torchaudio 2.0.2__cp310-cp310-manylinux2014_aarch64.whl → 2.1.1__cp310-cp310-manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchaudio might be problematic. Click here for more details.

Files changed (90) hide show
  1. torchaudio/__init__.py +22 -3
  2. torchaudio/_backend/__init__.py +55 -4
  3. torchaudio/_backend/backend.py +53 -0
  4. torchaudio/_backend/common.py +52 -0
  5. torchaudio/_backend/ffmpeg.py +373 -0
  6. torchaudio/_backend/soundfile.py +54 -0
  7. torchaudio/_backend/soundfile_backend.py +457 -0
  8. torchaudio/_backend/sox.py +91 -0
  9. torchaudio/_backend/utils.py +81 -323
  10. torchaudio/_extension/__init__.py +55 -36
  11. torchaudio/_extension/utils.py +109 -17
  12. torchaudio/_internal/__init__.py +4 -1
  13. torchaudio/_internal/module_utils.py +37 -6
  14. torchaudio/backend/__init__.py +7 -11
  15. torchaudio/backend/_no_backend.py +24 -0
  16. torchaudio/backend/_sox_io_backend.py +297 -0
  17. torchaudio/backend/common.py +12 -52
  18. torchaudio/backend/no_backend.py +11 -21
  19. torchaudio/backend/soundfile_backend.py +11 -448
  20. torchaudio/backend/sox_io_backend.py +11 -435
  21. torchaudio/backend/utils.py +9 -18
  22. torchaudio/datasets/__init__.py +2 -0
  23. torchaudio/datasets/cmuarctic.py +1 -1
  24. torchaudio/datasets/cmudict.py +61 -62
  25. torchaudio/datasets/dr_vctk.py +1 -1
  26. torchaudio/datasets/gtzan.py +1 -1
  27. torchaudio/datasets/librilight_limited.py +1 -1
  28. torchaudio/datasets/librispeech.py +1 -1
  29. torchaudio/datasets/librispeech_biasing.py +189 -0
  30. torchaudio/datasets/libritts.py +1 -1
  31. torchaudio/datasets/ljspeech.py +1 -1
  32. torchaudio/datasets/musdb_hq.py +1 -1
  33. torchaudio/datasets/quesst14.py +1 -1
  34. torchaudio/datasets/speechcommands.py +1 -1
  35. torchaudio/datasets/tedlium.py +1 -1
  36. torchaudio/datasets/vctk.py +1 -1
  37. torchaudio/datasets/voxceleb1.py +1 -1
  38. torchaudio/datasets/yesno.py +1 -1
  39. torchaudio/functional/__init__.py +6 -2
  40. torchaudio/functional/_alignment.py +128 -0
  41. torchaudio/functional/filtering.py +69 -92
  42. torchaudio/functional/functional.py +99 -148
  43. torchaudio/io/__init__.py +4 -1
  44. torchaudio/io/_effector.py +347 -0
  45. torchaudio/io/_stream_reader.py +158 -90
  46. torchaudio/io/_stream_writer.py +196 -10
  47. torchaudio/lib/_torchaudio.so +0 -0
  48. torchaudio/lib/_torchaudio_ffmpeg4.so +0 -0
  49. torchaudio/lib/_torchaudio_ffmpeg5.so +0 -0
  50. torchaudio/lib/_torchaudio_ffmpeg6.so +0 -0
  51. torchaudio/lib/_torchaudio_sox.so +0 -0
  52. torchaudio/lib/libtorchaudio.so +0 -0
  53. torchaudio/lib/libtorchaudio_ffmpeg4.so +0 -0
  54. torchaudio/lib/libtorchaudio_ffmpeg5.so +0 -0
  55. torchaudio/lib/libtorchaudio_ffmpeg6.so +0 -0
  56. torchaudio/lib/libtorchaudio_sox.so +0 -0
  57. torchaudio/models/__init__.py +14 -0
  58. torchaudio/models/decoder/__init__.py +22 -7
  59. torchaudio/models/decoder/_ctc_decoder.py +123 -69
  60. torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
  61. torchaudio/models/rnnt_decoder.py +10 -14
  62. torchaudio/models/squim/__init__.py +11 -0
  63. torchaudio/models/squim/objective.py +326 -0
  64. torchaudio/models/squim/subjective.py +150 -0
  65. torchaudio/models/wav2vec2/components.py +6 -10
  66. torchaudio/pipelines/__init__.py +9 -0
  67. torchaudio/pipelines/_squim_pipeline.py +176 -0
  68. torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
  69. torchaudio/pipelines/_wav2vec2/impl.py +198 -68
  70. torchaudio/pipelines/_wav2vec2/utils.py +120 -0
  71. torchaudio/sox_effects/sox_effects.py +7 -30
  72. torchaudio/transforms/__init__.py +2 -0
  73. torchaudio/transforms/_transforms.py +99 -54
  74. torchaudio/utils/download.py +2 -2
  75. torchaudio/utils/ffmpeg_utils.py +20 -15
  76. torchaudio/utils/sox_utils.py +8 -9
  77. torchaudio/version.py +2 -2
  78. torchaudio-2.1.1.dist-info/METADATA +113 -0
  79. torchaudio-2.1.1.dist-info/RECORD +117 -0
  80. {torchaudio-2.0.2.dist-info → torchaudio-2.1.1.dist-info}/WHEEL +1 -1
  81. torchaudio/io/_compat.py +0 -241
  82. torchaudio/lib/_torchaudio_ffmpeg.so +0 -0
  83. torchaudio/lib/flashlight_lib_text_decoder.so +0 -0
  84. torchaudio/lib/flashlight_lib_text_dictionary.so +0 -0
  85. torchaudio/lib/libflashlight-text.so +0 -0
  86. torchaudio/lib/libtorchaudio_ffmpeg.so +0 -0
  87. torchaudio-2.0.2.dist-info/METADATA +0 -26
  88. torchaudio-2.0.2.dist-info/RECORD +0 -100
  89. {torchaudio-2.0.2.dist-info → torchaudio-2.1.1.dist-info}/LICENSE +0 -0
  90. {torchaudio-2.0.2.dist-info → torchaudio-2.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,347 @@
1
+ import io
2
+ from typing import Iterator, List, Optional
3
+
4
+ import torch
5
+ from torch import Tensor
6
+
7
+ from ._stream_reader import _get_afilter_desc, StreamReader
8
+ from ._stream_writer import CodecConfig, StreamWriter
9
+
10
+
11
+ class _StreamingIOBuffer:
12
+ """Streaming Bytes IO buffer. Data are dropped when read."""
13
+
14
+ def __init__(self):
15
+ self._buffer: List(bytes) = []
16
+
17
+ def write(self, b: bytes):
18
+ if b:
19
+ self._buffer.append(b)
20
+ return len(b)
21
+
22
+ def pop(self, n):
23
+ """Pop the oldest byte string. It does not necessary return the requested amount"""
24
+ if not self._buffer:
25
+ return b""
26
+ if len(self._buffer[0]) <= n:
27
+ return self._buffer.pop(0)
28
+ ret = self._buffer[0][:n]
29
+ self._buffer[0] = self._buffer[0][n:]
30
+ return ret
31
+
32
+
33
+ def _get_sample_fmt(dtype: torch.dtype):
34
+ types = {
35
+ torch.uint8: "u8",
36
+ torch.int16: "s16",
37
+ torch.int32: "s32",
38
+ torch.float32: "flt",
39
+ torch.float64: "dbl",
40
+ }
41
+ if dtype not in types:
42
+ raise ValueError(f"Unsupported dtype is provided {dtype}. Supported dtypes are: {types.keys()}")
43
+ return types[dtype]
44
+
45
+
46
+ class _AudioStreamingEncoder:
47
+ """Given a waveform, encode on-demand and return bytes"""
48
+
49
+ def __init__(
50
+ self,
51
+ src: Tensor,
52
+ sample_rate: int,
53
+ effect: str,
54
+ muxer: str,
55
+ encoder: Optional[str],
56
+ codec_config: Optional[CodecConfig],
57
+ frames_per_chunk: int,
58
+ ):
59
+ self.src = src
60
+ self.buffer = _StreamingIOBuffer()
61
+ self.writer = StreamWriter(self.buffer, format=muxer)
62
+ self.writer.add_audio_stream(
63
+ num_channels=src.size(1),
64
+ sample_rate=sample_rate,
65
+ format=_get_sample_fmt(src.dtype),
66
+ encoder=encoder,
67
+ filter_desc=effect,
68
+ codec_config=codec_config,
69
+ )
70
+ self.writer.open()
71
+ self.fpc = frames_per_chunk
72
+
73
+ # index on the input tensor (along time-axis)
74
+ # we use -1 to indicate that we finished iterating the tensor and
75
+ # the writer is closed.
76
+ self.i_iter = 0
77
+
78
+ def read(self, n):
79
+ while not self.buffer._buffer and self.i_iter >= 0:
80
+ self.writer.write_audio_chunk(0, self.src[self.i_iter : self.i_iter + self.fpc])
81
+ self.i_iter += self.fpc
82
+ if self.i_iter >= self.src.size(0):
83
+ self.writer.flush()
84
+ self.writer.close()
85
+ self.i_iter = -1
86
+ return self.buffer.pop(n)
87
+
88
+
89
+ def _encode(
90
+ src: Tensor,
91
+ sample_rate: int,
92
+ effect: str,
93
+ muxer: str,
94
+ encoder: Optional[str],
95
+ codec_config: Optional[CodecConfig],
96
+ ):
97
+ buffer = io.BytesIO()
98
+ writer = StreamWriter(buffer, format=muxer)
99
+ writer.add_audio_stream(
100
+ num_channels=src.size(1),
101
+ sample_rate=sample_rate,
102
+ format=_get_sample_fmt(src.dtype),
103
+ encoder=encoder,
104
+ filter_desc=effect,
105
+ codec_config=codec_config,
106
+ )
107
+ with writer.open():
108
+ writer.write_audio_chunk(0, src)
109
+ buffer.seek(0)
110
+ return buffer
111
+
112
+
113
+ def _get_muxer(dtype: torch.dtype):
114
+ # TODO: check if this works in Windows.
115
+ types = {
116
+ torch.uint8: "u8",
117
+ torch.int16: "s16le",
118
+ torch.int32: "s32le",
119
+ torch.float32: "f32le",
120
+ torch.float64: "f64le",
121
+ }
122
+ if dtype not in types:
123
+ raise ValueError(f"Unsupported dtype is provided {dtype}. Supported dtypes are: {types.keys()}")
124
+ return types[dtype]
125
+
126
+
127
+ class AudioEffector:
128
+ """Apply various filters and/or codecs to waveforms.
129
+
130
+ .. versionadded:: 2.1
131
+
132
+ Args:
133
+ effect (str or None, optional): Filter expressions or ``None`` to apply no filter.
134
+ See https://ffmpeg.org/ffmpeg-filters.html#Audio-Filters for the
135
+ details of filter syntax.
136
+
137
+ format (str or None, optional): When provided, encode the audio into the
138
+ corresponding format. Default: ``None``.
139
+
140
+ encoder (str or None, optional): When provided, override the encoder used
141
+ by the ``format``. Default: ``None``.
142
+
143
+ codec_config (CodecConfig or None, optional): When provided, configure the encoding codec.
144
+ Should be provided in conjunction with ``format`` option.
145
+
146
+ pad_end (bool, optional): When enabled, and if the waveform becomes shorter after applying
147
+ effects/codec, then pad the end with silence.
148
+
149
+ Example - Basic usage
150
+ To use ``AudioEffector``, first instantiate it with a set of
151
+ ``effect`` and ``format``.
152
+
153
+ >>> # instantiate the effector
154
+ >>> effector = AudioEffector(effect=..., format=...)
155
+
156
+ Then, use :py:meth:`~AudioEffector.apply` or :py:meth:`~AudioEffector.stream`
157
+ method to apply them.
158
+
159
+ >>> # Apply the effect to the whole waveform
160
+ >>> applied = effector.apply(waveform, sample_rate)
161
+
162
+ >>> # Apply the effect chunk-by-chunk
163
+ >>> for chunk in effector.stream(waveform, sample_rate):
164
+ >>> ...
165
+
166
+ Example - Applying effects
167
+ Please refer to
168
+ https://ffmpeg.org/ffmpeg-filters.html#Filtergraph-description
169
+ for the overview of filter description, and
170
+ https://ffmpeg.org/ffmpeg-filters.html#toc-Audio-Filters
171
+ for the list of available filters.
172
+
173
+ Tempo - https://ffmpeg.org/ffmpeg-filters.html#atempo
174
+
175
+ >>> AudioEffector(effect="atempo=1.5")
176
+
177
+ Echo - https://ffmpeg.org/ffmpeg-filters.html#aecho
178
+
179
+ >>> AudioEffector(effect="aecho=0.8:0.88:60:0.4")
180
+
181
+ Flanger - https://ffmpeg.org/ffmpeg-filters.html#flanger
182
+
183
+ >>> AudioEffector(effect="aflanger")
184
+
185
+ Vibrato - https://ffmpeg.org/ffmpeg-filters.html#vibrato
186
+
187
+ >>> AudioEffector(effect="vibrato")
188
+
189
+ Tremolo - https://ffmpeg.org/ffmpeg-filters.html#tremolo
190
+
191
+ >>> AudioEffector(effect="vibrato")
192
+
193
+ You can also apply multiple effects at once.
194
+
195
+ >>> AudioEffector(effect="")
196
+
197
+ Example - Applying codec
198
+ One can apply codec using ``format`` argument. ``format`` can be
199
+ audio format or container format. If the container format supports
200
+ multiple encoders, you can specify it with ``encoder`` argument.
201
+
202
+ Wav format
203
+ (no compression is applied but samples are converted to
204
+ 16-bit signed integer)
205
+
206
+ >>> AudioEffector(format="wav")
207
+
208
+ Ogg format with default encoder
209
+
210
+ >>> AudioEffector(format="ogg")
211
+
212
+ Ogg format with vorbis
213
+
214
+ >>> AudioEffector(format="ogg", encoder="vorbis")
215
+
216
+ Ogg format with opus
217
+
218
+ >>> AudioEffector(format="ogg", encoder="opus")
219
+
220
+ Webm format with opus
221
+
222
+ >>> AudioEffector(format="webm", encoder="opus")
223
+
224
+ Example - Applying codec with configuration
225
+ Reference: https://trac.ffmpeg.org/wiki/Encode/MP3
226
+
227
+ MP3 with default config
228
+
229
+ >>> AudioEffector(format="mp3")
230
+
231
+ MP3 with variable bitrate
232
+
233
+ >>> AudioEffector(format="mp3", codec_config=CodecConfig(qscale=5))
234
+
235
+ MP3 with constant bitrate
236
+
237
+ >>> AudioEffector(format="mp3", codec_config=CodecConfig(bit_rate=32_000))
238
+ """
239
+
240
+ def __init__(
241
+ self,
242
+ effect: Optional[str] = None,
243
+ format: Optional[str] = None,
244
+ *,
245
+ encoder: Optional[str] = None,
246
+ codec_config: Optional[CodecConfig] = None,
247
+ pad_end: bool = True,
248
+ ):
249
+ if format is None:
250
+ if encoder is not None or codec_config is not None:
251
+ raise ValueError("`encoder` and/or `condec_config` opions are provided without `format` option.")
252
+ self.effect = effect
253
+ self.format = format
254
+ self.encoder = encoder
255
+ self.codec_config = codec_config
256
+ self.pad_end = pad_end
257
+
258
+ def _get_reader(self, waveform, sample_rate, output_sample_rate, frames_per_chunk=None):
259
+ num_frames, num_channels = waveform.shape
260
+
261
+ if self.format is not None:
262
+ muxer = self.format
263
+ encoder = self.encoder
264
+ option = {}
265
+ # Some formats are headerless, so need to provide these infomation.
266
+ if self.format == "mulaw":
267
+ option = {"sample_rate": f"{sample_rate}", "channels": f"{num_channels}"}
268
+
269
+ else: # PCM
270
+ muxer = _get_muxer(waveform.dtype)
271
+ encoder = None
272
+ option = {"sample_rate": f"{sample_rate}", "channels": f"{num_channels}"}
273
+
274
+ if frames_per_chunk is None:
275
+ src = _encode(waveform, sample_rate, self.effect, muxer, encoder, self.codec_config)
276
+ else:
277
+ src = _AudioStreamingEncoder(
278
+ waveform, sample_rate, self.effect, muxer, encoder, self.codec_config, frames_per_chunk
279
+ )
280
+
281
+ output_sr = sample_rate if output_sample_rate is None else output_sample_rate
282
+ filter_desc = _get_afilter_desc(output_sr, _get_sample_fmt(waveform.dtype), num_channels)
283
+ if self.pad_end:
284
+ filter_desc = f"{filter_desc},apad=whole_len={num_frames}"
285
+
286
+ reader = StreamReader(src, format=muxer, option=option)
287
+ reader.add_audio_stream(frames_per_chunk or -1, -1, filter_desc=filter_desc)
288
+ return reader
289
+
290
+ def apply(self, waveform: Tensor, sample_rate: int, output_sample_rate: Optional[int] = None) -> Tensor:
291
+ """Apply the effect and/or codecs to the whole tensor.
292
+
293
+ Args:
294
+ waveform (Tensor): The input waveform. Shape: ``(time, channel)``
295
+ sample_rate (int): Sample rate of the input waveform.
296
+ output_sample_rate (int or None, optional): Output sample rate.
297
+ If provided, override the output sample rate.
298
+ Otherwise, the resulting tensor is resampled to have
299
+ the same sample rate as the input.
300
+ Default: ``None``.
301
+
302
+ Returns:
303
+ Tensor:
304
+ Resulting Tensor. Shape: ``(time, channel)``. The number of frames
305
+ could be different from that of the input.
306
+ """
307
+ if waveform.ndim != 2:
308
+ raise ValueError(f"Expected the input waveform to be 2D. Found: {waveform.ndim}")
309
+
310
+ if waveform.numel() == 0:
311
+ return waveform
312
+
313
+ reader = self._get_reader(waveform, sample_rate, output_sample_rate)
314
+ reader.process_all_packets()
315
+ (applied,) = reader.pop_chunks()
316
+ return Tensor(applied)
317
+
318
+ def stream(
319
+ self, waveform: Tensor, sample_rate: int, frames_per_chunk: int, output_sample_rate: Optional[int] = None
320
+ ) -> Iterator[Tensor]:
321
+ """Apply the effect and/or codecs to the given tensor chunk by chunk.
322
+
323
+ Args:
324
+ waveform (Tensor): The input waveform. Shape: ``(time, channel)``
325
+ sample_rate (int): Sample rate of the waveform.
326
+ frames_per_chunk (int): The number of frames to return at a time.
327
+ output_sample_rate (int or None, optional): Output sample rate.
328
+ If provided, override the output sample rate.
329
+ Otherwise, the resulting tensor is resampled to have
330
+ the same sample rate as the input.
331
+ Default: ``None``.
332
+
333
+ Returns:
334
+ Iterator[Tensor]:
335
+ Series of processed chunks. Shape: ``(time, channel)``, where the
336
+ the number of frames matches ``frames_per_chunk`` except the
337
+ last chunk, which could be shorter.
338
+ """
339
+ if waveform.ndim != 2:
340
+ raise ValueError(f"Expected the input waveform to be 2D. Found: {waveform.ndim}")
341
+
342
+ if waveform.numel() == 0:
343
+ return waveform
344
+
345
+ reader = self._get_reader(waveform, sample_rate, output_sample_rate, frames_per_chunk)
346
+ for (applied,) in reader.stream():
347
+ yield Tensor(applied)