torch-bessel 0.0.2__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Binary file
@@ -0,0 +1,9 @@
1
+ import warnings
2
+ from . import ops
3
+
4
+ # Silence warning emitted at torch/nested/_internal/nested_tensor.py:417
5
+ warnings.filterwarnings(
6
+ "ignore", message="Failed to initialize NumPy: No module named 'numpy'"
7
+ )
8
+
9
+ __all__ = ["ops"]
torch_bessel/ops.py ADDED
@@ -0,0 +1,75 @@
1
+ from pathlib import Path
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+ __all__ = ["modified_bessel_k0"]
7
+
8
+ # load C extension before calling torch.library API, see
9
+ # https://pytorch.org/tutorials/advanced/cpp_custom_ops.html
10
+ so_dir = Path(__file__).parent
11
+ so_files = list(so_dir.glob("_C*.so"))
12
+ assert (
13
+ len(so_files) == 1
14
+ ), f"Expected one _C*.so file at {so_dir}, found {len(so_files)}"
15
+ torch.ops.load_library(so_files[0])
16
+
17
+
18
+ class ModifiedBesselK0(torch.autograd.Function):
19
+ @staticmethod
20
+ def forward(x):
21
+ return torch.special.modified_bessel_k0(x)
22
+
23
+ @staticmethod
24
+ def setup_context(ctx, inputs, _):
25
+ if ctx.needs_input_grad[0]:
26
+ ctx.save_for_backward(*inputs)
27
+ ctx.set_materialize_grads(False)
28
+
29
+ @staticmethod
30
+ def backward(ctx, grad):
31
+ if grad is None or not ctx.needs_input_grad[0]:
32
+ return None
33
+
34
+ (x,) = ctx.saved_tensors
35
+ return -torch.special.modified_bessel_k1(x).mul_(grad)
36
+
37
+
38
+ def modified_bessel_k0(z: Tensor) -> Tensor:
39
+ if not z.is_complex():
40
+ return ModifiedBesselK0.apply(z)
41
+ if not z.requires_grad:
42
+ return torch.ops.torch_bessel.modified_bessel_k0_complex_forward.default(z)
43
+ return torch.ops.torch_bessel.modified_bessel_k0_complex_forward_backward.default(
44
+ z
45
+ )[0]
46
+
47
+
48
+ @torch.library.register_fake("torch_bessel::modified_bessel_k0_complex_forward")
49
+ def _(z):
50
+ return torch.empty_like(z)
51
+
52
+
53
+ @torch.library.register_fake(
54
+ "torch_bessel::modified_bessel_k0_complex_forward_backward"
55
+ )
56
+ def _(z):
57
+ return torch.empty_like(z), torch.empty_like(z)
58
+
59
+
60
+ def modified_bessel_k0_backward(ctx, grad, _):
61
+ if ctx.needs_input_grad[0]:
62
+ return grad * ctx.saved_tensors[0]
63
+ return None
64
+
65
+
66
+ def modified_bessel_k0_setup_context(ctx, inputs, output):
67
+ if ctx.needs_input_grad[0]:
68
+ ctx.save_for_backward(output[-1])
69
+
70
+
71
+ torch.library.register_autograd(
72
+ "torch_bessel::modified_bessel_k0_complex_forward_backward",
73
+ modified_bessel_k0_backward,
74
+ setup_context=modified_bessel_k0_setup_context,
75
+ )
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Ho Yin Chau
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.2
2
+ Name: torch_bessel
3
+ Version: 0.0.2
4
+ Summary: PyTorch extension package for Bessel functions with arbitrary real order and complex inputs
5
+ Home-page: https://github.com/pytorch/torch-bessel
6
+ Author: Ho Yin Chau
7
+ Requires-Python: >= 3.9
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: torch
11
+ Dynamic: author
12
+ Dynamic: description
13
+ Dynamic: description-content-type
14
+ Dynamic: home-page
15
+ Dynamic: requires-dist
16
+ Dynamic: requires-python
17
+ Dynamic: summary
18
+
19
+ # About
20
+ PyTorch extension package for Bessel functions with arbitrary real order and complex inputs
21
+
22
+ # Install
23
+ ```
24
+ pip install torch-bessel
25
+ ```
26
+
27
+ # Example usage
28
+ ```
29
+ import torch_bessel
30
+
31
+ z = torch.randn(10) + 1j
32
+ torch_bessel.ops.modified_bessel_k0(z)
33
+ ```
34
+
35
+ # Implemented functions
36
+ - `modified_bessel_k0`: Same as `torch.special.modified_bessel_k0`, but also handles backpropagation and complex inputs with $\mathrm{Im}(z) \geq 0$ on cpu and cuda.
37
+
38
+ # WIP
39
+ - `modified_bessel_kv`: Analogue of `scipy.special.kv`.
@@ -0,0 +1,8 @@
1
+ torch_bessel/_C.cpython-310-darwin.so,sha256=_mlC7rKJU69wRAwHnrtSviDtFSFjOVv-l7oUX23WoOY,231288
2
+ torch_bessel/__init__.py,sha256=oohbWz8vxekl7kqDNSWqDH3ORabf9-Tug1KJryKw51A,230
3
+ torch_bessel/ops.py,sha256=Q9BrLxi15MS53xSt_S9dyE3g8_8_GCFYhfAztIor8Fw,2043
4
+ torch_bessel-0.0.2.dist-info/LICENSE,sha256=do0DI6wu4mF3VXnEXXPYZqVEatoRSSamgz9t80wU7_o,1068
5
+ torch_bessel-0.0.2.dist-info/METADATA,sha256=F8Mbw3qz2XuV82NoMc7HWKQ2lKivcx1X9ht2AScvSfo,999
6
+ torch_bessel-0.0.2.dist-info/WHEEL,sha256=ezfKMaDztqf77C8lvQ0NCnZxkTaOaKLprqJ8q932MhU,109
7
+ torch_bessel-0.0.2.dist-info/top_level.txt,sha256=cbDIjTj71LuAlVyyYyDt8fOAeLaVeX3Vums5F2FBa-4,13
8
+ torch_bessel-0.0.2.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-macosx_11_0_arm64
5
+
@@ -0,0 +1 @@
1
+ torch_bessel