torchaudio 2.7.1__cp313-cp313t-win_amd64.whl → 2.9.0__cp313-cp313t-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchaudio might be problematic. Click here for more details.

Files changed (92) hide show
  1. torchaudio/__init__.py +184 -33
  2. torchaudio/_extension/__init__.py +1 -14
  3. torchaudio/_extension/utils.py +0 -47
  4. torchaudio/_internal/module_utils.py +68 -10
  5. torchaudio/_torchcodec.py +340 -0
  6. torchaudio/datasets/cmuarctic.py +1 -1
  7. torchaudio/datasets/utils.py +1 -1
  8. torchaudio/functional/__init__.py +6 -3
  9. torchaudio/functional/_alignment.py +1 -1
  10. torchaudio/functional/filtering.py +70 -55
  11. torchaudio/functional/functional.py +31 -61
  12. torchaudio/lib/_torchaudio.pyd +0 -0
  13. torchaudio/lib/libtorchaudio.pyd +0 -0
  14. torchaudio/models/decoder/__init__.py +19 -1
  15. torchaudio/models/decoder/_ctc_decoder.py +6 -6
  16. torchaudio/models/decoder/_cuda_ctc_decoder.py +1 -1
  17. torchaudio/models/squim/objective.py +2 -2
  18. torchaudio/pipelines/_source_separation_pipeline.py +1 -1
  19. torchaudio/pipelines/_squim_pipeline.py +2 -2
  20. torchaudio/pipelines/_tts/utils.py +3 -1
  21. torchaudio/pipelines/rnnt_pipeline.py +4 -4
  22. torchaudio/transforms/__init__.py +4 -1
  23. torchaudio/transforms/_transforms.py +4 -3
  24. torchaudio/utils/__init__.py +2 -9
  25. torchaudio/utils/download.py +1 -1
  26. torchaudio/version.py +2 -2
  27. {torchaudio-2.7.1.dist-info → torchaudio-2.9.0.dist-info}/METADATA +15 -7
  28. torchaudio-2.9.0.dist-info/RECORD +85 -0
  29. {torchaudio-2.7.1.dist-info → torchaudio-2.9.0.dist-info}/top_level.txt +0 -1
  30. torchaudio/_backend/__init__.py +0 -61
  31. torchaudio/_backend/backend.py +0 -53
  32. torchaudio/_backend/common.py +0 -52
  33. torchaudio/_backend/ffmpeg.py +0 -334
  34. torchaudio/_backend/soundfile.py +0 -54
  35. torchaudio/_backend/soundfile_backend.py +0 -457
  36. torchaudio/_backend/sox.py +0 -91
  37. torchaudio/_backend/utils.py +0 -317
  38. torchaudio/backend/__init__.py +0 -8
  39. torchaudio/backend/_no_backend.py +0 -25
  40. torchaudio/backend/_sox_io_backend.py +0 -294
  41. torchaudio/backend/common.py +0 -13
  42. torchaudio/backend/no_backend.py +0 -14
  43. torchaudio/backend/soundfile_backend.py +0 -14
  44. torchaudio/backend/sox_io_backend.py +0 -14
  45. torchaudio/io/__init__.py +0 -13
  46. torchaudio/io/_effector.py +0 -347
  47. torchaudio/io/_playback.py +0 -72
  48. torchaudio/kaldi_io.py +0 -144
  49. torchaudio/prototype/__init__.py +0 -0
  50. torchaudio/prototype/datasets/__init__.py +0 -4
  51. torchaudio/prototype/datasets/musan.py +0 -67
  52. torchaudio/prototype/functional/__init__.py +0 -26
  53. torchaudio/prototype/functional/_dsp.py +0 -433
  54. torchaudio/prototype/functional/_rir.py +0 -379
  55. torchaudio/prototype/functional/functional.py +0 -190
  56. torchaudio/prototype/models/__init__.py +0 -36
  57. torchaudio/prototype/models/_conformer_wav2vec2.py +0 -794
  58. torchaudio/prototype/models/_emformer_hubert.py +0 -333
  59. torchaudio/prototype/models/conv_emformer.py +0 -525
  60. torchaudio/prototype/models/hifi_gan.py +0 -336
  61. torchaudio/prototype/models/rnnt.py +0 -711
  62. torchaudio/prototype/models/rnnt_decoder.py +0 -399
  63. torchaudio/prototype/pipelines/__init__.py +0 -12
  64. torchaudio/prototype/pipelines/_vggish/__init__.py +0 -3
  65. torchaudio/prototype/pipelines/_vggish/_vggish_impl.py +0 -233
  66. torchaudio/prototype/pipelines/_vggish/_vggish_pipeline.py +0 -82
  67. torchaudio/prototype/pipelines/hifigan_pipeline.py +0 -228
  68. torchaudio/prototype/pipelines/rnnt_pipeline.py +0 -58
  69. torchaudio/prototype/transforms/__init__.py +0 -9
  70. torchaudio/prototype/transforms/_transforms.py +0 -456
  71. torchaudio/sox_effects/__init__.py +0 -10
  72. torchaudio/sox_effects/sox_effects.py +0 -272
  73. torchaudio/utils/ffmpeg_utils.py +0 -11
  74. torchaudio/utils/sox_utils.py +0 -99
  75. torchaudio-2.7.1.dist-info/RECORD +0 -144
  76. torio/__init__.py +0 -8
  77. torio/_extension/__init__.py +0 -13
  78. torio/_extension/utils.py +0 -147
  79. torio/io/__init__.py +0 -9
  80. torio/io/_streaming_media_decoder.py +0 -978
  81. torio/io/_streaming_media_encoder.py +0 -502
  82. torio/lib/__init__.py +0 -0
  83. torio/lib/_torio_ffmpeg4.pyd +0 -0
  84. torio/lib/_torio_ffmpeg5.pyd +0 -0
  85. torio/lib/_torio_ffmpeg6.pyd +0 -0
  86. torio/lib/libtorio_ffmpeg4.pyd +0 -0
  87. torio/lib/libtorio_ffmpeg5.pyd +0 -0
  88. torio/lib/libtorio_ffmpeg6.pyd +0 -0
  89. torio/utils/__init__.py +0 -4
  90. torio/utils/ffmpeg_utils.py +0 -247
  91. {torchaudio-2.7.1.dist-info → torchaudio-2.9.0.dist-info}/LICENSE +0 -0
  92. {torchaudio-2.7.1.dist-info → torchaudio-2.9.0.dist-info}/WHEEL +0 -0
@@ -1,272 +0,0 @@
1
- import os
2
- from typing import List, Optional, Tuple
3
-
4
- import torch
5
- import torchaudio
6
- from torchaudio._internal.module_utils import deprecated
7
- from torchaudio.utils.sox_utils import list_effects
8
-
9
-
10
- sox_ext = torchaudio._extension.lazy_import_sox_ext()
11
-
12
-
13
- @deprecated("Please remove the call. This function is called automatically.")
14
- def init_sox_effects():
15
- """Initialize resources required to use sox effects.
16
-
17
- Note:
18
- You do not need to call this function manually. It is called automatically.
19
-
20
- Once initialized, you do not need to call this function again across the multiple uses of
21
- sox effects though it is safe to do so as long as :func:`shutdown_sox_effects` is not called yet.
22
- Once :func:`shutdown_sox_effects` is called, you can no longer use SoX effects and initializing
23
- again will result in error.
24
- """
25
- pass
26
-
27
-
28
- @deprecated("Please remove the call. This function is called automatically.")
29
- def shutdown_sox_effects():
30
- """Clean up resources required to use sox effects.
31
-
32
- Note:
33
- You do not need to call this function manually. It is called automatically.
34
-
35
- It is safe to call this function multiple times.
36
- Once :py:func:`shutdown_sox_effects` is called, you can no longer use SoX effects and
37
- initializing again will result in error.
38
- """
39
- pass
40
-
41
-
42
- def effect_names() -> List[str]:
43
- """Gets list of valid sox effect names
44
-
45
- Returns:
46
- List[str]: list of available effect names.
47
-
48
- Example
49
- >>> torchaudio.sox_effects.effect_names()
50
- ['allpass', 'band', 'bandpass', ... ]
51
- """
52
- return list(list_effects().keys())
53
-
54
-
55
- def apply_effects_tensor(
56
- tensor: torch.Tensor,
57
- sample_rate: int,
58
- effects: List[List[str]],
59
- channels_first: bool = True,
60
- ) -> Tuple[torch.Tensor, int]:
61
- """Apply sox effects to given Tensor
62
-
63
- .. devices:: CPU
64
-
65
- .. properties:: TorchScript
66
-
67
- Note:
68
- This function only works on CPU Tensors.
69
- This function works in the way very similar to ``sox`` command, however there are slight
70
- differences. For example, ``sox`` command adds certain effects automatically (such as
71
- ``rate`` effect after ``speed`` and ``pitch`` and other effects), but this function does
72
- only applies the given effects. (Therefore, to actually apply ``speed`` effect, you also
73
- need to give ``rate`` effect with desired sampling rate.).
74
-
75
- Args:
76
- tensor (torch.Tensor): Input 2D CPU Tensor.
77
- sample_rate (int): Sample rate
78
- effects (List[List[str]]): List of effects.
79
- channels_first (bool, optional): Indicates if the input Tensor's dimension is
80
- `[channels, time]` or `[time, channels]`
81
-
82
- Returns:
83
- (Tensor, int): Resulting Tensor and sample rate.
84
- The resulting Tensor has the same ``dtype`` as the input Tensor, and
85
- the same channels order. The shape of the Tensor can be different based on the
86
- effects applied. Sample rate can also be different based on the effects applied.
87
-
88
- Example - Basic usage
89
- >>>
90
- >>> # Defines the effects to apply
91
- >>> effects = [
92
- ... ['gain', '-n'], # normalises to 0dB
93
- ... ['pitch', '5'], # 5 cent pitch shift
94
- ... ['rate', '8000'], # resample to 8000 Hz
95
- ... ]
96
- >>>
97
- >>> # Generate pseudo wave:
98
- >>> # normalized, channels first, 2ch, sampling rate 16000, 1 second
99
- >>> sample_rate = 16000
100
- >>> waveform = 2 * torch.rand([2, sample_rate * 1]) - 1
101
- >>> waveform.shape
102
- torch.Size([2, 16000])
103
- >>> waveform
104
- tensor([[ 0.3138, 0.7620, -0.9019, ..., -0.7495, -0.4935, 0.5442],
105
- [-0.0832, 0.0061, 0.8233, ..., -0.5176, -0.9140, -0.2434]])
106
- >>>
107
- >>> # Apply effects
108
- >>> waveform, sample_rate = apply_effects_tensor(
109
- ... wave_form, sample_rate, effects, channels_first=True)
110
- >>>
111
- >>> # Check the result
112
- >>> # The new waveform is sampling rate 8000, 1 second.
113
- >>> # normalization and channel order are preserved
114
- >>> waveform.shape
115
- torch.Size([2, 8000])
116
- >>> waveform
117
- tensor([[ 0.5054, -0.5518, -0.4800, ..., -0.0076, 0.0096, -0.0110],
118
- [ 0.1331, 0.0436, -0.3783, ..., -0.0035, 0.0012, 0.0008]])
119
- >>> sample_rate
120
- 8000
121
-
122
- Example - Torchscript-able transform
123
- >>>
124
- >>> # Use `apply_effects_tensor` in `torch.nn.Module` and dump it to file,
125
- >>> # then run sox effect via Torchscript runtime.
126
- >>>
127
- >>> class SoxEffectTransform(torch.nn.Module):
128
- ... effects: List[List[str]]
129
- ...
130
- ... def __init__(self, effects: List[List[str]]):
131
- ... super().__init__()
132
- ... self.effects = effects
133
- ...
134
- ... def forward(self, tensor: torch.Tensor, sample_rate: int):
135
- ... return sox_effects.apply_effects_tensor(
136
- ... tensor, sample_rate, self.effects)
137
- ...
138
- ...
139
- >>> # Create transform object
140
- >>> effects = [
141
- ... ["lowpass", "-1", "300"], # apply single-pole lowpass filter
142
- ... ["rate", "8000"], # change sample rate to 8000
143
- ... ]
144
- >>> transform = SoxEffectTensorTransform(effects, input_sample_rate)
145
- >>>
146
- >>> # Dump it to file and load
147
- >>> path = 'sox_effect.zip'
148
- >>> torch.jit.script(trans).save(path)
149
- >>> transform = torch.jit.load(path)
150
- >>>
151
- >>>> # Run transform
152
- >>> waveform, input_sample_rate = torchaudio.load("input.wav")
153
- >>> waveform, sample_rate = transform(waveform, input_sample_rate)
154
- >>> assert sample_rate == 8000
155
- """
156
- return sox_ext.apply_effects_tensor(tensor, sample_rate, effects, channels_first)
157
-
158
-
159
- def apply_effects_file(
160
- path: str,
161
- effects: List[List[str]],
162
- normalize: bool = True,
163
- channels_first: bool = True,
164
- format: Optional[str] = None,
165
- ) -> Tuple[torch.Tensor, int]:
166
- """Apply sox effects to the audio file and load the resulting data as Tensor
167
-
168
- .. devices:: CPU
169
-
170
- .. properties:: TorchScript
171
-
172
- Note:
173
- This function works in the way very similar to ``sox`` command, however there are slight
174
- differences. For example, ``sox`` commnad adds certain effects automatically (such as
175
- ``rate`` effect after ``speed``, ``pitch`` etc), but this function only applies the given
176
- effects. Therefore, to actually apply ``speed`` effect, you also need to give ``rate``
177
- effect with desired sampling rate, because internally, ``speed`` effects only alter sampling
178
- rate and leave samples untouched.
179
-
180
- Args:
181
- path (path-like object):
182
- Source of audio data.
183
- effects (List[List[str]]): List of effects.
184
- normalize (bool, optional):
185
- When ``True``, this function converts the native sample type to ``float32``.
186
- Default: ``True``.
187
-
188
- If input file is integer WAV, giving ``False`` will change the resulting Tensor type to
189
- integer type.
190
- This argument has no effect for formats other than integer WAV type.
191
-
192
- channels_first (bool, optional): When True, the returned Tensor has dimension `[channel, time]`.
193
- Otherwise, the returned Tensor's dimension is `[time, channel]`.
194
- format (str or None, optional):
195
- Override the format detection with the given format.
196
- Providing the argument might help when libsox can not infer the format
197
- from header or extension,
198
-
199
- Returns:
200
- (Tensor, int): Resulting Tensor and sample rate.
201
- If ``normalize=True``, the resulting Tensor is always ``float32`` type.
202
- If ``normalize=False`` and the input audio file is of integer WAV file, then the
203
- resulting Tensor has corresponding integer type. (Note 24 bit integer type is not supported)
204
- If ``channels_first=True``, the resulting Tensor has dimension `[channel, time]`,
205
- otherwise `[time, channel]`.
206
-
207
- Example - Basic usage
208
- >>>
209
- >>> # Defines the effects to apply
210
- >>> effects = [
211
- ... ['gain', '-n'], # normalises to 0dB
212
- ... ['pitch', '5'], # 5 cent pitch shift
213
- ... ['rate', '8000'], # resample to 8000 Hz
214
- ... ]
215
- >>>
216
- >>> # Apply effects and load data with channels_first=True
217
- >>> waveform, sample_rate = apply_effects_file("data.wav", effects, channels_first=True)
218
- >>>
219
- >>> # Check the result
220
- >>> waveform.shape
221
- torch.Size([2, 8000])
222
- >>> waveform
223
- tensor([[ 5.1151e-03, 1.8073e-02, 2.2188e-02, ..., 1.0431e-07,
224
- -1.4761e-07, 1.8114e-07],
225
- [-2.6924e-03, 2.1860e-03, 1.0650e-02, ..., 6.4122e-07,
226
- -5.6159e-07, 4.8103e-07]])
227
- >>> sample_rate
228
- 8000
229
-
230
- Example - Apply random speed perturbation to dataset
231
- >>>
232
- >>> # Load data from file, apply random speed perturbation
233
- >>> class RandomPerturbationFile(torch.utils.data.Dataset):
234
- ... \"\"\"Given flist, apply random speed perturbation
235
- ...
236
- ... Suppose all the input files are at least one second long.
237
- ... \"\"\"
238
- ... def __init__(self, flist: List[str], sample_rate: int):
239
- ... super().__init__()
240
- ... self.flist = flist
241
- ... self.sample_rate = sample_rate
242
- ...
243
- ... def __getitem__(self, index):
244
- ... speed = 0.5 + 1.5 * random.randn()
245
- ... effects = [
246
- ... ['gain', '-n', '-10'], # apply 10 db attenuation
247
- ... ['remix', '-'], # merge all the channels
248
- ... ['speed', f'{speed:.5f}'], # duration is now 0.5 ~ 2.0 seconds.
249
- ... ['rate', f'{self.sample_rate}'],
250
- ... ['pad', '0', '1.5'], # add 1.5 seconds silence at the end
251
- ... ['trim', '0', '2'], # get the first 2 seconds
252
- ... ]
253
- ... waveform, _ = torchaudio.sox_effects.apply_effects_file(
254
- ... self.flist[index], effects)
255
- ... return waveform
256
- ...
257
- ... def __len__(self):
258
- ... return len(self.flist)
259
- ...
260
- >>> dataset = RandomPerturbationFile(file_list, sample_rate=8000)
261
- >>> loader = torch.utils.data.DataLoader(dataset, batch_size=32)
262
- >>> for batch in loader:
263
- >>> pass
264
- """
265
- if not torch.jit.is_scripting():
266
- if hasattr(path, "read"):
267
- raise RuntimeError(
268
- "apply_effects_file function does not support file-like object. "
269
- "Please use torchaudio.io.AudioEffector."
270
- )
271
- path = os.fspath(path)
272
- return sox_ext.apply_effects_file(path, effects, normalize, channels_first, format)
@@ -1,11 +0,0 @@
1
- """Module to change the configuration of FFmpeg libraries (such as libavformat).
2
-
3
- It affects functionalities in :py:mod:`torchaudio.io` (and indirectly :py:func:`torchaudio.load`).
4
- """
5
-
6
-
7
- # This file is just for BC.
8
- def __getattr__(item):
9
- from torio.utils import ffmpeg_utils
10
-
11
- return getattr(ffmpeg_utils, item)
@@ -1,99 +0,0 @@
1
- """Module to change the configuration of libsox, which is used by I/O functions like
2
- :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`.
3
- """
4
-
5
- from typing import Dict, List
6
-
7
- import torchaudio
8
-
9
- sox_ext = torchaudio._extension.lazy_import_sox_ext()
10
-
11
-
12
- def set_seed(seed: int):
13
- """Set libsox's PRNG
14
-
15
- Args:
16
- seed (int): seed value. valid range is int32.
17
-
18
- See Also:
19
- http://sox.sourceforge.net/sox.html
20
- """
21
- sox_ext.set_seed(seed)
22
-
23
-
24
- def set_verbosity(verbosity: int):
25
- """Set libsox's verbosity
26
-
27
- Args:
28
- verbosity (int): Set verbosity level of libsox.
29
-
30
- * ``1`` failure messages
31
- * ``2`` warnings
32
- * ``3`` details of processing
33
- * ``4``-``6`` increasing levels of debug messages
34
-
35
- See Also:
36
- http://sox.sourceforge.net/sox.html
37
- """
38
- sox_ext.set_verbosity(verbosity)
39
-
40
-
41
- def set_buffer_size(buffer_size: int):
42
- """Set buffer size for sox effect chain
43
-
44
- Args:
45
- buffer_size (int): Set the size in bytes of the buffers used for processing audio.
46
-
47
- See Also:
48
- http://sox.sourceforge.net/sox.html
49
- """
50
- sox_ext.set_buffer_size(buffer_size)
51
-
52
-
53
- def set_use_threads(use_threads: bool):
54
- """Set multithread option for sox effect chain
55
-
56
- Args:
57
- use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing.
58
- To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support.
59
-
60
- See Also:
61
- http://sox.sourceforge.net/sox.html
62
- """
63
- sox_ext.set_use_threads(use_threads)
64
-
65
-
66
- def list_effects() -> Dict[str, str]:
67
- """List the available sox effect names
68
-
69
- Returns:
70
- Dict[str, str]: Mapping from ``effect name`` to ``usage``
71
- """
72
- return dict(sox_ext.list_effects())
73
-
74
-
75
- def list_read_formats() -> List[str]:
76
- """List the supported audio formats for read
77
-
78
- Returns:
79
- List[str]: List of supported audio formats
80
- """
81
- return sox_ext.list_read_formats()
82
-
83
-
84
- def list_write_formats() -> List[str]:
85
- """List the supported audio formats for write
86
-
87
- Returns:
88
- List[str]: List of supported audio formats
89
- """
90
- return sox_ext.list_write_formats()
91
-
92
-
93
- def get_buffer_size() -> int:
94
- """Get buffer size for sox effect chain
95
-
96
- Returns:
97
- int: size in bytes of buffers used for processing audio.
98
- """
99
- return sox_ext.get_buffer_size()
@@ -1,144 +0,0 @@
1
- torchaudio/__init__.py,sha256=kUWnkwcKERMj7m-B4E826aGZWGa5sJs1DEpLP6LZoEs,945
2
- torchaudio/kaldi_io.py,sha256=acwysr6fASV9IcOTF0AbVPCo_VQTu1M2AOn1SXm3GPE,5217
3
- torchaudio/version.py,sha256=k47FV9vHG24f5CRahIwpcieIlJn6Zjqa6xF-A9kxwU0,85
4
- torchaudio/_backend/__init__.py,sha256=2bMTZ3tG2_5nvnqAAmvEnGBInO5a9DdUPNoyXEnX1M0,1692
5
- torchaudio/_backend/backend.py,sha256=CakqB9z_4ZtLsQTyMZbEbB0kTqpUe_gidHgObv9acyQ,1618
6
- torchaudio/_backend/common.py,sha256=h9R29RTTW2lqOiKYByETXfXWsrTH65uHxGDKw3bWj-s,1835
7
- torchaudio/_backend/ffmpeg.py,sha256=b6dr67sWg47uFJxIyWLXCtrdPMlgjYdWmj7n919Ph1M,11628
8
- torchaudio/_backend/soundfile.py,sha256=Dd-K6Tg_G3ze08hImvnAsO5lpAERpmUd9oxkNsGJUno,1757
9
- torchaudio/_backend/soundfile_backend.py,sha256=sVSEM2On6PMY7AbPqpfvE1u1Bg2_0aiSrZ4TclAFi_w,17833
10
- torchaudio/_backend/sox.py,sha256=UGF352HA_5kXebHEdxOlvyNgruYacxDkeJy4ErggRhI,3451
11
- torchaudio/_backend/utils.py,sha256=8HkmV_GCHZhD-XaKNQ60nGFsu7rVgr1SOhasN6v91aI,13616
12
- torchaudio/_extension/__init__.py,sha256=s6AzXocDcuh0mtYVUCOOjZ_mCmSCno8jbZN750YI-Ps,2276
13
- torchaudio/_extension/utils.py,sha256=wFDF8B6Q22UL3zyX8swZ-JjlDgm9-VdjeraslQr2yIY,6438
14
- torchaudio/_internal/__init__.py,sha256=80cpJfTS8977YYrU3q5p4DRAGAkqEJrmG9Lq2hEDpoo,251
15
- torchaudio/_internal/module_utils.py,sha256=d0Gf_DhaA-fEtxKHjWhDwYrBsH6CCk41eUi_9THhQ9k,3675
16
- torchaudio/backend/__init__.py,sha256=ckKT_tmcmc_Z43ZTlqJ39fwUbmv-j-mAP2BWp0sU4Tg,289
17
- torchaudio/backend/_no_backend.py,sha256=CEpYJ0bZi937Z0q2JHdRVnDKd7HWlCUVR7rEVHE_xmE,782
18
- torchaudio/backend/_sox_io_backend.py,sha256=Ut3-QaqzaJ0MvNc7NdpMTST7_mZy1xSixGbDC7418Qk,11750
19
- torchaudio/backend/common.py,sha256=mn0l6GBwet7DvRQPURhYIHF-HrQFvEFVKM23PawfbH8,456
20
- torchaudio/backend/no_backend.py,sha256=xc-k0kqzYOEM6dvcIwiMDEaLutKrYXXCsCXF1IVFNHM,483
21
- torchaudio/backend/soundfile_backend.py,sha256=NFHAQcz8kwlgI7qIG1bYrbgzsjtDCkNn_Gmip6vBL6g,513
22
- torchaudio/backend/sox_io_backend.py,sha256=_DD1_6y4eV4MsIl2Clcxnq96k_EXT0XMu5p2Z61gnEs,491
23
- torchaudio/compliance/__init__.py,sha256=JNH_-dTQVmm55YwcVMuVvUYFWdXhGn4C__9S8IUsNoU,53
24
- torchaudio/compliance/kaldi.py,sha256=bS7qJgS3k8FK1RkMiNEoP3q0xhjeV_V4RHQ9jo_rqOM,37479
25
- torchaudio/datasets/__init__.py,sha256=hdHldm3OzoQLbI0kHj8tLxqwDhzMfedq0_t1kAK7ORg,1218
26
- torchaudio/datasets/cmuarctic.py,sha256=xEHBtO8oh5ub8VbLa1qcL-meFhYeg4EQpMUdiGaelGA,7254
27
- torchaudio/datasets/cmudict.py,sha256=_9vTz7_8BFVrcHeA61_-h2XLOl6IsdWCptkMWziOW7U,6176
28
- torchaudio/datasets/commonvoice.py,sha256=OcFn-nG4YfBIz0YIpH91xH9rFka8yFJmrxy4vFZkC4I,2849
29
- torchaudio/datasets/dr_vctk.py,sha256=Ayf85prDNr1LcWQ4bysVWdRVPry2JALjv6Mtq-6iBpY,4498
30
- torchaudio/datasets/fluentcommands.py,sha256=KnmH1Y28k5PhqQX6eV-75MqwTRxiHSUUcvAsa-K954s,3353
31
- torchaudio/datasets/gtzan.py,sha256=kt25Ly9qDGuiiVXgsXhS05tGi6laRhRko81-BQ4sZ-w,25475
32
- torchaudio/datasets/iemocap.py,sha256=ZMMG_FpcWcMHEbhuRYRQaUWi_DoegjxCrnVyCg5EEVE,5077
33
- torchaudio/datasets/librilight_limited.py,sha256=iwZBlSKVLrXzhZvaqjuVRGO6czxX4fpdzd8wWe5feWQ,4290
34
- torchaudio/datasets/librimix.py,sha256=AncE671AOl04dRPsajNZW-ZxxI_PwA2sjBftdBg4Q-k,5249
35
- torchaudio/datasets/librispeech.py,sha256=ys769I0UzG07UEmyZ_KDwATh4yc08hFUuCayK8tYIGg,6482
36
- torchaudio/datasets/librispeech_biasing.py,sha256=KEGplRU_wpgb0VqrT-t42kvtC7lg4uMssZcosVvvPhg,7147
37
- torchaudio/datasets/libritts.py,sha256=91Ep2Mq3OySre25GniXBLmRzTwEPiKmMaqXnzirn0xY,6038
38
- torchaudio/datasets/ljspeech.py,sha256=l09BSBQH76I-LhYkIRF0u18tTi-4yysaF4gj2GSZaxw,3601
39
- torchaudio/datasets/musdb_hq.py,sha256=FVlKsGEBHiT50y9GLswnt2QFph2PjiI6yCy1MxiG6f8,5214
40
- torchaudio/datasets/quesst14.py,sha256=3y6H3T3g78jkDqca8jORQBOViZhH1RhlsfuY8HJ2OcU,4591
41
- torchaudio/datasets/snips.py,sha256=mwVc5KsbMlPQJ87eyYgjnQ5S4EFXoQvm13dO0rXpJuE,5165
42
- torchaudio/datasets/speechcommands.py,sha256=_wmrKSiEe0COO7uk0JVXypBmNxu0urnceHuFQ6zMOk0,7664
43
- torchaudio/datasets/tedlium.py,sha256=UQZUaeUqmFntZWcH9HXOpGeW6tsCcG81bPjX2_CWxbg,8916
44
- torchaudio/datasets/utils.py,sha256=m-sBYgQb0JxgGVfsVpekKFDI_7PGXCTma6N2ymfJl0g,1743
45
- torchaudio/datasets/vctk.py,sha256=vN_VzxTLyHW11I_rzfzMVA3h5JW917FaU3NCnR-zcL0,5842
46
- torchaudio/datasets/voxceleb1.py,sha256=JlYkbyYOAFUFhGLULe3lgucANWf_G7qGqw47YjiX2IM,12034
47
- torchaudio/datasets/yesno.py,sha256=B3hRNUazvB8V8SwOUlQzliB9vI9gMkl9SEl-dZ4PEaw,3115
48
- torchaudio/functional/__init__.py,sha256=NwlPoWjNravX4itCZy-dzN-BkCFdDHFRwvPle8JjBRo,2484
49
- torchaudio/functional/_alignment.py,sha256=46GhuEYUqI1gE-2UKSu9BIQF1QpZ5yunUS8JZGZJuss,4823
50
- torchaudio/functional/filtering.py,sha256=6_Xz-aT8JyVf4n-aos63eNstvNHookSVlGL_NfEXWsg,63312
51
- torchaudio/functional/functional.py,sha256=qjdU3kILy69-jQL3lQ2EO1y_dpLDif_jAp99hBRJnPo,98541
52
- torchaudio/io/__init__.py,sha256=5U3MlGVGw5vPTZqCZ-7N25oVfwssA6KUtluj-9rNRMM,310
53
- torchaudio/io/_effector.py,sha256=5Kh7br-ZuLzmoRSVXk5JNQ8NkwcGUiY_mrt7d_1W1eg,12217
54
- torchaudio/io/_playback.py,sha256=UpPb-m35XUlYL2lybQGXAJAvfmUPT_Kqx4jpYArIAz0,2393
55
- torchaudio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- torchaudio/lib/_torchaudio.pyd,sha256=uIJ01hlQi43jKb0pLJUAzqDLJfUwgHob1B1IvuAxV58,765952
57
- torchaudio/lib/libtorchaudio.pyd,sha256=3mKUglB2dGT88003m6Rly3L1qQAz6TovLb54IbnOK9g,1733632
58
- torchaudio/models/__init__.py,sha256=Gi3UQvxjwTLW9wfKlF42O3Vup70d0bk2x-rZS89ASwI,2080
59
- torchaudio/models/_hdemucs.py,sha256=ipAj7965PO_WEZqQwW1om9gQj90UhQOeU6HU3Lpvzwo,39250
60
- torchaudio/models/conformer.py,sha256=gVrOYeJkPlVaX-4eZpVzNUe_r3k7g1Y6NaaQ8JZP-r4,10361
61
- torchaudio/models/conv_tasnet.py,sha256=D7Y10sOzLe03gygfN1J5R73SIHkIGVQOkqKQ6Ni3o_s,12870
62
- torchaudio/models/deepspeech.py,sha256=nVYc2xwWpFO6gu5CR0mbqLiAzJn8lAfHcdcP92i22mo,2830
63
- torchaudio/models/emformer.py,sha256=WbaeZcrPFOOLn4igqweE0AfuF_SQZpqg7XPGEhl7C8c,38650
64
- torchaudio/models/rnnt.py,sha256=PNJpZd3vH6wRq8TEf4UlPtVHbte9wOJ-bRMEug6gp08,36357
65
- torchaudio/models/rnnt_decoder.py,sha256=CBBMZhhq5Bgax0_3p3SZD-Os3S1LFHB91oTgVED4bmY,13178
66
- torchaudio/models/tacotron2.py,sha256=mZ5lLSa75oqc0hgkc3sIm5_gK-knhtgX3dmg9-oLQao,46960
67
- torchaudio/models/wav2letter.py,sha256=oetxpH5RG0TadYB75IOmYOrnraaPvSlcSNpRZb2FE_A,3350
68
- torchaudio/models/wavernn.py,sha256=LRgL36jA6WzI1PAzBY6P52oCMGSTOraXB8fEgkwpSxw,15855
69
- torchaudio/models/decoder/__init__.py,sha256=WMh4udN8CGF-SvgN6JBXSNMjhZqm1et7FyMrsk6V6RM,1252
70
- torchaudio/models/decoder/_ctc_decoder.py,sha256=woyUaDCuaMQqPTQ7uLuc99lxMAOsJj5AxWwS9hf6JNY,20650
71
- torchaudio/models/decoder/_cuda_ctc_decoder.py,sha256=BZCjAdZ50umWW171nJYHy24YZ5CxM8a2JfMIeO4S3BM,7373
72
- torchaudio/models/squim/__init__.py,sha256=eQox8kPviOthKulpzZvPK0a66NHW7MzYE4aOF7va_kU,357
73
- torchaudio/models/squim/objective.py,sha256=0Dsio0cQ_NBHg7t0YFbBamyiWPpocfaErddnBttu8b0,12615
74
- torchaudio/models/squim/subjective.py,sha256=1_gK9O3nvrjiikpP46IdsMzKduSTt91kKklA69wQqiw,5947
75
- torchaudio/models/wav2vec2/__init__.py,sha256=j5FdQFfuIpdIKYwoMLop4Ba70GGoS-lK61tU-oNG5wg,972
76
- torchaudio/models/wav2vec2/components.py,sha256=EzmuGc5qHVPrHCGqYVHTvdjqP2gCrBfnHSoTK9GsZ1w,48244
77
- torchaudio/models/wav2vec2/model.py,sha256=kP6QKsF1PjleyUMhaPjydi0pCRy4GGUArRWBzfDJmdE,61671
78
- torchaudio/models/wav2vec2/wavlm_attention.py,sha256=iYde9grsb_RaEs87FI5ykyN3z0Ix1plqpsMNvakAiWM,11058
79
- torchaudio/models/wav2vec2/utils/__init__.py,sha256=1eowaOEKRbp7JajFNv_r47REJqnMmXidukS7Mrwp_5Q,188
80
- torchaudio/models/wav2vec2/utils/import_fairseq.py,sha256=so7T-otDNCsTUtzJRUFFGWyd0caWl3RY_UbFMxJ4DJE,9411
81
- torchaudio/models/wav2vec2/utils/import_huggingface.py,sha256=NMK6YrAIDfOw8j1tV-3XTwx_mwbJHvg8ldTrAWRztIM,6080
82
- torchaudio/pipelines/__init__.py,sha256=oMwOu-1T_ugJmhdaoI5NrCDrUAGrpDOlJQO8h-bLAW4,2847
83
- torchaudio/pipelines/_source_separation_pipeline.py,sha256=WAjiWSlk73VS985GpKweDAfk2aKwQWI6jnGNwYHiRi8,4333
84
- torchaudio/pipelines/_squim_pipeline.py,sha256=Pumv9jYoJ5mjOeauyuK7RmE8j3iVFP4VuMmvz6UqM3I,6436
85
- torchaudio/pipelines/rnnt_pipeline.py,sha256=S0DLMPbt-lqNBWOcjG5KP2IfU1X_oTv95CVmSjxYJ2g,14129
86
- torchaudio/pipelines/_tts/__init__.py,sha256=WKc5c06b_M9MvEohJZghJJWAL7vXvfwRIkdy85UCh04,442
87
- torchaudio/pipelines/_tts/impl.py,sha256=wwrTyTEEkew22AnzB_ZklapGaAstJSUBawhA7bOcGXM,15759
88
- torchaudio/pipelines/_tts/interface.py,sha256=y1mU0446Vy2hHpCwMqRZt1UI4ZXl-C4tJp92EylwHh0,10479
89
- torchaudio/pipelines/_tts/utils.py,sha256=ZqqD-TXI6zkKvYtdAHlZikKlpEO00otvOKJTTjXFOGI,4844
90
- torchaudio/pipelines/_wav2vec2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
91
- torchaudio/pipelines/_wav2vec2/aligner.py,sha256=HOcthFgup97QMx9ZXCmkv6jdw_zxdRT-e_SilXEujNU,2796
92
- torchaudio/pipelines/_wav2vec2/impl.py,sha256=I6htNo4Wt5LPxX9Z8rmxarFE8BZOZBUFIU9T9k1k2Po,67260
93
- torchaudio/pipelines/_wav2vec2/utils.py,sha256=CVawfXmVGWY8mj-_6r4KO907BpF67WAVWHEHhycFIaM,7317
94
- torchaudio/prototype/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
95
- torchaudio/prototype/datasets/__init__.py,sha256=l2k9V6ujGOiiPUXtJqMT0sao0zIUqKOg-243PAVs7NM,51
96
- torchaudio/prototype/datasets/musan.py,sha256=eNwoPahmHFqdllmFY10D5L6ko6ZjHQI9ZdvJJ8b6vDU,2163
97
- torchaudio/prototype/functional/__init__.py,sha256=C5uPqrnwc_VJ9ajJpudsBAmxt6-RKrHirIJa3RHLlfs,588
98
- torchaudio/prototype/functional/_dsp.py,sha256=8mjlYBWIcqDidflvvZYtUI1Icx5hEBkyQE4XErDcHKw,17071
99
- torchaudio/prototype/functional/_rir.py,sha256=56To55TZ9J8zTXmGEb3N14df6ADpuXAWfdfxRCe8OEA,17634
100
- torchaudio/prototype/functional/functional.py,sha256=1alp81YX8x9DHBrIHz5RgxYrW-DEvPI59Io9p19kb64,6654
101
- torchaudio/prototype/models/__init__.py,sha256=Yuebowh-ukX2wxlU-rGc00BVjgChr_8Wf43wpTXTLus,1290
102
- torchaudio/prototype/models/_conformer_wav2vec2.py,sha256=9Je5xp87iTzD86xUQ3h4cs0XXQYp-NLAC-tHgdiljjo,30316
103
- torchaudio/prototype/models/_emformer_hubert.py,sha256=Uz_hKOOzK8ul5rpBx__15_oy_pklocl8SvRgmjTg7hI,13831
104
- torchaudio/prototype/models/conv_emformer.py,sha256=txtyonaqdXG6fli91WN1mkAc6SFFzUZ3fFcY713P5VM,23601
105
- torchaudio/prototype/models/hifi_gan.py,sha256=X8mN04yQpzbOKxKmE98nFimltOOKp4FmtT2Ipxc4N3k,12816
106
- torchaudio/prototype/models/rnnt.py,sha256=3-O5pYW35ffEG8KwCVDQfhGp-Kj0OsP4wjzdTkdQEzo,31570
107
- torchaudio/prototype/models/rnnt_decoder.py,sha256=CO8yo1OsIi0EQSn3GRTysPoUzQN-aiNWyrrv_86rzc4,16134
108
- torchaudio/prototype/pipelines/__init__.py,sha256=6x8q20JhZrPYx-GtJpLzeqetS0U6xBt70Qn6ctGpuUE,394
109
- torchaudio/prototype/pipelines/hifigan_pipeline.py,sha256=-HcU3w5AcCEcjVeXpIddVLJmeu52psCO4oTIOgw50WA,9882
110
- torchaudio/prototype/pipelines/rnnt_pipeline.py,sha256=6zeezoHIPo-9Sc0B19cFoJrQMybmDP1MDoUZzMFheOo,2242
111
- torchaudio/prototype/pipelines/_vggish/__init__.py,sha256=pkGI6k0g21XZYg6H80RO6EavTOFBNUyQkFOanr8cwtY,92
112
- torchaudio/prototype/pipelines/_vggish/_vggish_impl.py,sha256=2elMGpd6-RCFLBS4WkEQSErGWVNK6iFTNMz95PpTIZ4,8730
113
- torchaudio/prototype/pipelines/_vggish/_vggish_pipeline.py,sha256=Gssicwkm7Wffnk1xUUoFPSUm9_5Na0J3MZAS5OdYfGo,2795
114
- torchaudio/prototype/transforms/__init__.py,sha256=a-LNmupvUQvpo3CrTvqXudgY8G6cRGI1zy6j9oWST_o,234
115
- torchaudio/prototype/transforms/_transforms.py,sha256=DSktWkL7elGrNrNWCzZ0kaB7DNZmpX0gu_8kTJzXkf8,19600
116
- torchaudio/sox_effects/__init__.py,sha256=NVN6rAkHxizmOsZgLnxjMX5qXcPkABzLE-hvTMaSbEw,272
117
- torchaudio/sox_effects/sox_effects.py,sha256=1K7Ngy5E1i1keSMiX0GJZbVh6n8ONH7TCb_606vqBxg,11253
118
- torchaudio/transforms/__init__.py,sha256=GYkPl29GcVu_QzUfnlw1QnfNsqiqgjtn1ZmfhAAMACo,1345
119
- torchaudio/transforms/_multi_channel.py,sha256=Musw7dTu25HNjKeIcKHUDuqBmj_GC2e3TaakqJcffW8,22688
120
- torchaudio/transforms/_transforms.py,sha256=YFbbZ8nV1fBR0EGiNS3GOtFM-rLkyDUpXdPh8zNab40,89009
121
- torchaudio/utils/__init__.py,sha256=h4Jvrb4vzdxzgJqgzA-TOUqLSZ2mRVALERR8am7BlvQ,185
122
- torchaudio/utils/download.py,sha256=QlO5md3u0bUBFTWjZpSBMaMeeqgZKm9LmwzdB5Ip7_c,2971
123
- torchaudio/utils/ffmpeg_utils.py,sha256=1r5cdbhz9ZCY5jW-5_gQ5G360a2fEwd--GBFMq_TxVk,330
124
- torchaudio/utils/sox_utils.py,sha256=Wpu9cEL3EcsovNnWKWIcosRSA_LmP1XqbZ7_9ti5imI,2520
125
- torio/__init__.py,sha256=6Rz28GL44aSOszXJewvjdcm8Fp47TgphNMPtsIBd2aE,119
126
- torio/_extension/__init__.py,sha256=9GnFiLWPCViTbUUNio9At1M0ALGqKtZ9lFOuPUn1Sc8,326
127
- torio/_extension/utils.py,sha256=ppIGBFk868z7QbfSjawHUkSO3yZ7ML2jHFgE-j6GymI,5051
128
- torio/io/__init__.py,sha256=GSt-4DRzgiuVmNN3WwjDAMACztJidmEP5ghVOlW6OQI,235
129
- torio/io/_streaming_media_decoder.py,sha256=dx0K8PD2PZY7yRY1G_As-_8-LyQDLdYfRZPW1kmrJg0,35354
130
- torio/io/_streaming_media_encoder.py,sha256=C4zIasotf7GlkQqtRK3vMCt2aN6FkG6NK2KUw0ZdHHo,20224
131
- torio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
132
- torio/lib/_torio_ffmpeg4.pyd,sha256=f_2xfld4ScGgjmKZFFHiAm8iMLEY7FIcw3aR_CFN6Lc,1812992
133
- torio/lib/_torio_ffmpeg5.pyd,sha256=YUOG5wZk79z6ipNa8cazzMJEQRXQC1Z2VA_ojq71LX4,1812992
134
- torio/lib/_torio_ffmpeg6.pyd,sha256=ao6g8PGjgapEVSwGGUqdbJI6mbx3dx3zckJ-RvRJ9d4,1812992
135
- torio/lib/libtorio_ffmpeg4.pyd,sha256=jbWkvRSjzYZBylNqTwBnIW8oNvSWR2me-4YvW-M_Oqo,958464
136
- torio/lib/libtorio_ffmpeg5.pyd,sha256=fmkkLGjuMfn73VrdI58pyvfH2KIWP_UWvLIk-wqOj9s,958464
137
- torio/lib/libtorio_ffmpeg6.pyd,sha256=qT4czRErKy6nWiJzVgFa3B64NovZpvWldNclWWfaXhI,958464
138
- torio/utils/__init__.py,sha256=uQV58SlyikUr6yF4HITASCvuX-_fnzbeDxFRzFucQE4,60
139
- torio/utils/ffmpeg_utils.py,sha256=2-7XS7CEZB0-M9-Ls5Tki4v7aXGJiVg7WouAUZjt3XI,8273
140
- torchaudio-2.7.1.dist-info/LICENSE,sha256=MmOOF5kxv-VR6r9nsOZ6E7SD4Wa1jdcmNjSrf4nzlvU,1363
141
- torchaudio-2.7.1.dist-info/METADATA,sha256=UXBCE4nf6ZEjxf0OxJKSw4GZakqUC85nAkXmsBSWXGU,6401
142
- torchaudio-2.7.1.dist-info/WHEEL,sha256=zTUm9EcnLPhoh5JJi6dtAMNB3fpxN5e25DClaOiiBcE,102
143
- torchaudio-2.7.1.dist-info/top_level.txt,sha256=GT0MktEbHKoLnvd-6ii7_dhJVvshupOujk840BcHU4U,17
144
- torchaudio-2.7.1.dist-info/RECORD,,
torio/__init__.py DELETED
@@ -1,8 +0,0 @@
1
- from . import _extension # noqa # usort: skip
2
- from . import io, utils
3
-
4
-
5
- __all__ = [
6
- "io",
7
- "utils",
8
- ]
@@ -1,13 +0,0 @@
1
- from .utils import _init_ffmpeg, _LazyImporter
2
-
3
-
4
- _FFMPEG_EXT = None
5
-
6
-
7
- def lazy_import_ffmpeg_ext():
8
- """Load FFmpeg integration based on availability in lazy manner"""
9
-
10
- global _FFMPEG_EXT
11
- if _FFMPEG_EXT is None:
12
- _FFMPEG_EXT = _LazyImporter("_torio_ffmpeg", _init_ffmpeg)
13
- return _FFMPEG_EXT