO5lpAERpmUd9oxkNsGJUno,1757
10
- torchaudio/_backend/soundfile_backend.py,sha256=sVSEM2On6PMY7AbPqpfvE1u1Bg2_0aiSrZ4TclAFi_w,17833
11
- torchaudio/_backend/sox.py,sha256=nFPpv-9VsToxkZcAwpku667ZIMzj0ZneV-7nzKUtKOM,3461
12
- torchaudio/_backend/utils.py,sha256=2jPWFmMHrByyvJ08xXTMhnyO14XoY49ZNWUH2Si2x5w,15727
13
- torchaudio/_extension/__init__.py,sha256=s6AzXocDcuh0mtYVUCOOjZ_mCmSCno8jbZN750YI-Ps,2276
14
- torchaudio/_extension/utils.py,sha256=wFDF8B6Q22UL3zyX8swZ-JjlDgm9-VdjeraslQr2yIY,6438
15
- torchaudio/_internal/__init__.py,sha256=80cpJfTS8977YYrU3q5p4DRAGAkqEJrmG9Lq2hEDpoo,251
16
- torchaudio/_internal/module_utils.py,sha256=AUA-ATgk_Bbo1fGZfy1Ra1cwkJ7sqzZvlXtRm-3EcYo,5411
17
- torchaudio/backend/__init__.py,sha256=ckKT_tmcmc_Z43ZTlqJ39fwUbmv-j-mAP2BWp0sU4Tg,289
18
- torchaudio/backend/_no_backend.py,sha256=CEpYJ0bZi937Z0q2JHdRVnDKd7HWlCUVR7rEVHE_xmE,782
19
- torchaudio/backend/_sox_io_backend.py,sha256=Ut3-QaqzaJ0MvNc7NdpMTST7_mZy1xSixGbDC7418Qk,11750
20
- torchaudio/backend/common.py,sha256=mn0l6GBwet7DvRQPURhYIHF-HrQFvEFVKM23PawfbH8,456
21
- torchaudio/backend/no_backend.py,sha256=q4Czg1NFcsPKl8C4Ik89Ud51SlVHlTtNAcMNZ6cKgQ8,483
22
- torchaudio/backend/soundfile_backend.py,sha256=BXLy1io5jDXxa-1G9rUzlJZNdiaiO_h7hr74sdTk4Tc,513
23
- torchaudio/backend/sox_io_backend.py,sha256=xfzCNvGsMbH-lfJP4c19gn8pZKUOusGsRWkdJd-I9ZU,491
24
- torchaudio/compliance/__init__.py,sha256=JNH_-dTQVmm55YwcVMuVvUYFWdXhGn4C__9S8IUsNoU,53
25
- torchaudio/compliance/kaldi.py,sha256=bS7qJgS3k8FK1RkMiNEoP3q0xhjeV_V4RHQ9jo_rqOM,37479
26
- torchaudio/datasets/__init__.py,sha256=hdHldm3OzoQLbI0kHj8tLxqwDhzMfedq0_t1kAK7ORg,1218
27
- torchaudio/datasets/cmuarctic.py,sha256=xEHBtO8oh5ub8VbLa1qcL-meFhYeg4EQpMUdiGaelGA,7254
28
- torchaudio/datasets/cmudict.py,sha256=_9vTz7_8BFVrcHeA61_-h2XLOl6IsdWCptkMWziOW7U,6176
29
- torchaudio/datasets/commonvoice.py,sha256=OcFn-nG4YfBIz0YIpH91xH9rFka8yFJmrxy4vFZkC4I,2849
30
- torchaudio/datasets/dr_vctk.py,sha256=Ayf85prDNr1LcWQ4bysVWdRVPry2JALjv6Mtq-6iBpY,4498
31
- torchaudio/datasets/fluentcommands.py,sha256=KnmH1Y28k5PhqQX6eV-75MqwTRxiHSUUcvAsa-K954s,3353
32
- torchaudio/datasets/gtzan.py,sha256=kt25Ly9qDGuiiVXgsXhS05tGi6laRhRko81-BQ4sZ-w,25475
33
- torchaudio/datasets/iemocap.py,sha256=ZMMG_FpcWcMHEbhuRYRQaUWi_DoegjxCrnVyCg5EEVE,5077
34
- torchaudio/datasets/librilight_limited.py,sha256=iwZBlSKVLrXzhZvaqjuVRGO6czxX4fpdzd8wWe5feWQ,4290
35
- torchaudio/datasets/librimix.py,sha256=AncE671AOl04dRPsajNZW-ZxxI_PwA2sjBftdBg4Q-k,5249
36
- torchaudio/datasets/librispeech.py,sha256=ys769I0UzG07UEmyZ_KDwATh4yc08hFUuCayK8tYIGg,6482
37
- torchaudio/datasets/librispeech_biasing.py,sha256=KEGplRU_wpgb0VqrT-t42kvtC7lg4uMssZcosVvvPhg,7147
38
- torchaudio/datasets/libritts.py,sha256=91Ep2Mq3OySre25GniXBLmRzTwEPiKmMaqXnzirn0xY,6038
39
- torchaudio/datasets/ljspeech.py,sha256=l09BSBQH76I-LhYkIRF0u18tTi-4yysaF4gj2GSZaxw,3601
40
- torchaudio/datasets/musdb_hq.py,sha256=FVlKsGEBHiT50y9GLswnt2QFph2PjiI6yCy1MxiG6f8,5214
41
- torchaudio/datasets/quesst14.py,sha256=3y6H3T3g78jkDqca8jORQBOViZhH1RhlsfuY8HJ2OcU,4591
42
- torchaudio/datasets/snips.py,sha256=mwVc5KsbMlPQJ87eyYgjnQ5S4EFXoQvm13dO0rXpJuE,5165
43
- torchaudio/datasets/speechcommands.py,sha256=_wmrKSiEe0COO7uk0JVXypBmNxu0urnceHuFQ6zMOk0,7664
44
- torchaudio/datasets/tedlium.py,sha256=UQZUaeUqmFntZWcH9HXOpGeW6tsCcG81bPjX2_CWxbg,8916
45
- torchaudio/datasets/utils.py,sha256=m-sBYgQb0JxgGVfsVpekKFDI_7PGXCTma6N2ymfJl0g,1743
46
- torchaudio/datasets/vctk.py,sha256=vN_VzxTLyHW11I_rzfzMVA3h5JW917FaU3NCnR-zcL0,5842
47
- torchaudio/datasets/voxceleb1.py,sha256=JlYkbyYOAFUFhGLULe3lgucANWf_G7qGqw47YjiX2IM,12034
48
- torchaudio/datasets/yesno.py,sha256=B3hRNUazvB8V8SwOUlQzliB9vI9gMkl9SEl-dZ4PEaw,3115
49
- torchaudio/functional/__init__.py,sha256=avLNjTJJuvXGjLQZk3AwpXSRhW-NeOx9R1PDD5aQA5o,2619
50
- torchaudio/functional/_alignment.py,sha256=46GhuEYUqI1gE-2UKSu9BIQF1QpZ5yunUS8JZGZJuss,4823
51
- torchaudio/functional/filtering.py,sha256=6_Xz-aT8JyVf4n-aos63eNstvNHookSVlGL_NfEXWsg,63312
52
- torchaudio/functional/functional.py,sha256=1_7gbT0xqT8Fa-e7DCjc6vsEyURZwFUeypai9AFPI6A,98720
53
- torchaudio/io/__init__.py,sha256=syrguNxNQKo7_eKuFFLU_Ze5wtyxdOXVyQ84dyuCig0,753
54
- torchaudio/io/_effector.py,sha256=5Kh7br-ZuLzmoRSVXk5JNQ8NkwcGUiY_mrt7d_1W1eg,12217
55
- torchaudio/io/_playback.py,sha256=UpPb-m35XUlYL2lybQGXAJAvfmUPT_Kqx4jpYArIAz0,2393
56
- torchaudio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
- torchaudio/lib/_torchaudio.pyd,sha256=qTLKw-Z9L1qPEhFGxjmGPO_h6jne2nglMf9zgNaIJ18,770048
58
- torchaudio/lib/libtorchaudio.pyd,sha256=OJXBGa44PeTFlHhx6E17dRnWVNlJOKDtk45b6pMDgEs,1762304
59
- torchaudio/models/__init__.py,sha256=Gi3UQvxjwTLW9wfKlF42O3Vup70d0bk2x-rZS89ASwI,2080
60
- torchaudio/models/_hdemucs.py,sha256=ipAj7965PO_WEZqQwW1om9gQj90UhQOeU6HU3Lpvzwo,39250
61
- torchaudio/models/conformer.py,sha256=gVrOYeJkPlVaX-4eZpVzNUe_r3k7g1Y6NaaQ8JZP-r4,10361
62
- torchaudio/models/conv_tasnet.py,sha256=D7Y10sOzLe03gygfN1J5R73SIHkIGVQOkqKQ6Ni3o_s,12870
63
- torchaudio/models/deepspeech.py,sha256=nVYc2xwWpFO6gu5CR0mbqLiAzJn8lAfHcdcP92i22mo,2830
64
- torchaudio/models/emformer.py,sha256=WbaeZcrPFOOLn4igqweE0AfuF_SQZpqg7XPGEhl7C8c,38650
65
- torchaudio/models/rnnt.py,sha256=PNJpZd3vH6wRq8TEf4UlPtVHbte9wOJ-bRMEug6gp08,36357
66
- torchaudio/models/rnnt_decoder.py,sha256=CBBMZhhq5Bgax0_3p3SZD-Os3S1LFHB91oTgVED4bmY,13178
67
- torchaudio/models/tacotron2.py,sha256=mZ5lLSa75oqc0hgkc3sIm5_gK-knhtgX3dmg9-oLQao,46960
68
- torchaudio/models/wav2letter.py,sha256=oetxpH5RG0TadYB75IOmYOrnraaPvSlcSNpRZb2FE_A,3350
69
- torchaudio/models/wavernn.py,sha256=LRgL36jA6WzI1PAzBY6P52oCMGSTOraXB8fEgkwpSxw,15855
70
- torchaudio/models/decoder/__init__.py,sha256=Lskj9moDFtjxRDbz4nnnzMcgqofaKILdgODqlnauEwc,1518
71
- torchaudio/models/decoder/_ctc_decoder.py,sha256=woyUaDCuaMQqPTQ7uLuc99lxMAOsJj5AxWwS9hf6JNY,20650
72
- torchaudio/models/decoder/_cuda_ctc_decoder.py,sha256=BZCjAdZ50umWW171nJYHy24YZ5CxM8a2JfMIeO4S3BM,7373
73
- torchaudio/models/squim/__init__.py,sha256=eQox8kPviOthKulpzZvPK0a66NHW7MzYE4aOF7va_kU,357
74
- torchaudio/models/squim/objective.py,sha256=0Dsio0cQ_NBHg7t0YFbBamyiWPpocfaErddnBttu8b0,12615
75
- torchaudio/models/squim/subjective.py,sha256=1_gK9O3nvrjiikpP46IdsMzKduSTt91kKklA69wQqiw,5947
76
- torchaudio/models/wav2vec2/__init__.py,sha256=j5FdQFfuIpdIKYwoMLop4Ba70GGoS-lK61tU-oNG5wg,972
77
- torchaudio/models/wav2vec2/components.py,sha256=EzmuGc5qHVPrHCGqYVHTvdjqP2gCrBfnHSoTK9GsZ1w,48244
78
- torchaudio/models/wav2vec2/model.py,sha256=kP6QKsF1PjleyUMhaPjydi0pCRy4GGUArRWBzfDJmdE,61671
79
- torchaudio/models/wav2vec2/wavlm_attention.py,sha256=iYde9grsb_RaEs87FI5ykyN3z0Ix1plqpsMNvakAiWM,11058
80
- torchaudio/models/wav2vec2/utils/__init__.py,sha256=1eowaOEKRbp7JajFNv_r47REJqnMmXidukS7Mrwp_5Q,188
81
- torchaudio/models/wav2vec2/utils/import_fairseq.py,sha256=so7T-otDNCsTUtzJRUFFGWyd0caWl3RY_UbFMxJ4DJE,9411
82
- torchaudio/models/wav2vec2/utils/import_huggingface.py,sha256=NMK6YrAIDfOw8j1tV-3XTwx_mwbJHvg8ldTrAWRztIM,6080
83
- torchaudio/pipelines/__init__.py,sha256=oMwOu-1T_ugJmhdaoI5NrCDrUAGrpDOlJQO8h-bLAW4,2847
84
- torchaudio/pipelines/_source_separation_pipeline.py,sha256=WAjiWSlk73VS985GpKweDAfk2aKwQWI6jnGNwYHiRi8,4333
85
- torchaudio/pipelines/_squim_pipeline.py,sha256=Pumv9jYoJ5mjOeauyuK7RmE8j3iVFP4VuMmvz6UqM3I,6436
86
- torchaudio/pipelines/rnnt_pipeline.py,sha256=S0DLMPbt-lqNBWOcjG5KP2IfU1X_oTv95CVmSjxYJ2g,14129
87
- torchaudio/pipelines/_tts/__init__.py,sha256=WKc5c06b_M9MvEohJZghJJWAL7vXvfwRIkdy85UCh04,442
88
- torchaudio/pipelines/_tts/impl.py,sha256=wwrTyTEEkew22AnzB_ZklapGaAstJSUBawhA7bOcGXM,15759
89
- torchaudio/pipelines/_tts/interface.py,sha256=y1mU0446Vy2hHpCwMqRZt1UI4ZXl-C4tJp92EylwHh0,10479
90
- torchaudio/pipelines/_tts/utils.py,sha256=JbGBrD49FMw1igen4ZKOmuNA4bDWHRX48h5Zs2VFlTM,5040
91
- torchaudio/pipelines/_wav2vec2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
92
- torchaudio/pipelines/_wav2vec2/aligner.py,sha256=HOcthFgup97QMx9ZXCmkv6jdw_zxdRT-e_SilXEujNU,2796
93
- torchaudio/pipelines/_wav2vec2/impl.py,sha256=I6htNo4Wt5LPxX9Z8rmxarFE8BZOZBUFIU9T9k1k2Po,67260
94
- torchaudio/pipelines/_wav2vec2/utils.py,sha256=CVawfXmVGWY8mj-_6r4KO907BpF67WAVWHEHhycFIaM,7317
95
- torchaudio/prototype/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
96
- torchaudio/prototype/datasets/__init__.py,sha256=l2k9V6ujGOiiPUXtJqMT0sao0zIUqKOg-243PAVs7NM,51
97
- torchaudio/prototype/datasets/musan.py,sha256=_wc_4Ye2-07xiR6q5f7e7kyK7A22plim1frfnjFv44I,2274
98
- torchaudio/prototype/functional/__init__.py,sha256=C5uPqrnwc_VJ9ajJpudsBAmxt6-RKrHirIJa3RHLlfs,588
99
- torchaudio/prototype/functional/_dsp.py,sha256=ir70C3Wf9SIeFpdDzt5RAaeqeSQz8H3TUr3CdB5NkdQ,17268
100
- torchaudio/prototype/functional/_rir.py,sha256=vE1afWLwZlTE6J1Mdir0JaLOLwXSKwJXw-UhVLF68Zw,17736
101
- torchaudio/prototype/functional/functional.py,sha256=Cwsrj7PE3vQtpm56cD1xNyt5FWT5TVjNicTl_kBEtA8,6756
102
- torchaudio/prototype/models/__init__.py,sha256=ZrVFYZCFGRAS7FbALYnSRKE8jAnl2rmT7oSKhWgkJIg,1446
103
- torchaudio/prototype/models/_conformer_wav2vec2.py,sha256=eqlmpWGMJZrhzeeiyGVHI-K5yXLGc-s_Go9_JADtsY0,30524
104
- torchaudio/prototype/models/_emformer_hubert.py,sha256=zvkz9Kt2rV4hSOGKR3gk6ZJyWTkxwrD0pF4do-bSmeE,13935
105
- torchaudio/prototype/models/conv_emformer.py,sha256=46wl2YOa6Mnzd-0oOLegxzru08Jt9O3fKZVvyXCXTw8,23739
106
- torchaudio/prototype/models/hifi_gan.py,sha256=0P2RbDEdqXAiv9p_7HNsql5NAe7blxM3xWIRES1SYvc,13005
107
- torchaudio/prototype/models/rnnt.py,sha256=xk4rhiYGeAjLPEzyRdCWmnASFftJjxLxxKUcC2_Vywg,31712
108
- torchaudio/prototype/models/rnnt_decoder.py,sha256=PqEXRgRo4pQcrPqYUKS8gUlSFhOos8Yd46gW9U8QmMA,16231
109
- torchaudio/prototype/pipelines/__init__.py,sha256=uYbi90E5U-LfZuaTlLukFYfT0eMmCsReUi_bbMTmWxs,822
110
- torchaudio/prototype/pipelines/hifigan_pipeline.py,sha256=FHWa96-bhWcPT-3Y4geALG5qebxNRNi2Gm5xtIYVaS8,10043
111
- torchaudio/prototype/pipelines/rnnt_pipeline.py,sha256=6zeezoHIPo-9Sc0B19cFoJrQMybmDP1MDoUZzMFheOo,2242
112
- torchaudio/prototype/pipelines/_vggish/__init__.py,sha256=QCdAgmNiHA-nwgDIn94GqeEpZM-8vIIXNNYoFMphjCU,229
113
- torchaudio/prototype/pipelines/_vggish/_vggish_impl.py,sha256=GWVx5k2LcdCkWtoPKIhywIGAE23H39mtRsuGgo0yuYw,8850
114
- torchaudio/prototype/pipelines/_vggish/_vggish_pipeline.py,sha256=D1DXlgt1Vrj0gT_O77o285z5TrnYmackhj6sDsunYF8,2859
115
- torchaudio/prototype/transforms/__init__.py,sha256=a-LNmupvUQvpo3CrTvqXudgY8G6cRGI1zy6j9oWST_o,234
116
- torchaudio/prototype/transforms/_transforms.py,sha256=rP7kM-ZkY-qnB8qIoLUUuNDbxA3XefUkAVlMI7Dg1Lg,19811
117
- torchaudio/sox_effects/__init__.py,sha256=NVN6rAkHxizmOsZgLnxjMX5qXcPkABzLE-hvTMaSbEw,272
118
- torchaudio/sox_effects/sox_effects.py,sha256=bafww0e2colzzN8bTMRHG5zvA6oON0pLEpCWRt6wp90,11328
119
- torchaudio/transforms/__init__.py,sha256=MlMn3JIZvOVdXB0qAk27fgCq1U_RiO6Wz4ntkAGi6ec,1474
120
- torchaudio/transforms/_multi_channel.py,sha256=Musw7dTu25HNjKeIcKHUDuqBmj_GC2e3TaakqJcffW8,22688
121
- torchaudio/transforms/_transforms.py,sha256=S_a0nvUT2G6w3jm9ILWzWbxNfMyIIFlkTZhee4xI6gU,89076
122
- torchaudio/utils/__init__.py,sha256=h4Jvrb4vzdxzgJqgzA-TOUqLSZ2mRVALERR8am7BlvQ,185
123
- torchaudio/utils/download.py,sha256=tyPmX8EA9xAnz615UtZZsYi1mtGu3vVh4ZfYzWa2DNw,3054
124
- torchaudio/utils/ffmpeg_utils.py,sha256=1r5cdbhz9ZCY5jW-5_gQ5G360a2fEwd--GBFMq_TxVk,330
125
- torchaudio/utils/sox_utils.py,sha256=VF4ikIm3Eiw99RdaXN_f96QDuqAw9cjS4LxN2E_ETJE,3158
126
- torio/__init__.py,sha256=6Rz28GL44aSOszXJewvjdcm8Fp47TgphNMPtsIBd2aE,119
127
- torio/_extension/__init__.py,sha256=9GnFiLWPCViTbUUNio9At1M0ALGqKtZ9lFOuPUn1Sc8,326
128
- torio/_extension/utils.py,sha256=ppIGBFk868z7QbfSjawHUkSO3yZ7ML2jHFgE-j6GymI,5051
129
- torio/io/__init__.py,sha256=GSt-4DRzgiuVmNN3WwjDAMACztJidmEP5ghVOlW6OQI,235
130
- torio/io/_streaming_media_decoder.py,sha256=VT4FaGfV44cJfG6MFQNV1Puocz6PayZ2iDNWfM5apB4,35352
131
- torio/io/_streaming_media_encoder.py,sha256=C4zIasotf7GlkQqtRK3vMCt2aN6FkG6NK2KUw0ZdHHo,20224
132
- torio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
- torio/lib/_torio_ffmpeg4.pyd,sha256=fZ_N6Qjm7Lq2IyutqzQ2UvF4wg8m92350nXmpoTg81w,2110464
134
- torio/lib/_torio_ffmpeg5.pyd,sha256=axDTU7eokc2CHKQmGh08gSjwM3q4NNXX_bHx6aWY7b8,2110464
135
- torio/lib/_torio_ffmpeg6.pyd,sha256=ecautqUrctjp-N0xuUfShybrkeX97_xaMiqzgC2sCEc,2110464
136
- torio/lib/libtorio_ffmpeg4.pyd,sha256=wjny6pOYA2Z2sKGzznpH0MUXEDqyPghLDPToMUeuV9o,967680
137
- torio/lib/libtorio_ffmpeg5.pyd,sha256=VXE1-2swfEhKxnLjCI1gm2onf9EWpntA9lnN5AR3yQM,967680
138
- torio/lib/libtorio_ffmpeg6.pyd,sha256=GO-q0w6dZWJxLTg_bUL0ytCXHRTujEWLP1E5EPigcw4,967680
139
- torio/utils/__init__.py,sha256=uQV58SlyikUr6yF4HITASCvuX-_fnzbeDxFRzFucQE4,60
140
- torio/utils/ffmpeg_utils.py,sha256=1qDvl4b0ziLPS6cyEL63_LINHScbawJga3Yk2BLuY54,9048
141
- torchaudio-2.8.0.dist-info/METADATA,sha256=OckS0WMRSG0XrYz9w857UycDcGxBCxQKdMlRH6hof-8,7236
142
- torchaudio-2.8.0.dist-info/WHEEL,sha256=pkI-s5KKCTCXRcuamRCpmUHK9lBRiVf1mC9_VUZSXgc,101
143
- torchaudio-2.8.0.dist-info/top_level.txt,sha256=GT0MktEbHKoLnvd-6ii7_dhJVvshupOujk840BcHU4U,17
144
- torchaudio-2.8.0.dist-info/RECORD,,
145
- torchaudio-2.8.0.dist-info/licenses/LICENSE,sha256=MmOOF5kxv-VR6r9nsOZ6E7SD4Wa1jdcmNjSrf4nzlvU,1363
torio/__init__.py DELETED
@@ -1,8 +0,0 @@
1
- from . import _extension # noqa # usort: skip
2
- from . import io, utils
3
-
4
-
5
- __all__ = [
6
- "io",
7
- "utils",
8
- ]
@@ -1,13 +0,0 @@
1
- from .utils import _init_ffmpeg, _LazyImporter
2
-
3
-
4
- _FFMPEG_EXT = None
5
-
6
-
7
- def lazy_import_ffmpeg_ext():
8
- """Load FFmpeg integration based on availability in lazy manner"""
9
-
10
- global _FFMPEG_EXT
11
- if _FFMPEG_EXT is None:
12
- _FFMPEG_EXT = _LazyImporter("_torio_ffmpeg", _init_ffmpeg)
13
- return _FFMPEG_EXT