torch-l1-snr 0.0.3__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: torch-l1-snr
3
- Version: 0.0.3
3
+ Version: 0.0.4
4
4
  Summary: L1-SNR loss functions for audio source separation in PyTorch
5
5
  Home-page: https://github.com/crlandsc/torch-l1-snr
6
6
  Author: Christopher Landscaping
@@ -34,13 +34,13 @@ Dynamic: license-file
34
34
 
35
35
  A PyTorch implementation of L1-based Signal-to-Noise Ratio (SNR) loss functions for audio source separation. This package provides implementations and novel extensions based on concepts from recent academic papers, offering flexible and robust loss functions that can be easily integrated into any PyTorch-based audio separation pipeline.
36
36
 
37
- The core `L1SNRLoss` is based on the loss function described in [1], while `L1SNRDBLoss` and `STFTL1SNRDBLoss` are extensions of the adaptive level-matching regularization technique proposed in [2].
37
+ The core `L1SNRLoss` is based on the loss function described in [[1]](https://arxiv.org/abs/2309.02539), while `L1SNRDBLoss` and `STFTL1SNRDBLoss` are extensions of the adaptive level-matching regularization technique proposed in [[2]](https://arxiv.org/abs/2501.16171).
38
38
 
39
39
  ## Features
40
40
 
41
- - **Time-Domain L1SNR Loss**: A basic, time-domain L1-SNR loss, based on [1].
42
- - **Regularized Time-Domain L1SNRDBLoss**: An extension of the L1SNR loss with adaptive level-matching regularization from [2], plus an optional L1 loss component.
43
- - **Multi-Resolution STFT L1SNRDBLoss**: A spectrogram-domain version of the loss from [2], calculated over multiple STFT resolutions.
41
+ - **Time-Domain L1SNR Loss**: A basic, time-domain L1-SNR loss, based on [[1]](https://arxiv.org/abs/2309.02539).
42
+ - **Regularized Time-Domain L1SNRDBLoss**: An extension of the L1SNR loss with adaptive level-matching regularization from [[2]](https://arxiv.org/abs/2501.16171), plus an optional L1 loss component.
43
+ - **Multi-Resolution STFT L1SNRDBLoss**: A spectrogram-domain version of the loss from [[2]](https://arxiv.org/abs/2501.16171), calculated over multiple STFT resolutions.
44
44
  - **Modular Stem-based Loss**: A wrapper that combines time and spectrogram domain losses and can be configured to run on specific stems.
45
45
  - **Efficient & Robust**: Includes optimizations for pure L1 loss calculation and robust handling of `NaN`/`inf` values and short audio segments.
46
46
 
@@ -166,7 +166,7 @@ The goal of these loss functions is to provide a perceptually-informed and robus
166
166
 
167
167
  #### Level-Matching Regularization
168
168
 
169
- A key feature of `L1SNRDBLoss` is the adaptive regularization term, as described in [2]. This component calculates the difference in decibel-scaled root-mean-square (dBRMS) levels between the estimated and actual signals. An adaptive weight (`lambda`) is applied to this difference, which increases when the model incorrectly silences a non-silent target. This encourages the model to learn the correct output level and specifically avoids the model collapsing to a trivial silent solution when uncertain.
169
+ A key feature of `L1SNRDBLoss` is the adaptive regularization term, as described in [[2]](https://arxiv.org/abs/2501.16171). This component calculates the difference in decibel-scaled root-mean-square (dBRMS) levels between the estimated and actual signals. An adaptive weight (`lambda`) is applied to this difference, which increases when the model incorrectly silences a non-silent target. This encourages the model to learn the correct output level and specifically avoids the model collapsing to a trivial silent solution when uncertain.
170
170
 
171
171
  #### Multi-Resolution Spectrogram Analysis
172
172
 
@@ -205,8 +205,8 @@ The loss functions implemented here are based on the work of the authors of the
205
205
 
206
206
  ## References
207
207
 
208
- [1] K. N. Watcharasupat, C.-W. Wu, Y. Ding, I. Orife, A. J. Hipple, P. A. Williams, S. Kramer, A. Lerch, and W. Wolcott, "A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation," IEEE Open Journal of Signal Processing, 2023. (arXiv:2309.02539)
208
+ [1] K. N. Watcharasupat, C.-W. Wu, Y. Ding, I. Orife, A. J. Hipple, P. A. Williams, S. Kramer, A. Lerch, and W. Wolcott, "A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation," IEEE Open Journal of Signal Processing, 2023. [arXiv:2309.02539](https://arxiv.org/abs/2309.02539)
209
209
 
210
- [2] K. N. Watcharasupat and A. Lerch, "Separate This, and All of these Things Around It: Music Source Separation via Hyperellipsoidal Queries," arXiv:2501.16171.
210
+ [2] K. N. Watcharasupat and A. Lerch, "Separate This, and All of these Things Around It: Music Source Separation via Hyperellipsoidal Queries," [arXiv:2501.16171](https://arxiv.org/abs/2501.16171).
211
211
 
212
- [3] K. N. Watcharasupat and A. Lerch, "A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems," Proceedings of the 25th International Society for Music Information Retrieval Conference, 2024. (arXiv:2406.18747)
212
+ [3] K. N. Watcharasupat and A. Lerch, "A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems," Proceedings of the 25th International Society for Music Information Retrieval Conference, 2024. [arXiv:2406.18747](https://arxiv.org/abs/2406.18747)
@@ -0,0 +1,7 @@
1
+ torch_l1_snr-0.0.4.dist-info/licenses/LICENSE,sha256=JdS2Pv6DDs3jvXHACGdcHYdiFMe9EO1XGeHkEHLTr8Y,1079
2
+ torch_l1snr/__init__.py,sha256=pR9jg3fjTKt_suZoVDC67tqB7EWRkbfaXaPP7pYQrlQ,220
3
+ torch_l1snr/l1snr.py,sha256=aqmtNfT_8A0IRI9jiVGwNse3igBvelQGKnjfe23Xh7w,35304
4
+ torch_l1_snr-0.0.4.dist-info/METADATA,sha256=pB7DvZ6BdvCshcDqOTkJNqekh97qXNaPc7tnNzBqJVk,11143
5
+ torch_l1_snr-0.0.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
6
+ torch_l1_snr-0.0.4.dist-info/top_level.txt,sha256=NfaRND6pcjZ7-035d4XAg8xJuz31EEU210Y9xWeFOxc,12
7
+ torch_l1_snr-0.0.4.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- torch_l1_snr-0.0.3.dist-info/licenses/LICENSE,sha256=JdS2Pv6DDs3jvXHACGdcHYdiFMe9EO1XGeHkEHLTr8Y,1079
2
- torch_l1snr/__init__.py,sha256=pR9jg3fjTKt_suZoVDC67tqB7EWRkbfaXaPP7pYQrlQ,220
3
- torch_l1snr/l1snr.py,sha256=aqmtNfT_8A0IRI9jiVGwNse3igBvelQGKnjfe23Xh7w,35304
4
- torch_l1_snr-0.0.3.dist-info/METADATA,sha256=mEcAB0insIw0SfvgF5i3AtLeWXP-pBMQJhNoQRAT6KA,10823
5
- torch_l1_snr-0.0.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
6
- torch_l1_snr-0.0.3.dist-info/top_level.txt,sha256=NfaRND6pcjZ7-035d4XAg8xJuz31EEU210Y9xWeFOxc,12
7
- torch_l1_snr-0.0.3.dist-info/RECORD,,