torch-rechub 0.0.4__py3-none-any.whl → 0.0.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torch_rechub/basic/tracking.py +198 -0
- torch_rechub/data/__init__.py +0 -0
- torch_rechub/data/convert.py +67 -0
- torch_rechub/data/dataset.py +120 -0
- torch_rechub/trainers/ctr_trainer.py +137 -1
- torch_rechub/trainers/match_trainer.py +136 -1
- torch_rechub/trainers/mtl_trainer.py +146 -1
- torch_rechub/trainers/seq_trainer.py +193 -2
- torch_rechub/utils/model_utils.py +233 -0
- torch_rechub/utils/onnx_export.py +3 -136
- torch_rechub/utils/visualization.py +271 -0
- {torch_rechub-0.0.4.dist-info → torch_rechub-0.0.6.dist-info}/METADATA +68 -49
- {torch_rechub-0.0.4.dist-info → torch_rechub-0.0.6.dist-info}/RECORD +15 -9
- {torch_rechub-0.0.4.dist-info → torch_rechub-0.0.6.dist-info}/WHEEL +0 -0
- {torch_rechub-0.0.4.dist-info → torch_rechub-0.0.6.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: torch-rechub
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.6
|
|
4
4
|
Summary: A Pytorch Toolbox for Recommendation Models, Easy-to-use and Easy-to-extend.
|
|
5
5
|
Project-URL: Homepage, https://github.com/datawhalechina/torch-rechub
|
|
6
6
|
Project-URL: Documentation, https://www.torch-rechub.com
|
|
@@ -28,19 +28,29 @@ Requires-Dist: scikit-learn>=0.24.0
|
|
|
28
28
|
Requires-Dist: torch>=1.10.0
|
|
29
29
|
Requires-Dist: tqdm>=4.60.0
|
|
30
30
|
Requires-Dist: transformers>=4.46.3
|
|
31
|
+
Provides-Extra: bigdata
|
|
32
|
+
Requires-Dist: pyarrow~=21.0; extra == 'bigdata'
|
|
31
33
|
Provides-Extra: dev
|
|
32
34
|
Requires-Dist: bandit>=1.7.0; extra == 'dev'
|
|
33
35
|
Requires-Dist: flake8>=3.8.0; extra == 'dev'
|
|
34
36
|
Requires-Dist: isort==5.13.2; extra == 'dev'
|
|
35
37
|
Requires-Dist: mypy>=0.800; extra == 'dev'
|
|
36
38
|
Requires-Dist: pre-commit>=2.20.0; extra == 'dev'
|
|
39
|
+
Requires-Dist: pyarrow-stubs>=20.0; extra == 'dev'
|
|
37
40
|
Requires-Dist: pytest-cov>=2.0; extra == 'dev'
|
|
38
41
|
Requires-Dist: pytest>=6.0; extra == 'dev'
|
|
39
42
|
Requires-Dist: toml>=0.10.2; extra == 'dev'
|
|
40
43
|
Requires-Dist: yapf==0.43.0; extra == 'dev'
|
|
41
44
|
Provides-Extra: onnx
|
|
42
|
-
Requires-Dist: onnx>=1.
|
|
43
|
-
Requires-Dist: onnxruntime>=1.
|
|
45
|
+
Requires-Dist: onnx>=1.14.0; extra == 'onnx'
|
|
46
|
+
Requires-Dist: onnxruntime>=1.14.0; extra == 'onnx'
|
|
47
|
+
Provides-Extra: tracking
|
|
48
|
+
Requires-Dist: swanlab>=0.1.0; extra == 'tracking'
|
|
49
|
+
Requires-Dist: tensorboardx>=2.5; extra == 'tracking'
|
|
50
|
+
Requires-Dist: wandb>=0.13.0; extra == 'tracking'
|
|
51
|
+
Provides-Extra: visualization
|
|
52
|
+
Requires-Dist: graphviz>=0.20; extra == 'visualization'
|
|
53
|
+
Requires-Dist: torchview>=0.2.6; extra == 'visualization'
|
|
44
54
|
Description-Content-Type: text/markdown
|
|
45
55
|
|
|
46
56
|
# 🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架
|
|
@@ -69,13 +79,13 @@ Description-Content-Type: text/markdown
|
|
|
69
79
|
|
|
70
80
|
## 🎯 为什么选择 Torch-RecHub?
|
|
71
81
|
|
|
72
|
-
| 特性
|
|
73
|
-
|
|
74
|
-
| 代码行数
|
|
75
|
-
| 模型覆盖
|
|
76
|
-
| 生成式推荐
|
|
77
|
-
| ONNX 一键导出 | ✅ 内置支持
|
|
78
|
-
| 学习曲线
|
|
82
|
+
| 特性 | Torch-RecHub | 其他框架 |
|
|
83
|
+
| ------------- | --------------------------- | ---------- |
|
|
84
|
+
| 代码行数 | **10行** 完成训练+评估+部署 | 100+ 行 |
|
|
85
|
+
| 模型覆盖 | **30+** 主流模型 | 有限 |
|
|
86
|
+
| 生成式推荐 | ✅ HSTU/HLLM (Meta 2024) | ❌ |
|
|
87
|
+
| ONNX 一键导出 | ✅ 内置支持 | 需手动适配 |
|
|
88
|
+
| 学习曲线 | 极低 | 陡峭 |
|
|
79
89
|
|
|
80
90
|
## ✨ 特性
|
|
81
91
|
|
|
@@ -86,7 +96,8 @@ Description-Content-Type: text/markdown
|
|
|
86
96
|
* **易于配置:** 通过配置文件或命令行参数轻松调整实验设置。
|
|
87
97
|
* **可复现性:** 旨在确保实验结果的可复现性。
|
|
88
98
|
* **ONNX 导出:** 支持将训练好的模型导出为 ONNX 格式,便于部署到生产环境。
|
|
89
|
-
*
|
|
99
|
+
* **跨引擎数据处理:** 现已支持基于 PySpark 的数据处理与转换,方便在大数据管道中落地。
|
|
100
|
+
* **实验可视化与跟踪:** 内置 WandB、SwanLab、TensorBoardX 三种可视化/追踪工具的统一集成。
|
|
90
101
|
|
|
91
102
|
## 📖 目录
|
|
92
103
|
|
|
@@ -205,52 +216,52 @@ torch-rechub/ # 根目录
|
|
|
205
216
|
|
|
206
217
|
### 排序模型 (Ranking Models) - 13个
|
|
207
218
|
|
|
208
|
-
| 模型
|
|
209
|
-
|
|
210
|
-
| **DeepFM**
|
|
211
|
-
| **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792)
|
|
212
|
-
| **DCN**
|
|
213
|
-
| **DCN-v2**
|
|
214
|
-
| **DIN**
|
|
215
|
-
| **DIEN**
|
|
216
|
-
| **BST**
|
|
217
|
-
| **AFM**
|
|
218
|
-
| **AutoInt**
|
|
219
|
-
| **FiBiNET**
|
|
220
|
-
| **DeepFFM**
|
|
221
|
-
| **EDCN**
|
|
219
|
+
| 模型 | 论文 | 简介 |
|
|
220
|
+
| ------------- | ------------------------------------------------ | ----------------------- |
|
|
221
|
+
| **DeepFM** | [IJCAI 2017](https://arxiv.org/abs/1703.04247) | FM + Deep 联合训练 |
|
|
222
|
+
| **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792) | 记忆 + 泛化能力结合 |
|
|
223
|
+
| **DCN** | [KDD 2017](https://arxiv.org/abs/1708.05123) | 显式特征交叉网络 |
|
|
224
|
+
| **DCN-v2** | [WWW 2021](https://arxiv.org/abs/2008.13535) | 增强版交叉网络 |
|
|
225
|
+
| **DIN** | [KDD 2018](https://arxiv.org/abs/1706.06978) | 注意力机制捕捉用户兴趣 |
|
|
226
|
+
| **DIEN** | [AAAI 2019](https://arxiv.org/abs/1809.03672) | 兴趣演化建模 |
|
|
227
|
+
| **BST** | [DLP-KDD 2019](https://arxiv.org/abs/1905.06874) | Transformer 序列建模 |
|
|
228
|
+
| **AFM** | [IJCAI 2017](https://arxiv.org/abs/1708.04617) | 注意力因子分解机 |
|
|
229
|
+
| **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | 自动特征交互学习 |
|
|
230
|
+
| **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | 特征重要性 + 双线性交互 |
|
|
231
|
+
| **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | 场感知因子分解机 |
|
|
232
|
+
| **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络 |
|
|
222
233
|
|
|
223
234
|
### 召回模型 (Matching Models) - 12个
|
|
224
235
|
|
|
225
|
-
| 模型
|
|
226
|
-
|
|
227
|
-
| **DSSM**
|
|
228
|
-
| **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190)
|
|
229
|
-
| **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997)
|
|
230
|
-
| **MIND**
|
|
231
|
-
| **SINE**
|
|
232
|
-
| **GRU4Rec**
|
|
233
|
-
| **SASRec**
|
|
234
|
-
| **NARM**
|
|
235
|
-
| **STAMP**
|
|
236
|
-
| **ComiRec**
|
|
236
|
+
| 模型 | 论文 | 简介 |
|
|
237
|
+
| -------------- | ------------------------------------------------------------------------------ | ------------------ |
|
|
238
|
+
| **DSSM** | [CIKM 2013](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf) | 经典双塔召回模型 |
|
|
239
|
+
| **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190) | YouTube 深度召回 |
|
|
240
|
+
| **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997) | 采样偏差校正版本 |
|
|
241
|
+
| **MIND** | [CIKM 2019](https://arxiv.org/abs/1904.08030) | 多兴趣动态路由 |
|
|
242
|
+
| **SINE** | [WSDM 2021](https://arxiv.org/abs/2103.06920) | 稀疏兴趣网络 |
|
|
243
|
+
| **GRU4Rec** | [ICLR 2016](https://arxiv.org/abs/1511.06939) | GRU 序列推荐 |
|
|
244
|
+
| **SASRec** | [ICDM 2018](https://arxiv.org/abs/1808.09781) | 自注意力序列推荐 |
|
|
245
|
+
| **NARM** | [CIKM 2017](https://arxiv.org/abs/1711.04725) | 神经注意力会话推荐 |
|
|
246
|
+
| **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | 短期注意力记忆优先 |
|
|
247
|
+
| **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | 可控多兴趣推荐 |
|
|
237
248
|
|
|
238
249
|
### 多任务模型 (Multi-Task Models) - 5个
|
|
239
250
|
|
|
240
|
-
| 模型
|
|
241
|
-
|
|
242
|
-
| **ESMM**
|
|
243
|
-
| **MMoE**
|
|
244
|
-
| **PLE**
|
|
245
|
-
| **AITM**
|
|
246
|
-
| **SharedBottom** | -
|
|
251
|
+
| 模型 | 论文 | 简介 |
|
|
252
|
+
| ---------------- | ------------------------------------------------------------- | ------------------ |
|
|
253
|
+
| **ESMM** | [SIGIR 2018](https://arxiv.org/abs/1804.07931) | 全空间多任务建模 |
|
|
254
|
+
| **MMoE** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3220007) | 多门控专家混合 |
|
|
255
|
+
| **PLE** | [RecSys 2020](https://dl.acm.org/doi/10.1145/3383313.3412236) | 渐进式分层提取 |
|
|
256
|
+
| **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | 自适应信息迁移 |
|
|
257
|
+
| **SharedBottom** | - | 经典多任务共享底层 |
|
|
247
258
|
|
|
248
259
|
### 生成式推荐 (Generative Recommendation) - 2个
|
|
249
260
|
|
|
250
|
-
| 模型
|
|
251
|
-
|
|
261
|
+
| 模型 | 论文 | 简介 |
|
|
262
|
+
| -------- | --------------------------------------------- | -------------------------------------------- |
|
|
252
263
|
| **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | 层级序列转换单元,支撑 Meta 万亿参数推荐系统 |
|
|
253
|
-
| **HLLM** | [2024](https://arxiv.org/abs/2409.12740)
|
|
264
|
+
| **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | 层级大语言模型推荐,融合 LLM 语义理解能力 |
|
|
254
265
|
|
|
255
266
|
## 📊 支持的数据集
|
|
256
267
|
|
|
@@ -338,11 +349,19 @@ model = DSSM(user_features, item_features, temperature=0.02,
|
|
|
338
349
|
match_trainer = MatchTrainer(model)
|
|
339
350
|
match_trainer.fit(train_dl)
|
|
340
351
|
match_trainer.export_onnx("dssm.onnx")
|
|
341
|
-
# 双塔模型可分别导出用户塔和物品塔:
|
|
352
|
+
# 双塔模型可分别导出用户塔和物品塔:
|
|
342
353
|
# match_trainer.export_onnx("user_tower.onnx", mode="user")
|
|
343
354
|
# match_trainer.export_onnx("dssm_item.onnx", tower="item")
|
|
344
355
|
```
|
|
345
356
|
|
|
357
|
+
### 模型可视化
|
|
358
|
+
|
|
359
|
+
```python
|
|
360
|
+
# 可视化模型架构(需要安装: pip install torch-rechub[visualization])
|
|
361
|
+
graph = ctr_trainer.visualization(depth=4) # 生成计算图
|
|
362
|
+
ctr_trainer.visualization(save_path="model.pdf", dpi=300) # 保存为高清 PDF
|
|
363
|
+
```
|
|
364
|
+
|
|
346
365
|
## 👨💻 贡献者
|
|
347
366
|
|
|
348
367
|
感谢所有的贡献者!
|
|
@@ -388,4 +407,4 @@ match_trainer.export_onnx("dssm.onnx")
|
|
|
388
407
|
|
|
389
408
|
---
|
|
390
409
|
|
|
391
|
-
*最后更新: [2025-12-
|
|
410
|
+
*最后更新: [2025-12-11]*
|
|
@@ -8,6 +8,10 @@ torch_rechub/basic/layers.py,sha256=URWk78dlffMOAhDVDhOhugcr4nmwEa192AI1diktC-4,
|
|
|
8
8
|
torch_rechub/basic/loss_func.py,sha256=6bjljqpiuUP6O8-wUbGd8FSvflY5Dp_DV_57OuQVMz4,7969
|
|
9
9
|
torch_rechub/basic/metaoptimizer.py,sha256=y-oT4MV3vXnSQ5Zd_ZEHP1KClITEi3kbZa6RKjlkYw8,3093
|
|
10
10
|
torch_rechub/basic/metric.py,sha256=9JsaJJGvT6VRvsLoM2Y171CZxESsjYTofD3qnMI-bPM,8443
|
|
11
|
+
torch_rechub/basic/tracking.py,sha256=7-aoyKJxyqb8GobpjRjFsgPYWsBDOV44BYOC_vMoCto,6608
|
|
12
|
+
torch_rechub/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
+
torch_rechub/data/convert.py,sha256=clGFEbDSDpdZBvscWatfjtuXMZUzgy1kiEAg4w_q7VM,2241
|
|
14
|
+
torch_rechub/data/dataset.py,sha256=fDDQ5N3x99KPfy0Ux4LRQbFlWbLg_dvKTO1WUEbEN04,4111
|
|
11
15
|
torch_rechub/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
16
|
torch_rechub/models/generative/__init__.py,sha256=TsCdVIhOcalQwqKZKjEuNbHKyIjyclapKGNwYfFR7TM,135
|
|
13
17
|
torch_rechub/models/generative/hllm.py,sha256=6Vrp5Bh0fTFHCn7C-3EqzOyc7UunOyEY9TzAKGHrW-8,9669
|
|
@@ -45,18 +49,20 @@ torch_rechub/models/ranking/edcn.py,sha256=6f_S8I6Ir16kCIU54R4EfumWfUFOND5KDKUPH
|
|
|
45
49
|
torch_rechub/models/ranking/fibinet.py,sha256=fmEJ9WkO8Mn0RtK_8aRHlnQFh_jMBPO0zODoHZPWmDA,2234
|
|
46
50
|
torch_rechub/models/ranking/widedeep.py,sha256=eciRvWRBHLlctabLLS5NB7k3MnqrWXCBdpflOU6jMB0,1636
|
|
47
51
|
torch_rechub/trainers/__init__.py,sha256=NSa2DqgfE1HGDyj40YgrbtUrfBHBxNBpw57XtaAB_jE,148
|
|
48
|
-
torch_rechub/trainers/ctr_trainer.py,sha256=
|
|
49
|
-
torch_rechub/trainers/match_trainer.py,sha256=
|
|
52
|
+
torch_rechub/trainers/ctr_trainer.py,sha256=e0xS-W48BOixN0ogksWOcVJNKFiO3g2oNA_hlHytRqk,14138
|
|
53
|
+
torch_rechub/trainers/match_trainer.py,sha256=atkO-gfDuTk6lh-WvaJOh5kgn6HPzbQQN42Rvz8kyXY,16327
|
|
50
54
|
torch_rechub/trainers/matching.md,sha256=vIBQ3UMmVpUpyk38rrkelFwm_wXVXqMOuqzYZ4M8bzw,30
|
|
51
|
-
torch_rechub/trainers/mtl_trainer.py,sha256=
|
|
52
|
-
torch_rechub/trainers/seq_trainer.py,sha256=
|
|
55
|
+
torch_rechub/trainers/mtl_trainer.py,sha256=n3T-ctWACSyl0awBQixOlZUQ8I5cfGyZzgKV09EF8hw,18293
|
|
56
|
+
torch_rechub/trainers/seq_trainer.py,sha256=pyY70kAjTWdKrnAYZynql1PPNtveYDLMB_1hbpCHa48,19217
|
|
53
57
|
torch_rechub/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
54
58
|
torch_rechub/utils/data.py,sha256=vzLAAVt6dujg_vbGhQewiJc0l6JzwzdcM_9EjoOz898,19882
|
|
55
59
|
torch_rechub/utils/hstu_utils.py,sha256=qLON_pJDC-kDyQn1PoN_HaHi5xTNCwZPgJeV51Z61Lc,6207
|
|
56
60
|
torch_rechub/utils/match.py,sha256=l9qDwJGHPP9gOQTMYoqGVdWrlhDx1F1-8UnQwDWrEyk,18143
|
|
61
|
+
torch_rechub/utils/model_utils.py,sha256=VLhSbTpupxrFyyY3NzMQ32PPmo5YHm1T96u9KDlwiWE,8450
|
|
57
62
|
torch_rechub/utils/mtl.py,sha256=AxU05ezizCuLdbPuCg1ZXE0WAStzuxaS5Sc3nwMCBpI,5737
|
|
58
|
-
torch_rechub/utils/onnx_export.py,sha256=
|
|
59
|
-
torch_rechub
|
|
60
|
-
torch_rechub-0.0.
|
|
61
|
-
torch_rechub-0.0.
|
|
62
|
-
torch_rechub-0.0.
|
|
63
|
+
torch_rechub/utils/onnx_export.py,sha256=LRHyZaR9zZJyg6xtuqQHWmusWq-yEvw9EhlmoEwcqsg,8364
|
|
64
|
+
torch_rechub/utils/visualization.py,sha256=Djv8W5SkCk3P2dol5VXf0_eanIhxDwRd7fzNOQY4uiU,9506
|
|
65
|
+
torch_rechub-0.0.6.dist-info/METADATA,sha256=OihjWb0yCI1bmTEoCYAC6pI6cCgl5KS5uSrAGZwv7yY,18470
|
|
66
|
+
torch_rechub-0.0.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
67
|
+
torch_rechub-0.0.6.dist-info/licenses/LICENSE,sha256=V7ietiX9G_84HtgEbxDgxClniqXGm2t5q8WM4AHGTu0,1066
|
|
68
|
+
torch_rechub-0.0.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|