torch-bessel 0.0.2__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torch_bessel/_C.cpython-310-darwin.so +0 -0
- torch_bessel/__init__.py +9 -0
- torch_bessel/ops.py +75 -0
- torch_bessel-0.0.2.dist-info/LICENSE +21 -0
- torch_bessel-0.0.2.dist-info/METADATA +39 -0
- torch_bessel-0.0.2.dist-info/RECORD +8 -0
- torch_bessel-0.0.2.dist-info/WHEEL +5 -0
- torch_bessel-0.0.2.dist-info/top_level.txt +1 -0
Binary file
|
torch_bessel/__init__.py
ADDED
torch_bessel/ops.py
ADDED
@@ -0,0 +1,75 @@
|
|
1
|
+
from pathlib import Path
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import Tensor
|
5
|
+
|
6
|
+
__all__ = ["modified_bessel_k0"]
|
7
|
+
|
8
|
+
# load C extension before calling torch.library API, see
|
9
|
+
# https://pytorch.org/tutorials/advanced/cpp_custom_ops.html
|
10
|
+
so_dir = Path(__file__).parent
|
11
|
+
so_files = list(so_dir.glob("_C*.so"))
|
12
|
+
assert (
|
13
|
+
len(so_files) == 1
|
14
|
+
), f"Expected one _C*.so file at {so_dir}, found {len(so_files)}"
|
15
|
+
torch.ops.load_library(so_files[0])
|
16
|
+
|
17
|
+
|
18
|
+
class ModifiedBesselK0(torch.autograd.Function):
|
19
|
+
@staticmethod
|
20
|
+
def forward(x):
|
21
|
+
return torch.special.modified_bessel_k0(x)
|
22
|
+
|
23
|
+
@staticmethod
|
24
|
+
def setup_context(ctx, inputs, _):
|
25
|
+
if ctx.needs_input_grad[0]:
|
26
|
+
ctx.save_for_backward(*inputs)
|
27
|
+
ctx.set_materialize_grads(False)
|
28
|
+
|
29
|
+
@staticmethod
|
30
|
+
def backward(ctx, grad):
|
31
|
+
if grad is None or not ctx.needs_input_grad[0]:
|
32
|
+
return None
|
33
|
+
|
34
|
+
(x,) = ctx.saved_tensors
|
35
|
+
return -torch.special.modified_bessel_k1(x).mul_(grad)
|
36
|
+
|
37
|
+
|
38
|
+
def modified_bessel_k0(z: Tensor) -> Tensor:
|
39
|
+
if not z.is_complex():
|
40
|
+
return ModifiedBesselK0.apply(z)
|
41
|
+
if not z.requires_grad:
|
42
|
+
return torch.ops.torch_bessel.modified_bessel_k0_complex_forward.default(z)
|
43
|
+
return torch.ops.torch_bessel.modified_bessel_k0_complex_forward_backward.default(
|
44
|
+
z
|
45
|
+
)[0]
|
46
|
+
|
47
|
+
|
48
|
+
@torch.library.register_fake("torch_bessel::modified_bessel_k0_complex_forward")
|
49
|
+
def _(z):
|
50
|
+
return torch.empty_like(z)
|
51
|
+
|
52
|
+
|
53
|
+
@torch.library.register_fake(
|
54
|
+
"torch_bessel::modified_bessel_k0_complex_forward_backward"
|
55
|
+
)
|
56
|
+
def _(z):
|
57
|
+
return torch.empty_like(z), torch.empty_like(z)
|
58
|
+
|
59
|
+
|
60
|
+
def modified_bessel_k0_backward(ctx, grad, _):
|
61
|
+
if ctx.needs_input_grad[0]:
|
62
|
+
return grad * ctx.saved_tensors[0]
|
63
|
+
return None
|
64
|
+
|
65
|
+
|
66
|
+
def modified_bessel_k0_setup_context(ctx, inputs, output):
|
67
|
+
if ctx.needs_input_grad[0]:
|
68
|
+
ctx.save_for_backward(output[-1])
|
69
|
+
|
70
|
+
|
71
|
+
torch.library.register_autograd(
|
72
|
+
"torch_bessel::modified_bessel_k0_complex_forward_backward",
|
73
|
+
modified_bessel_k0_backward,
|
74
|
+
setup_context=modified_bessel_k0_setup_context,
|
75
|
+
)
|
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Ho Yin Chau
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,39 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: torch_bessel
|
3
|
+
Version: 0.0.2
|
4
|
+
Summary: PyTorch extension package for Bessel functions with arbitrary real order and complex inputs
|
5
|
+
Home-page: https://github.com/pytorch/torch-bessel
|
6
|
+
Author: Ho Yin Chau
|
7
|
+
Requires-Python: >= 3.9
|
8
|
+
Description-Content-Type: text/markdown
|
9
|
+
License-File: LICENSE
|
10
|
+
Requires-Dist: torch
|
11
|
+
Dynamic: author
|
12
|
+
Dynamic: description
|
13
|
+
Dynamic: description-content-type
|
14
|
+
Dynamic: home-page
|
15
|
+
Dynamic: requires-dist
|
16
|
+
Dynamic: requires-python
|
17
|
+
Dynamic: summary
|
18
|
+
|
19
|
+
# About
|
20
|
+
PyTorch extension package for Bessel functions with arbitrary real order and complex inputs
|
21
|
+
|
22
|
+
# Install
|
23
|
+
```
|
24
|
+
pip install torch-bessel
|
25
|
+
```
|
26
|
+
|
27
|
+
# Example usage
|
28
|
+
```
|
29
|
+
import torch_bessel
|
30
|
+
|
31
|
+
z = torch.randn(10) + 1j
|
32
|
+
torch_bessel.ops.modified_bessel_k0(z)
|
33
|
+
```
|
34
|
+
|
35
|
+
# Implemented functions
|
36
|
+
- `modified_bessel_k0`: Same as `torch.special.modified_bessel_k0`, but also handles backpropagation and complex inputs with $\mathrm{Im}(z) \geq 0$ on cpu and cuda.
|
37
|
+
|
38
|
+
# WIP
|
39
|
+
- `modified_bessel_kv`: Analogue of `scipy.special.kv`.
|
@@ -0,0 +1,8 @@
|
|
1
|
+
torch_bessel/_C.cpython-310-darwin.so,sha256=_mlC7rKJU69wRAwHnrtSviDtFSFjOVv-l7oUX23WoOY,231288
|
2
|
+
torch_bessel/__init__.py,sha256=oohbWz8vxekl7kqDNSWqDH3ORabf9-Tug1KJryKw51A,230
|
3
|
+
torch_bessel/ops.py,sha256=Q9BrLxi15MS53xSt_S9dyE3g8_8_GCFYhfAztIor8Fw,2043
|
4
|
+
torch_bessel-0.0.2.dist-info/LICENSE,sha256=do0DI6wu4mF3VXnEXXPYZqVEatoRSSamgz9t80wU7_o,1068
|
5
|
+
torch_bessel-0.0.2.dist-info/METADATA,sha256=F8Mbw3qz2XuV82NoMc7HWKQ2lKivcx1X9ht2AScvSfo,999
|
6
|
+
torch_bessel-0.0.2.dist-info/WHEEL,sha256=ezfKMaDztqf77C8lvQ0NCnZxkTaOaKLprqJ8q932MhU,109
|
7
|
+
torch_bessel-0.0.2.dist-info/top_level.txt,sha256=cbDIjTj71LuAlVyyYyDt8fOAeLaVeX3Vums5F2FBa-4,13
|
8
|
+
torch_bessel-0.0.2.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
torch_bessel
|